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Latent tuberculosis infection (LTBI) poses a major roadblock in the global effort to
eradicate tuberculosis (TB). A deep understanding of the host responses involved in
establishment and maintenance of TB latency is required to propel the development of
sensitive methods to detect and treat LTBI. Given that LTBI individuals are typically
asymptomatic, it is challenging to differentiate latently infected from uninfected individuals.
A major contributor to this problem is that no clear pattern of host response is linked with
LTBI, as molecular correlates of latent infection have been hard to identify. In this study, we
have analyzed the global perturbations in host response in LTBI individuals as compared
to uninfected individuals and particularly the heterogeneity in such response, across LTBI
cohorts. For this, we constructed individualized genome-wide host response networks
informed by blood transcriptomes for 136 LTBI cases and have used a sensitive network
mining algorithm to identify top-ranked host response subnetworks in each case. Our
analysis indicates that despite the high heterogeneity in the gene expression profiles
among LTBI samples, clear patterns of perturbation are found in the immune response
pathways, leading to grouping LTBI samples into 4 different immune-subtypes. Our
results suggest that different subnetworks of molecular perturbations are associated with
latent tuberculosis.
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INTRODUCTION

Mycobacterium tuberculosis (Mtb) is one of the most successful pathogens known to humans.
Despite the availability of an array of anti-mycobacterial drugs, tuberculosis (TB) is still the leading
cause of death among infectious agents. Although it is the active form of TB that causes morbidity,
contagiousness and mortality, a majority of Mtb infected individuals remain latently infected (1).
These individuals, accounting for approximately 1.7 billion people worldwide, harbor the dormant
pathogen while remaining clinically asymptomatic for decades and carry a 10% lifetime risk of TB
reactivation and thus act as reservoirs of the TB bacilli (1, 2). Therefore to eradicate TB, it is not only
necessary to treat the active TB patients, but also important to successfully diagnose and treat LTB
infection (LTBI) in asymptomatic individuals. Establishment and maintenance of latency result
from an equilibrium in the host-pathogen interactions where the host immune response can
successfully contain the spread of the bacteria by forming granulomatous lesions but fails to
completely eradicate it (3).
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Multiple studies have previously shown the presence of a wide
spectrum of disease in tuberculosis, including latent, incipient,
subclinical and active TB (4, 5). Although the last three types
have historically gathered more research focus due to the
imminent threat to the patient, it is important to gain deeper
understanding into the mechanisms that establish and maintain
LTBI condition, preventing its progression to further stages.

Multiple challenges are involved in studying LTBI. At the
outset, accurate diagnosis of LTBI remains to be problematic as
the Interferon Gamma Release Assay (IGRA), the most sensitive
technique currently available, lacks the specificity to differentiate
between active and latent TB as well as new and treated
infections (6). Moreover, as LTBI individuals are clinically
asymptomatic and do not routinely require any clinical
intervention, testing is often limited to primary contacts of
active TB patients. Next, there is a lack of an ideal animal or in
vitro model for LTBI, making it hard to study the condition.
Studies involving whole blood samples from LTBI subjects can
be expected to throw more light on the precise host immune
response in maintaining latency of Mtb. Systems level studies
based on host transcriptome data are increasingly being used to
gain a holistic insight into different perturbations in TB and
other infectious diseases (7–9). These studies have been
successful in gaining mechanistic insights into active TB (10–
12) as well as in identifying biomarkers to differentiate active TB
from LTBI or uninfected individuals (7, 13–17). Blood-based
transcriptomic signatures have also been successful in identifying
the prospect of reactivation of LTBI (18). Recently, Burel and co-
workers used transcriptomics and protein profiling of CD4+ T
cells and identified an LTBI specific signature to separate them
from uninfected cases (19). However, accurately differentiating
non-incipient and non-subclinical LTBI from uninfected
individuals has remained an open question (20).

