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Background: Human adenosine deaminases (ADAs) modulate the immune response:
ADA1 via metabolizing adenosine, a purine metabolite that inhibits pro-inflammatory and
Th1 cytokine production, and the multi-functional ADA2, by enhancing T-cell proliferation
and monocyte differentiation. Newborns are relatively deficient in ADA1 resulting in
elevated plasma adenosine concentrations and a Th2/anti-inflammatory bias compared
to adults. Despite the growing recognition of the role of ADAs in immune regulation, little is
known about the ontogeny of ADA concentrations.

Methods: In a subgroup of the EPIC002-study, clinical data and plasma samples were
collected from 540 Gambian infants at four time-points: day of birth; first week of life; one
month of age; and four months of age. Concentrations of total extracellular ADA, ADA1,
and ADA2 were measured by chromogenic assay and evaluated in relation to clinical data.
Plasma cytokines/chemokine were measured across the first week of life and correlated
to ADA concentrations.

Results: ADA2 demonstrated a steady rise across the first months of life, while ADA1
concentration significantly decreased 0.79-fold across the first week then increased 1.4-
fold by four months of life. Males demonstrated significantly higher concentrations of
ADA2 (1.1-fold) than females at four months; newborns with early-term (37 to <39 weeks)
and late-term (≥41 weeks) gestational age demonstrated significantly higher ADA1 at birth
(1.1-fold), and those born to mothers with advanced maternal age (≥35 years) had lower
plasma concentrations of ADA2 at one month (0.93-fold). Plasma ADA1 concentrations
were positively correlated with plasma CXCL8 during the first week of life, while ADA2
concentrations correlated positively with TNFa, IFNg and CXCL10, and negatively with
IL-6 and CXCL8.
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Conclusions: The ratio of plasma ADA2/ADA1 concentration increased during the first
week of life, after which both ADA1 and ADA2 increased across the first four months of life
suggesting a gradual development of Th1/Th2 balanced immunity. Furthermore, ADA1
and ADA2 were positively correlated with cytokines/chemokines during the first week of
life. Overall, ADA isoforms demonstrate robust ontogeny in newborns and infants but
further mechanistic studies are needed to clarify their roles in early life immune
development and the correlations with sex, gestational age, and maternal age that
were observed.
Keywords: adenosine, adenosine deaminase, ontogeny, sex differences, cytokines, chemokines, biomarkers
INTRODUCTION

Early life demonstrates unique immunologic challenges and
adaptations related to the transition from an intra-uterine
environment and progressive responses to extra-uterine
environmental cues (1). This dynamic landscape necessitates
age-dependent changes in cellular and soluble factors that shape
immunity and that have yet to be fully characterized (1–7). Given
that infancy is the time of receipt of most vaccines coupled with
the heavy burden of early life infection, and a period of profound
changes in the immune system, a better understanding of
immune ontogeny in human newborns is essential.

Among the soluble immunoregulatory proteins of human
plasma are adenosine deaminases (ADAs) -1 and -2. ADA1
(41kDa) is encoded by the ADA gene on chromosome 20q13.12
(OMIM 608958 or Entrez Gene ID 100) and is produced by all cells
(8, 9). While the intracellular role of ADA1 has been established,
this enzyme also has extracellular roles (10–13), including formation
by ADA1 (or ecto-ADA) of a ternary complex with CD26 and A2a
receptors bridging two different cells as a co-stimulatory molecule
that impacts T-cell proliferation (14, 15). ADA1 converts adenosine,
an endogenous purine metabolite that acts via leukocyte purine
receptors to suppress pro-inflammatory and Th1-polarizing
responses, to inosine, which is immunologically inert (16–19).
ADA1 also has roles in enhancing T-helper 2 (Th2) immunity
via adenosine receptors (20). ADA1 deficiency impairs thymocyte
development and B-lymphocyte immunoglobulin production (21)
resulting in severe combined immunodeficiency (22).

ADA2 has a higher Km for adenosine (23, 24) and is thereby less
enzymatically active than ADA1. While residual ADA2 activity
ADA2 can be measured in patients with ADA1 deficiency (23, 25),
its important roles in immunity has previously been under-
appreciated. ADA2 (57kDa) is encoded by the CECR1 (ADA2)
gene on chromosome 22q11.1 (OMIM 607575 or Entrez Gene
ID 51816) and is produced by activated monocytes, macrophages,
minase; cGAS, cyclic guanosine
te; CXCL, chemokine (C-X-C motif)
anded Program on Immunization
roxy-3-nonyl) adenine; GT, Gene
Consortium; HSCT, Hematopoietic
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and dendritic cells (DCs) (8, 9). Independent of its enzymatic activity,
ADA2 modulates immunity via binding cognate receptors on
immune cells (14, 26, 27). ADA2 also induces monocyte
differentiation to macrophages in T-cell co-cultures (14). ADA2-
deficient cells are unable to differentiate into M2/pro-resolution
macrophages (24, 28, 29) suggesting that ADA2 directs
differentiation of macrophages towards an anti-inflammatory
phenotype. First described in 2014 (30, 31), ADA2 deficiency
(DADA2) presents with heterogeneous manifestations of which
vascular inflammation is predominant (32–52). Patients with
ADA2 deficiency and vasculitis often have missense mutations with
at least 3% residual activity, whereas complete loss of function was
associated with pure red cells aplasia and bone marrow failure (39).
ADA2 binds to neutrophils, monocytes, NK cells, and B cells (27),
and patients with ADA2 deficiency can present with inflammatory
conditions and altered distribution of immune cell subsets and
immunoglobulin levels (32, 35, 39–41, 47, 50, 51). Overall, ADA2
is a protein of relevance to the human immune system whose
expression in early life has been incompletely characterized.