In this work, we seek to obtain an unbiased and personalized
view of the key immune responses that are either activated or
repressed in response to a latent TB infection as compared to
uninfected individuals. Towards this, we built sample-specific
network models of the immune processes by using a
computational pipeline previously developed in the laboratory
that integrates transcriptomes of LTBI individuals with a human
protein-protein interaction network to make precision networks
for each subject. Whole blood transcriptomes for LTBI subjects
were publicly available generated in multiple different studies.
Our network that was recently reconstructed in the laboratory
(21), is knowledge-based and covers interactions of proteins
coded by the whole genome, where the interactions and
functional influences are encoded with direction information.
Our analysis algorithm sensitively mines these transcriptome-
integrated networks to find the most important perturbations in
LTBI and computes top-ranked perturbed subnetworks. We
observed that although the gene expression profiles of the
LTBI individuals vary greatly from the uninfected samples,
there is a high amount of heterogeneity among the LTBI
samples. Our analysis revealed that the highly heterogeneous
gene expression profiles are related to perturbations in a limited
number of pathways, belonging mostly to innate and adaptive
Frontiers in Immunology | www.frontiersin.org 2
immune responses. It further identified that the meta-cohort
studied here could be stratified into immune subtypes where
each subtype showed a unique perturbation pattern that arises
from different combinations of these pathways, and also the
subtype which might help in better clinical characterization. Our
observations suggest that different molecular perturbations could
be associated with the maintenance of TB latency by the
host system.
METHODS

Selection of Publicly Available Datasets
WesearchedtheGeneexpressionrepositoryGEO(22) formicroarray
and high throughput sequencing based expression profiling datasets
on latently infected human samples using the keyword
search ‘(Tuberculosis) AND. “Homo sapiens”[porgn:_txid9606]’.
Using this search criteria we obtained a list of 196 datasets
(both microarray and RNA-seq data) that we filtered using the
following criteria: i) presence of LTBI as well as uninfected
control samples, ii) data obtained only from whole blood and
not cell type-specific, iii) absence of any comorbidity such as
HIV, iv) more than 3 samples for each condition and v) cohort
from an adult age group (over 18 years). 5 datasets matched the
selection criteria. The microarray datasets, which also included
samples from active TB patients were used as discovery datasets
in this study. Active TB patients were identified with sputum
smear, chest X-ray and/or culture positivity tests, whereas the
LTBI cases were Tuberculin Skin Test (TST) or IGRA positive
and sputum smear or culture test negative. Details of the 5
transcriptomic datasets utilized in this work are provided in
Table 1. Further, 4 additional transcriptomic datasets (Table 1)
were selected which included samples from LTBI individuals but
not uninfected cases. These datasets were also used as a second
layer of validation.

Processing of Gene Expression Data
and Statistical Analysis
We obtained raw data for each dataset from the GEO. The
datasets were pre-processed and normalized separately since the
platform chemistry was different for each dataset. EdgeR and
Limma package in Bioconductor in the R statistical environment
was used for all gene expression analysis (26–28). Overall, each
dataset was subjected to background correction, normalization
and probe-set summarization. The normalized and log2
transformed gene expression values were used for calculation
of differential expression between conditions, with moderated t-
statistics and Benjamini-Hochberg’s method to control the false
discovery rate.