We have previously demonstrated that adenosine inhibits
TLR-induced production of TNFa but not IL-6 and that pre-
incubation of cord blood mononuclear cells with recombinant
ADA1 (rADA1) enhances TLR-mediated TNFa production
(16). Moreover, in a small cohort (n = 4-12 per group),
newborns exhibit lower plasma concentrations of extracellular
ADA1 compared to adults, resulting in elevated newborn plasma
adenosine concentrations and a Th2/anti-inflammatory bias (3,
16). However, these studies did not evaluate plasma ADA
concentrations within the first month of life, nor did they
assess whether plasma concentrations of these enzymes
correlate with plasma cytokine and chemokine concentrations.
Thus, how ADA1, ADA2, and total ADA change during the first
week of life and subsequent months of life, when the immune
system of neonates and infants undergo dramatic immunologic
changes, are most susceptible to infection, and receive the
greatest number of vaccines, is still unknown.

Partnering as international collaborators via the Expanded
Program on Immunization Consortium (EPIC), we conducted
the EPIC002 study, a prospective study to characterize
immunologic biomarkers in newborn infants followed across a
four-month period (53). We measured ADA1 and ADA2 in infant
plasma to determine age-dependent changes in early life. We
presented higher resolution data on ontogeny of not only total
May 2021 | Volume 12 | Article 578700
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ADA, but alsoADA1andADA2during thefirstweek of human life
in a large cohort of infants (N = 540 participants). We investigated
the ontogenic patterns in plasma ADA1 andADA2 concentrations
across five Gambian ethnic sub-groups. We explored whether
demographic factors such as sex, gestational age, and maternal
age were associated with distinct ADA concentrations in infant
plasma. Finally, we assessed whether plasma ADA1, ADA2, and
total ADA correlated with plasma concentrations of cytokines and
chemokines during the first week of life. Overall, our study revealed
that these immune-regulatoryproteinsdemonstrate robust changes
across the first week and months of life and correlate with plasma
cytokine and chemokine concentrations, suggesting a functional
role for ADAs in human immune ontogeny.
METHODS

Study Design and Sample Collection
The Expanded Program on Immunization Consortium (EPIC)
study 002 (EPIC002) clinical protocol has been previously
described (53), and the study is registered on clinicaltrials.gov
as NCT03246230. The study’s primary goal was to assess vaccine
immunogenicity in newborns in 4 different vaccine groups (no
vaccines at birth (i.e., delayed immunization), Hepatitis B
vaccine (HBV) alone at birth, BCG alone at birth, and both
(HBV and BCG) at birth; with n = 180 per group).

In brief, mothers and their newborns were consented and
enrolled at time of delivery at the Medical Research Council
(MRC) Unit at the London School of Hygiene and Tropical
Medicine in The Gambia. Mothers were enrolled only if they
were above the age of 18 years old, HIV-negative, had no history
of tuberculosis (TB) diagnosis in the mother or family member in
the past six weeks prior to enrollment using an electronic case
report form (eCRF) and were Hepatitis B-negative; additional
maternal exclusion criteria included severe pre-eclampsia and/or
physician assessment of high-risk pregnancy such as recurrent
early neonatal death. Newborns were included only if gestational
age >36weeks (as determined by Ballard scoring), if Apgar scores
at 5th minute >8, if birth weight >2.5 kilograms (kg). Infants with
macrosomia (birth weight >4kg) with existing risk factors such as
major known congenital malformation or abnormal exam as
determined by physician assessment at birth were also excluded.

Peripheral blood samples were collected using sterile sodium
heparin tubes (Becton Dickinson) from infants at four time points.
The first sample, Visit 1, was collected within the first 24 hours of
life (Day of Life (DOL)0); Visit 2 sample was collected at either
DOL1, DOL3, or DOL7; Visit 3 sample was collected at DOL30
and finally Visit 4 sample was collected at DOL128. Visit 3 and
Visit 4 were collected in only 540 of the 720 maternal-newborn
pairs enrolled, specifically, only in the HepB, BCG, HepB plus
BCG at birth groups, per protocol (53) due to limitations in cost.
Hence only the 540 infants for whom plasma biosamples were
available for ADA assay at all timepoints (i.e., Visits 1 thru 4) were
included in the ADA ontogeny sub-analysis that is the focus of this
report. Plasma samples were processed for analysis as we have
previously described (4). All plasma samples were stored at -80°C
Frontiers in Immunology | www.frontiersin.org 3
until use. Local and International (collaborator) Ethics and/or IRB
committees approved the clinical protocols.

Adenosine Deaminase Assay Methods
Reagents
Adenosine Deaminase Assay Kit, including: ADA Assay reagent
kits [cat. # DZ117A], ADA calibrator [cat. # DZ117A-Cal], and
Quality Controls [cat. # DZ117A-Con] (Diazyme Laboratories,
Poway, CA, USA) and Erythro-9-(2-hydroxy-3-nonyl) adenine
(EHNA) [cat. # 1261] (Tocris Bioscience, Bristol, UK).

ADA Chromogenic Assay
ADA1 and ADA2 concentrations in plasma samples were measured
with anADAAssay Kit per themanufacturer’s instructions (Diazyme
Laboratories, Poway, CA, USA), run in duplicate with or without
EHNA (20 µM)on a 384well plate. ADA2 is not EHNAsensitive, and
thus activity in EHNA-containing wells was considered to reflect
ADA2 activity. ADA1 concentration was calculated by subtracting
ADA2 concentration from total ADA concentration.

ADA Chromogenic Assay Analysis
The plate was read on an Infinite M Plex (Tecan, Mannedorf,
Switzerland), programmed to run a kinetic cycle at 37°C with
absorbance readings at 550nm performed every 5minutes over 1 hour.

Cytokine/Chemokine Methods
Reagents
Dulbecco’s phosphate-buffered saline (dPBS, cat 14190),
Corning CellBIND® 384 well plates (cat # CLS3764), and
Milliplex Human Cytokine/Chemokine MAGNETIC BEAD
Premixed 41 Plex Kit. (Millipore HCYTMAG-60K-PX41).

Cytokine/Chemokine Assay
Plasma was diluted 1:2 in dPBS prior to use. Diluted plasma
samples and the Milliplex 41-plex kit manufacturer provided
standards and quality controls were then assayed and results
were obtained with a Flexmap 3D system with Luminex
xPONENT software (both from Luminex Corp.; Austin, TX,
USA). Cytokine concentrations were determined using Milliplex
Analyst software (version 5.1.0.0).

Statistical Methods
For the analysis of ADAs, the change in absorbance between
individual time points was calculated and averaged over all time
points to obtain the rate of absorbance change for each sample.
The rates were averaged between duplicates. Each plate was
converted to concentration in units per liter (U/L) using a log-
standard curve, and plates with randomized samples were
normalized to the overall mean and standard distribution
using a universal standard sample. ADA1 concentration was
imputed by subtracting the concentration of ADA2 from the
total ADA concentration measured for each sample.

Observations were log10-transformed to generate a data set of
approximate normality, and fold-change calculated in relation to
DOL0 (Visit 1). Longitudinal statistical comparisons employed
ANOVA for non-repeated measurements with post-hoc analysis
May 2021 | Volume 12 | Article 578700
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using Welch’s t-test. Gaussian-distributed data was modeled with
generalized estimating equations (GEE), using an identity link
function and exchangeable covariance structure for longitudinal
comparisons with repeated measures. GEE significance was
calculated from the Wald statistic after performing deviance
analysis against a null model (54). Comparisons between
demographic and physiological variables like biological sex, heart
rate, and gestational or maternal age were analyzed using
untransformed data (U/L) and rank sum Wilcoxon and Kruskal-
Wallis tests (55) to allow for comparison with previously published
data (3, 56–60) and hospital-based tests on absolute plasma ADA1,
ADA2, and total ADA concentrations. For tables and graphs
presenting absolute activity concentrations, the median and the
interquartile range (IQR) were used for descriptive statistics (61).

For cytokine/chemokine analysis, the xPONENT software files
were processed using the drLumi R package. The standard curves
were fitted using a 4-parameter logistic, 5-parameter logistic, and
exponential function by the drLumi::scluminex() function. The best-
fit curve was used for each cytokine. The lower and upper limits of
detection were set as the lowest and highest concentration of the
standard curve, respectively. Analytes whose concentration could
not be estimated were imputed to either the lower (LLOQ) or upper
(ULOQ) limit of quantification for that plate/analyte. Samples that
had all analytes below the lower limit of detection were excluded
from the final analysis. The raw cytokine or chemokine values were
then log10-transformed to achieve a Gaussian distribution. ComBat
(62) (sva R package) was then used to further normalize across
plates based on plate-specific biases as determined by PCA plots.
Correlation coefficients between analytes and ADA concentrations
during the first week of life were calculated using Spearman’s rho, p-
values were determined by R function cor.test, and adjusted using
the Holm-Bonferroni method.