In case of the datasets with only LTBI samples but not
uninfected cases, the gene expression profiles were computed
in comparison to the uninfected samples from other datasets.
The tool ComBat (29) was used to merge the normalized gene
expression data from individual datasets and remove batch effect,
followed by differential gene expression calculation with the
Limma package.
April 2021 | Volume 12 | Article 595746
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Generating Precision Networks for Each
LTBI Subject
We used a comprehensive in-house human protein-protein
interaction network (hPPiN) from Sambarey et al., 2017 in this
study (21). In summary, the network contained high
confidence, experimentally validated physical and functional
interactions curated from different databases, mainly STRING
(30), SignaLink 2.0 (31), BioGRID (32) and primary literature
(10, 33). The proteins in the hPPiN were represented as
‘nodes’ and the interactions between the proteins were
represented as ‘edges’. The edges were given directions based
on the nature of interaction between the proteins. While the
edges signifying interactions like activation, inhibition,
phosphorylation, etc. were marked as unidirectional, the
physical binding interactions and interactions without
functional annotation were marked as bidirectional. The
network comprises 17,070 nodes and 209,582 edges, of which
80% of the edges are directed, which is used as the base
network. We converted the base network to individualized
precision networks for each LTBI subject by integrating it
with the corresponding subject’s transcriptome data. For this,
we used an in-house computational approach (10, 17, 21, 34)
that derives node and edge weights as per Equations 1, 2 and 3.
In every case LTBI samples were compared against the median
gene expression values of uninfected samples from the
same dataset.

To mine the weighted LTBI networks, we use our
previously developed computational method (10, 17, 21, 35),
which involved identification of ‘most active’ and ‘most
repressed’ paths in each network based on the path cost.
Path cost was computed as the sum of weights of edges
present in the path normalized by the number of nodes in
the path (Equation 4). The least cost paths in each sample
encompassing the top 500 nodes were selected as the most
active and repressed paths. Networks obtained from most-
active paths formed the top-active network (LTBINetA) and
the most-repressed paths constituted the top-repressed
network (LTBINetR). LTBIA and LTBIR were combined to
generate the top-perturbed precision network (LTBINetP) for
each individual.
Frontiers in Immunology | www.frontiersin.org 3
Functional Enrichment Analysis
Pathway enrichment analysis of the precision networks,
LTBINetP, was carried out with Enrichr (36). Enrichment of
immune response pathways was carried out in higher detail by
using InnateDB, the manually curated innate immunity pathway
and interactions database (37) with a hypergeometric test and the
Benjamini-Hochberg’s correction method. For both Enrichr and
InnateDB enrichment, pathways with corrected P-value ≤0.05
were considered to be significantly enriched.

Since the pathway description in the databases includes all the
genes involved in the pathways and many pathways share
multiple signal mediators, there is a significant overlap of
genes between different pathways. Therefore, a pathway can be
statistically over-represented if some of the signal mediators are
captured in the gene list, but not the initiating genes of the
pathway, i.e. the ligands or receptors. In order to avoid the
selection of such pathways from further analysis, another
curation step was applied to the enrichment analysis to select
only those pathways for which the ligand or receptor genes (as
per the source databases) were present in the LTBINet analyzed.

Computation of Binary Pathway Over-
Representation Score and Clustering
Each of the target pathways was given a binary score of 1 or 0
based on the over- representation of the pathway associated
genes (corrected p-value ≤1e-05) in the top perturbed network of
individual samples. The precise pattern of pathway perturbation
was used for clustering the samples. Unsupervised clustering of
LTBI samples was performed with the pathway perturbation
scores using the ‘ConsensusClusterPlus’ package in R (38).
RESULTS

A Meta-Analysis of Whole Blood
Transcriptomes of LTBI Individuals Reveal
Heterogeneity in Gene Expression
To obtain a systems perspective of the host immune responses
associated with LTBI, we first analyzed 3 publicly available
transcriptome datasets, GSE19439, GSE19444 and GSE28623,
TABLE 1 | Blood transcriptome datasets obtained from GEO satisfying the inclusion criteria as mentioned in Methods section.