Clinical metadata was evaluated based on potential interactions
with adenosine and ADAs and biomarkers in general. For example,
inhibition of TNFa by adenosine is thought to be cardio-protective
both for ischemic heart disease and congestive heart failure (63–66).
Gestational age (GA) correlateswith biomarkers such as hemoglobin
and iron (67–70) and advanced maternal age, defined as age
≥35 years old, can be associated with high-risk pregnancy and
inflammatory states like pre-eclampsia (71–73), where ADAs may
be altered (74). Thus, variables such as heart rate, gestational age, and
maternal age were first analyzed as continuous variables (data not
shown) prior to categorization. Definition of categories:

1) Maternal age categories were based on standard age group of
mother in the Morbidity and Mortality Weekly Report by the
United States Center for Disease Control or other
Demographic and Health Surveys (75).

2) Gestational age (GA) is categorized based on the American
College of Obstetricians and Gynecologists (76).

a. Early term: 37 0/7 weeks through 38 6/7 weeks,

b. Full term: 39 0/7 weeks through 40 6/7 weeks,

c. Late term: 41 0/7 weeks through 41 6/7 weeks.

Statistical analyses employed R version 3.6.3, using package
versions ggpubr_0.3.0 and gee_4.13-20, for ANOVA/Wilcoxon/
Kruskal-Wallis tests and GEE, respectively. Significant p-values
Frontiers in Immunology | www.frontiersin.org 4
depicted as *= p<0.05, ** = p<0.01, *** = p<0.001; **** = p<0.0001;
ns = not significant.
RESULTS

Baseline Characterization of Study Participants
540Gambiamother-newborn pairs enrolled in the EPIC002 cohort
were followed for 128 days and were included in our analysis. As
shown inTable 1, themajority ofmothers (30.7%)were 25-29 years
old, followed by age 20-24 years old (22.2%) and then age 30-34
(19.1%).A fewpretermnewborns (n=4, 0.7%), definedas<37weeks
gestation, were enrolled but themajority (87.2%) of newborns were
early term (≥37 weeks to <39 weeks gestation) or full term (≥39
weeks to <41 weeks gestation). Participants were recruited from 2
sites (Figure 1), and the Mandinka, Jola, and Fula groups made up
the majority of ethnic sub-groups (78.2%). There was an
approximately equal ratio of male and female newborns enrolled
(49.1% female, 50.9% male) and the average birth-weight was
3.2 kg. Initiation of breastfeeding was 87.5% at delivery and
continued after the first day of life (>98%) until four months of
age for infants in this cohort.

Ontogenic Changes in ADA1, ADA2, and
Total ADA Across the First Four
Months of Life
We measured the concentrations of plasma ADA1, ADA2,
and total ADA during the first week in the Gambian cohort.
TABLE 1 | Characteristics of EPIC002 study participants.

Characteristics Frequency (N) Percent (%)

Sex of the newborn:
Female/Male 265/275 49.1/50.9

Birth weight (kg)
Avg ( ± SEM) 3.163 ± 0.017

Maternal age (years)a:
15 - 19 23 4.3
20 - 24 120 22.2
25 - 29 166 30.7
30 - 34 103 19.1
35 - 39 89 16.5
40 – 45 39 7.2

Gestational age (based on Ballard scoring):
Preterm (<37 weeks) 4 0.7
Early term (≥37 – <39 weeks) 132 24.4
Full term (≥39 – <41 weeks) 339 62.8
Late term (≥41 weeks) 65 12

Newborn ethnic sub-group:
Mandinka 269 49.8
Jola 83 15.4
Fula 70 13
Wolof 50 9.3
Serahule 22 4.1
Others 46 8.5

Frequency of breastfeeding
Visit 1 (Yes/No) 454/65 87.5/12.5
Visit 2 (Yes/No) 519/6 98.9/1.1
Visit 3 (Yes/No) 520/6 98.9/1.1
Visit 4 (Yes/No) 510/5 99.0/1.0
M
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There was a significant fold change (p ≤ 0.0001) decrease in
ADA1, and an increase in ADA2 and total ADA (Figure 2).
Specifically, while plasma concentrations of ADA1 decreased by
23% (from 4U/L at DOL0 to 3.1U/L at DOL7), concentrations of
both ADA2 (from 2.6U/L at DOL0 to 4U/L at DOL7), and total
ADA (from 6.7 U/L at DOL0 to 7.5U/L at DOL7), increased by
54% and 12%, respectively, across the first week of life (n =168-
173 per group) (p<0.01). However, there was no significant
difference in total ADA from DOL3 to DOL7.