GEO ID Platform Uninfected Samples LTBI Samples Active TB Samples Geographic
Location

Age Group Dataset Usage Reference

GSE19439 Illumina GPL6947 12 17 13 London, UK Adult Discovery (7)
GSE19444 Illumina GPL6947 12 21 21 London, UK Adult Discovery (7)
GSE28623 Agilent GPL4133 37 25 46 The Gambia Adult Discovery (13)
GSE107993 Illumina HiSeq GPL20301 15 16 – Leicester, UK Adult Validation (23)
GSE107994 Illumina HiSeq GPL20301 50 57 – Leicester, UK Adult Validation (23)
GSE37250 Illumina GPL10558 – 83 97 South Africa,

Malawi
Adult Validation

(Set 2)
(14)

GSE40553 Illumina GPL10558 – 36 29 South Africa Adult Validation
(Set 2)

(24)

GSE79362 Illumina Hiseq
GPL11154

– 153 – South Africa,
Gambia

Adolescent Validation
(Set 2)

(18)

GSE101705 Illumina Nextseq
GPL18573

– 16 27 South India Adult Validation
(Set 2)

(25)
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that contained information on samples from LTBI, uninfected
healthy controls (HC) as well as active TB cases and subsequently
validated our findings in 2 other independent LTBI
transcriptome datasets (GSE107993 and GSE107994). The 3
datasets together contained samples from 63 LTBI (TST or
IGRA +ve, sputum smear or culture test -ve) and 55 healthy
Frontiers in Immunology | www.frontiersin.org 4
individuals. We found very few differentially expressed genes
(DEGs) between LTBI and HC, with a fold change ≥ ± 1.5, FDR
adjusted p value ≤0.05 (2 in GSE19439, 1 in GSE19444 and 0 in
GSE28623) (Figure 1A), although a significant number of genes
(1000) were found to be differentially regulated (fold change
≥1.5, FDR adjusted p value ≤0.05) between active TB and HC in
A

B

C

D

FIGURE 1 | LTBI patients have a highly heterogeneous gene expression profile. (A) The three selected datasets GSE19439, GSE19444 and GSE28623 showed a
significant number of genes to be differentially regulated in active TB condition but very few DEGs in LTBI when compared to uninfected cases with conventional
thresholds of FDR ≤0.05 and fold change ≥ ± 1.5 criteria. More number of genes could be considered as DEGs if the criteria are modified to unadjusted p value
≤0.05 and fold change ≥ ± 1.5. However each of these samples contained thousands of genes with ≥ ± 1.5 fold change in gene expression compared to uninfected
individuals. (B) Venn diagram shows that there are no common DEGs in LTBI condition (unadjusted p value ≤0.05, fold change ≥ ± 1.5) between all three datasets.
The number of common DEGs between any two datasets are also very few. (C) Each LTBI sample contained over 1000 genes with ≥ ± 1.5 fold change, showing a
significant difference between the gene expression profile of the individual samples from uninfected cases. (D) Heatmap shows the fold change of expression of the
genes in each individual LTBI sample that showed (≥ ± 1.5) fold change in any sample (union of all genes from Figure 1A, column 5). White signifies no significant
fold change (≤ ± 1.5), red stands of upregulation in gene expression and blue shows downregulation. It is clear that although all the samples show significant change
in the gene expression profiles, it is not consistent across the samples, suggesting a heterogeneous response to LTBI in humans.
April 2021 | Volume 12 | Article 595746
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all 3 datasets (Figure 1A). However, with less stringent
statistical criteria (unadjusted p value ≤0.05 for the same fold
change cut-off of ≥ ± 1.5), there was a significant increase in the
number of DEGs in each dataset [ranging from 993 to 6680
(Figure 1C)], but there were no common DEGs among them
(Figure 1B). Analysis of the DEG lists indicated that
transcriptomes in LTBI samples do exhibit many variations
as compared to HC (Figure 1A), but the DEG lists differ
greatly between cohorts and also within each cohort, but the
same genes were not differentially expressed across all LTBI
samples and the extent of differential expression of the genes
was also not similar (Figure 1D). This clearly shows that there
is a high amount of heterogeneity amongst the LTBI samples,
which leads to the absence of statistically significant DEGs
when many samples are analyzed together in or across datasets.
Genome-Wide Response Network Analysis
Identifies Most Frequently Perturbed
Pathways in LTBI Individuals
The inherent heterogeneity in the gene expression profile of
LTBI individuals makes a conventional differential gene
expression analysis miss out on several genes that may play
an important role in the host response in some LTBI individuals
but not all. At a functional level, a pathway might be perturbed as
a result of differential regulation in any of the key genes involved
in the pathway, leading to a similar end-effect at the level
of phenotype. To understand if the highly heterogeneous gene
expression profile of the LTBI individuals were indeed involved
in perturbing a similar group of pathways, it became necessary to
study the effect of the gene expression in each case at a functional
level. A network approach involving genome-wide protein-
protein interaction networks integrated with condition specific
gene expression data has been shown to be more efficient in
studying underlying cross-talks between DEGs and identifying
functional alterations between the two conditions (21, 35, 39).
We have previously developed methods in our laboratory to
construct condition-specific networks by incorporating
transcriptome data with a genome-wide protein-protein
interaction network and further to sensitively mine such
networks to identify subnetworks containing top-ranked
perturbations in the condition of interest (21, 34). We adopted
this approach to build LTBI specific response networks for each
of the 63 samples. Briefly the method integrates the in-house
human protein-protein interaction network (hPPiN) with gene
expression data and identifies a connected set of perturbed paths
(as compared to HC), from which the top 500 nodes in each case
is taken to constitute a top-ranked response network (LTBINets)
(Figure 2A). Each of the 63 LTBINets contained one large
connected component containing genes belonging to broadly
similar functional categories in each case. An enrichment
analysis based on the Reactome Database showed that the
predominant pathways were those of the immune response,
signal transduction and cell cycle phases (Supplementary File
S2.A). This clearly indicated that, despite a lack of common
DEGs across these samples, the LTBINets contained genes of the
Frontiers in Immunology | www.frontiersin.org 5
same functional categories, showing that they shared
commonalities in the alteration patterns at the level of pathways.