Next, we investigated ADA isoforms beyond the first week of
life by measuring the relative ADA concentration (Figure 3A)
and the fold change compared to DOL0 (Figure 3B) of ADA1,
ADA2, and total ADA during the first four months. Interestingly,
the concentration of all ADA subtypes (total ADA, ADA1, and
ADA2) increased over the first four months of life consistent
with an overall increase in plasma ADA concentrations with age
(p<0.0001) (n = 491-511) (Figure 3). Since total ADA is defined
as the sum of ADA1 and ADA2, we explored the ratio of ADA2
relative to ADA1 concentration across time. From DOL3, the
Frontiers in Immunology | www.frontiersin.org 5
ratio of ADA2/ADA1 increased (p<0.0001), suggesting that
elevated ADA2 activity may contribute to the total ADA
measured (Supplementary Figure 1).
Association of Extracellular Plasma ADAs
Concentration and Demographic Factors
First, we explored associations between ADA concentrations and
physical exam findings at birth to look for confounders. No
significant differences were observed in concentrations of ADA1,
ADA2, or total ADA based on respiratory rate, heart rate, weight,
length, head circumference, or temperature at birth (data not
shown). No difference in ADA concentrations after the first week
of life were noted in The Gambian ethnic sub-groups
(Supplemental Figure 2).

Sex-based differences were observed in plasma concentrations
of ADA2 and total ADA, but not ADA1. At 4 months of life,
males demonstrated 11% higher median plasma ADA2
concentrations (9.8 U/L vs. 8.8 U/L) and 8.5% higher total
FIGURE 1 | Geographical distribution of the two recruitment sites for the EPIC002 study in The Gambia.
May 2021 | Volume 12 | Article 578700
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ADA (15.4 U/L vs. 14.2 U/L), whereas ADA1 was 3.7% higher
(5.6 U/L vs. 5.4 U/L) (Figure 4). This pattern was significant for
ADA2 (p=0.02) and total ADA (p=0.004) (n =254-260 per
group). Furthermore, sex-specific differences in ADA
concentrations were not observed in the first 30 days of life but
only noted at four months of age (Supplementary Figure 3).

Plasma ADA1 concentrations were elevated in early term (4.3
U/L) (p<0.05) and late term newborns (4.3 U/L) (p<0.05)
compared to full term (3.9 U/L), exhibiting a 10% increase
(Figure 5A) (n=64-321 per group). At 1 week of life and then
4 months of life, when ADA2 becomes more prominent
(Supplemental Figure 1), early gestation age was also
associated with increased ADA2 and total ADA (but not
ADA1) (Supplemental Figure 4). Our study was not designed
to assess any possible effects of prematurity (GA <37 weeks) on
ADA concentrations for which sample size was low (n=4).

Advanced maternal age, defined as age ≥35 years old, can be
associated with high-risk pregnancy and inflammatory states like
pre-eclampsia. Accordingly, we assessed whether advanced
maternal age (n=124-126) was associated with differences in
neonatal plasma ADA1 and ADA2 concentrations. We observed
lower ADA2 concentrations in infants born to mothers of
advanced maternal age, at DOL3 (3.4U/L vs. 4U/L) (p=0.02),
1 month (5.1U/L vs. 5.4U/L) (p=0.01), and 4 months of life
(8.5U/L vs. 9.7U/L) (p=0.03) (Figure 5B). A similar observation
of lower total ADA concentration in newborns of women ≥35
years of age was significant at DOL3 (p=0.006) and
demonstrated strong trends at 1- and 4- months (p = 0.06 and
0.07, respectively) (Supplementary Figure 5).
Frontiers in Immunology | www.frontiersin.org 6
Correlation With Plasma Cytokines or
Chemokines and ADA Subtypes
We measured plasma concentrations of several cytokines,
including IFNg, TNFa, and IL-6, as well as chemokines such as
CXCL8 and CXCL10 at DOL0, 1, 3, and 7. Robust rho values were
observed for the correlation between Th1-polarizing cytokines:
CXCL10 (aka IP-10) with IFNg (r=0.58) and TNFa (r=0.55), as
well as IFNg with TNFa (r=0.51) (p<0.0001). As expected, total
ADA correlated with the concentration of ADA1 (r=0.71) and
ADA2 (r=0.59) (p<0.0001). In assessing correlations between
plasma ADAs and cytokines or chemokines, we noted that total
ADAwas significantly correlatedwithCXCL10 (r=0.21) andTNFa
(r=0.15) (p<0.0001) during the first week of life (Figure 6) but not
with IFNg, IL-6, or CXCL8. ADA1 correlated positively with
CXCL8 (r=0.24) (p<0.0001) and IL-6 (r=0.09)(p<0.05), while
ADA2 correlated positively with CXCL10 (r=0.27), IFN-g
(r=0.18), and TNFa (r=0.15) (p<0.0001, but negatively with IL-6
(r=-0.21) and CXCL8 (r=-0.29) (p<0.0001).
DISCUSSION

To our knowledge, our study is the first that has explored the
ontogeny of plasma ADA1, ADA2, and total ADA across the first
week of human life. We characterized changes in plasma ADA1,
ADA2, and total ADA over the first four months of life and
defined novel correlations with sex, gestational age, and maternal
age. We observed significant positive correlations between
FIGURE 2 | Fold-change relative to DOL0 of ADA concentrations measured in plasma during the first week of life varied based on type of ADA measured. Fold-
change of ADA1 (left), ADA2 (middle) and Total ADA (right) plasma concentrations relative to the day of life (DOL) 0 in the Gambian cohort demonstrated an increase
in relative plasma ADA2 and total ADA, as well as a decrease in ADA1 across the first week of life (n =168-173/group). Statistical analyses employed ANOVA
followed by Welch’s t-test for pairwise comparisons. Significant p-values depicted as **p<0.01, ***p<0.001; ****p<0.0001; ns, not significant.
May 2021 | Volume 12 | Article 578700
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plasma concentrations of ADA2 and those of CXCL10, IFNg,
and TNFa; in addition to negative correlations with IL-6
and CXCL8.
Frontiers in Immunology | www.frontiersin.org 7
In depth characterization of the distinct immune ontogeny of
human newborns is important to inform development of better
agents and approaches to prevent, diagnose, or treat infection in
early life (6, 20). We recently demonstrated that dynamic age-
dependent molecular and cellular changes occur in the first week
of life using a systems biology approach (4). Building on our
previous work that suggested total ADA increases over the first
year of life (3), we presented higher resolution data on ontogeny
of total ADA, ADA1, and ADA2 during the first week of life in
540 participants. We observed that there is an initial decrease in
ADA1 while ADA2 increased, which may suggest distinct
functional roles for these proteins in the first week of life. Of
note, ADA1 acts as both an ecto-enzyme and as an intracellular
enzyme (10–13, 21), whereas ADA2 can bind cognate leukocyte
receptors to re-shape immune polarization (14, 26, 27, 41).
Intriguingly, a recent study posted to bioRxiv suggests that
ADA2 has a role as a lysosomal DNase that degrades ligands
for the cytosolic pattern recognition receptors cGAS/STING
thereby limiting production of interferons (77), possibly
explaining how ADA2 deficiency results in hyper-inflammation.

The plasma concentration of ADA2, and thus total ADA,
transiently decreased from day of life (DOL) 0 to DOL1 likely
reflecting dynamic perinatal changes. Indeed, plasma
concentrations of some proteins, such as hemoglobin, are
increased at delivery and decrease before reaching homeostatic
levels (67–69, 78, 79). Consistent with these, when human B-cell
subsets are isolated from healthy children and stimulated ex-vivo
with oligodeoxynucleotide-2006 (ODN2006), CD40Ligand, or
anti-Ig, ADA2 transcript decreased between time 0 (baseline)
and Day 1, but increased again at Day 6 close to the baseline
levels at time 0 (41). Interestingly, a small group of neonates in
this cohort were hospitalized for a variety of suspected or
confirmed diagnoses including early or late onset sepsis,
pneumonia, omphalitis and impetigo (n=54); however,
inclusion or exclusion of the hospitalized neonates did not
change the robust and significant ontogenic patterns
demonstrated during the first week of life or during the first
four months of life (data not shown). In our infant cohort, after
A

B

FIGURE 3 | Plasma ADA concentrations increased across the first four
months of life. (A) Concentration of ADA1 (left), ADA2 (middle) and Total ADA
(right) during the first 128 days of life in the Gambian cohort showed an
increase of ADA1, ADA2 and total ADA concentrations across the first four
months of life (n = 540 participants). (B) Log10 fold-change of ADA1 (left),
ADA2 (middle) and Total ADA (right) relative to day of life (DOL) 0 in the
Gambian cohort demonstrated an increase of ADA1, ADA2 and total ADA
concentrations during the first four months of life (n = 491-511) (p<0.0001).
Statistical analyses fit a GEE-GLM to log10 (activity) with Visit as a predictor
variable, using Gaussian distribution, identity link function, and exchangeable
covariance structure. Deviance analysis was conducted by comparing GEE to
a null model, and p-values were found using the Wald statistic.
FIGURE 4 | Males exhibited higher plasma ADA2 concentrations at four months of age. Measurement of plasma ADA1, ADA2, and Total ADA in biosamples in the
Gambian cohort demonstrated greater concentrations of ADA1 (p=0.07), ADA2 (p=0.02) and Total ADA (p=0.004) in males than females during the first four months
of life (n =254-260 per group). Statistical analyses employed Wilcoxon rank sum test.
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the first week of life, activity of ADA1, ADA2, and total ADA
increased through the first four months of life consistent with
our prior studies (3).