We focused on studying the most important immune
response pathways and used InnateDB database for further
over-representation analysis. However, we perceived that the
ontologies that describe the pathway associations for genes are
rather broad and multiple pathways share a large number of
overlapping genes. Thus, a pathway can be statistically enriched
despite the lack of the key genes in the input that trigger the
pathway, leading to a possibility of false positives. To address this
problem, we applied a filter that checks for feasibility in pathway
perturbation by eliminating all those where the initiating genes of
the pathway were absent. Specifically, we obtained a frequency-
weighted union of all 63 LTBINets and pruned the pooled
network to retain only those nodes that were present in at least
20% of LTBINets (Figure 2B) and studied the most enriched
immune response related pathways that satisfied our criteria of
the presence of initiating genes (Supplementary File S2.C). We
further manually curated the list of over-represented pathways to
identify the specific immune responses important in LTBI. From
the list of pathways in Supplementary File S2.C only those
pathways were retained that a) represented a specific cellular
signaling or immune response pathway, and b) satisfied our
criteria of the presence of pathway initiating genes (i.e. ligands or
receptors) as described in the corresponding databases in the
union LTBINet (Supplementary File S2.D). Thereby 13
pathways, comprising 10 distinct immune response signaling
pathways were obtained from the pruned network that could be
clearly linked to LTBI in most cases and refer to these as Immune
response pathways in LTBI (IPLTB). These are the IFNg
mediated signaling, signaling by IL2, IL4 and IL12, TNFa and
TGFb signaling pathways, TLR2 mediated signaling and the
signaling pathways by receptor tyrosine kinases EGFR, PDGF
and FGFR. All of these pathways except TNF, IL2 and IL4
mediated signaling were found to be more active (more
frequent in top active networks) in LTBI cases, whereas IL4
signaling activity was found to be repressed (more frequent in
top repressed networks) in LTBI as compared to HC
(Supplementary File S2.E). TNFa and IL2 pathways showed
higher activity in majority but lower in some LTBI individuals
than HC. Most of these pathways have been reported to play
significant roles in active TB, whereas interferon-g, IL2 and
TNFa mediated signaling have been clearly implicated in LTBI
and host susceptibility to TB (Supplementary Table S1.A).
Further, there are reports of reactivation of LTBI in cancer
patients treated with receptor tyrosine kinase inhibitors,
providing additional support for the involvement of these
pathways in maintenance of latency (40, 41).