We examined whether a number of demographic features
correlated with plasma ADA concentrations. Ethnicity can
impact plasma biomarkers (80, 81) and ethnicity, language,
and geography have been associated with genetic diversity in
African populations (82). The concentration of ADA isoenzymes
in the different ethnic sub-groups in our Gambian cohort,
including Mandinka, Jola, Fula, Wolof, and Serahule were
consistent throughout, suggesting conservation of the ontogeny
of plasma ADA expression in these ethnic sub-groups. Given the
geographic size of The Gambia and similarity in the Gambian
ethnic sub-groups, we cannot draw final conclusions on the
impact of ethnicity on ADA concentrations.

Sex also impacts the immune system (83) and male sex is
associated with gestational complications such as failure to
progress during labor (84), as well as infant susceptibility to
infection and mortality (85). Furthermore, while males
demonstrate increased susceptibility to a range of infections
(86–89), there is an interaction between sex and age (90, 91).
A small study of elderly individuals with and without stroke
noted that females with a history of stroke had relatively higher
plasma concentrations of ADA1 and a higher ratio of plasma
ADA1/ADA2 (92). Of note, genetic polymorphisms of ADA
genes associated with longevity in males but not females, though
this study did not evaluate plasma ADA concentrations (93).
Frontiers in Immunology | www.frontiersin.org 8
Little is known regarding sex-based differences in ADA
expression in early life. Our Gambian infant study
demonstrated similar plasma concentrations of ADAs for
males and females at birth with significantly elevated
concentrations of ADA2 and total ADA in males by four
months of life. A study of American school-aged children
(mean ~8 years of age) did not reveal any significant difference
in plasma ADA2 concentration based on sex (94). Further
studies focusing on the phase beyond the first four months of
life and before age 2 years will be important to delineate the
ontogeny of sex-dependent differences in ADA2 and assess
potential correlations with immunity, health, and disease given
the clinical relevance of ADA2 and inflammation (32–52).

Several risk factors for infection and poor outcome including
impaired neurological development have been defined for infants
born between late pre-term (≥34 weeks and <37 weeks of
gestation) and early term (≥37 week to <39 weeks gestation)
(95, 96). Furthermore, gestational age (GA) correlates with
neonatal plasma biomarkers such as hemoglobin and iron at
birth (67–70). We assessed whether plasma concentrations of
ADAs may correlate with GA, although by definition, we did not
include any infant below 36 weeks gestation. We observed
significantly elevated ADA2 and total ADA in the early term
compared to full-term infants. The functional relevance of these
correlations is at present unclear. Our study is limited as we did
not enroll premature neonates (<36 weeks) and our patient
population was not powered to study neonatal conditions
A B

FIGURE 5 | Association of gestational age and maternal age with plasma ADA concentrations. (A) Both early and late gestational age were associated with higher
neonatal plasma concentrations of ADA1. Plasma concentrations of ADA1 at Day 0 in the Gambian cohort were significantly elevated in both early and late-term
versus to full-term newborns (n = 133 early-term, n = 321 full-term, n = 64 late-term)(*p<0.05; ns, not significant). Statistical analyses employed Kruskal-Wallis and
Wilcoxon for post-hoc. (B) Greater maternal age was associated with lower ADA2 concentrations during the first four months of life. Concentrations of plasma ADA2
in the Gambian cohort were significantly elevated at Day of Life 3 (p=0.02), 1 month (p=0.01), and 4 months (p=0.03) (n = 131- 400 infants of mothers <35 years of
age, n = 42-126 infants of mothers ≥35 years of age). Statistical analyses employed Wilcoxon rank sum test.
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(e.g. jaundice) that may impact the expression of ADAs. Future
studies should characterize ADA concentrations in the
premature population in relation to immunologic parameters
and infection to provide further insight into the functional
consequences of ADA expression in early life.

During the first two years of life, there is a gradual switch
from a predominantly Th2-polarizing cytokine response toward
a more balanced Th1/Th2 response (5). We previously showed
that supplementing in vitro cultures of neonatal umbilical cord
blood mononuclear cells with recombinant ADA1 enhanced
Frontiers in Immunology | www.frontiersin.org 9
TLR-mediated TNFa production (16). Moreover, addition of
ADA to cultures of monocyte-derived DCs in IL-4 and GM-CSF
medium enhanced DC production of TNFa, IL-6, and CXCL8
(97). To assess whether these previous in vitro studies may have
relevance in vivo, we examined whether plasma concentrations
of ADAs correlated with plasma cytokine or chemokine
concentrations during the first week of life. Total ADA
correlated with CXCL10 and TNFa but not with IFNg or
CXCL8. In assessing each of the ADAs individually, plasma
ADA1 weakly correlated with plasma IL-6 and moderately
FIGURE 6 | Plasma concentrations of CXCL10, IFNg and TNFa were positively correlated with Total ADA (ADAt) and ADA2 during the first week of life. Log10-
transformed plasma cytokine and chemokine concentration were pooled from Visit 1 and Visit 2 during the first week of life (n= 1027-1044 based on Visit 1 and
Visit 2). Correlation coefficients between analytes were calculated using Spearman’s rho and plotted using the GGally package in R. Total ADA (ADAt) and ADA2, but
not ADA1, were positively correlated (red) with CXCL10, IFNg and TNFa. ADA1 was positively correlated (red) with IL-6 and CXCL8 while ADA2 was negatively
correlated (blue) with IL-6 and CXCL8. P-values were determined by R function cor.test, and adjusted using the Holm-Bonferroni method. Significant p-values
depicted as *p<0.05, **p<0.01, ****p<0.0001.
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with CXCL8 while ADA2 correlated positively with TNFa, IFNg,
and the IFN-inducible protein CXCL10, and negatively with IL-6
and CXCL8. Consistent with our observations, in vitro studies
have demonstrated that stimulation of human PBMCs with
IL-12, IL-18 or IFNg, and TNFa induced expression of ADA2
(94) but not ADA1 (98). While information regarding the impact
of ADA2 deficiency (DADA2) on plasma cytokines or
chemokine concentrations is limited, observation of increased
IL-6 plasma concentrations in a patient with ADA2-deficiency
due to a missense mutation (47) is consistent with the negative
correlation between ADA2 and IL-6 we observed in our infant
cohort. Of note, the report on the ADA2-deficient patient after
treatment with HSCT demonstrated normalization of both
ADA2 and IL-6 concentrations, suggesting a close interplay
between these proteins (47). Overall, there appears to be
coordinated expression of ADA and cytokines, such that the
cytokines induce ADAs that counter-regulate them (i.e. a
potential feed-back loop).

Finally, we observed a decrease in plasma ADA2
concentrations in infants born to women ≥ 35 years of age,
which significantly dropped relative to the plasma concentration
in infants born to women < 35 years of age; by 6% at 1 month and
by 12% at 4 months of life. This is notable as advanced maternal
age is related to adverse outcomes including spontaneous
abortions, preterm birth, and perinatal morbidity (71–73).
Indeed, increased total ADA has been noted in maternal and
umbilical cord plasma in women with pre-eclampsia (99, 100),
and a genetic polymorphism of ADA1 resulting in lower ADA
was associated with a maternal age-dependent lower risk for
recurrent spontaneous abortions (101). While statistically
significant, it is unclear if the differences observed are due to
association versus a causal relationship. These observations
provide a rationale for future studies to determine if the
balance between ADA1 and ADA2 is relevant to maternal and
perinatal health including perinatal morbidity and mortality.

Overall, our observations may have translational relevance as
several of the recently described patients with ADA2 deficiency
(DADA2) were diagnosed during the first two months of life after
presenting with fever and/or anemia (30, 33, 39, 50). Total ADA,
ADA1, and ADA2 have been explored as biomarkers (56–60, 94,
102, 103) andADA1, aswell as ADA receptor agonists/antagonists,
are studied as possible vaccine adjuvants or disease-modifying
drugs (20). In HIV infection, ADA1 concentration is decreased,
addition of exogenous ADA1 enhances germinal center formation
(102, 104), and co-immunizationwithHIV-1 envelope protein and
plasmid-encoded ADA1 enhanced humoral immunity (105).
Characterizing baseline ADA concentrations in a target
population may inform translational efforts to modulate ADA-
deficient states via administration of recombinant ADA, HSCT, or
gene therapy (21, 106, 107). Moreover, baseline plasma ADA1, but
not ADA2 measurements are also affected by hemolysis (98),
highlighting the importance of measuring ADA1 separately
from ADA2.

Our study features several strengths, including (a) a robust
sample size, (b) rigorous clinical data capture, (c) a quantitative
high throughput ADA assay platform that minimizes batch effects,
and (d) a highly statistically significant novel observation of
Frontiers in Immunology | www.frontiersin.org 10
ontogeny-driven changes in ADA1, ADA2, and total ADA. As
with all studies, our work also has some important limitations. Due
to sample volume and field processing limitations, we did not
measure ADA receptors, ectonucleotidases, nor the adenosine
metabolite, whose half-life is fleeting. It will also be important to
determine if the ADA ontogeny trajectory observed in neonates in
The Gambia is generalizable to neonates in other geographic
locations. Within the constraints of conducting large-scale
international human neonatal studies, we described the ontogeny
of ADA2 as well as total ADA and ADA1 and correlated these
concentrations with those of key cytokines and chemokines. Given
growing literature regarding its clinical relevance, our findings
highlight the need for further study of ADA2, its mechanisms of
action, genotypic variants, and associated clinical phenotypes.

In conclusion, plasma concentrations of ADAs demonstrated
marked ontogenic changes across the first week and months after
birth that correlated with plasma cytokine and chemokine
concentrations, raising the possibility that these immunomodulatory
proteins are functionally related to innate immune polarization during
infancy. Given the increasing evidence of the relevance of ADA1 and
ADA2 in immunity, these proteins should be further characterized as
biomarkers for early life immune ontogeny aswell as during responses
to immune perturbation such as vaccination or infection.
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