Clustering of Samples Based on Perturbed
Pathways Indicates Immune Response
Sub-types in LTBI Individuals
It was evident from the network analysis that not every LTBI
individual had perturbation in all the over-represented pathways.
We therefore asked if there were any distinct subtypes among
LTBI individuals in terms of their immune responses. To address
April 2021 | Volume 12 | Article 595746
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this, we considered the most frequently perturbed immune
pathways (IPLTB) and represented each sample as a binary
barcode of perturbations of IPLTB (Supplementary File S2.F).
We then clustered the samples based on the extent of similarity
in the barcodes with an unsupervised clustering tool
ConsensusClusterPlus with Euclidean distance metrics. The
cumulative distribution function reached an approximate
Frontiers in Immunology | www.frontiersin.org 6
maximum at 9 clusters (C1 to C9), of which 4 clusters (C4, C5,
C7 and C9) were large consisting of 87% of the total samples,
whereas the rest of the samples formed small clusters clearly
different from the rest (Figures 3A, B). The clusters were not
dataset-specific, as samples from different datasets were found in
the same cluster (Figure 3C). From here onwards, the major
clusters C4, C5, C7 and C9 will be called C-a, C-b, C-c and C-d
A

B

FIGURE 2 | Response network analysis workflow. (A) Schematic representation of the individualized protein-protein interaction network analysis workflow used in
this work. (B) Workflow to identify the most frequently perturbed immune response pathways in LTBI patients.
April 2021 | Volume 12 | Article 595746
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respectively. Almost all samples showed perturbation in the
EGFR, PDGFR, TNFa and TGFb signaling pathways, whereas
the other pathways were perturbed only in a fraction of the LTBI
samples. All samples belonging to the cluster C-a, show
perturbations in PDGF, EGF, TGFb and TNFa mediated
signaling pathways, along with perturbed IL2 and IL4 mediated
signaling in some cases. Samples in C-b show perturbations in
IL12/IFNg axis and IL4 mediated signaling in addition to the
pattern in C-a. Samples in cluster C-c have the maximum
perturbations since all but FGFR mediated signaling pathways
are found to be perturbed in most of them. C-d significantly
differs from C-c in not having any perturbation in IL4 mediated
signaling and from C-a and C-b by showing variation in TLR2
mediated signaling. The other 9 samples have fewer perturbed
pathways than the other clusters (Figure 4). We earlier observed
the lack of common DEGs across all the samples from the
datasets. Now we performed a gene expression analysis for
samples in each of the four major clusters and saw that the
number of DEGs (fold change ≥1.5, p value ≤0.05) was increased
significantly in each cluster. C-a showed 37 DEGs, whereas C-b,
C-c and C-d showed 80, 59 and 149 DEGs respectively (Figure 4).
This shows that the sample heterogeneity is lesser within each
Frontiers in Immunology | www.frontiersin.org 7
subtype and the extent of perturbation also differed between
the subtypes.

We performed a 2 fold validation of the clustering patterns. In
the first step, we analyzed the 2 RNAseq based transcriptome
datasets that contained samples from both LTBI and uninfected
cases. There were a total of 73 LTBI samples in GSE107993 and
GSE107994 to which a similar network analysis pipeline followed
by an enrichment analysis was applied. For each sample, a binary
score was computed for each of the 10 immune pathways. Each of
the 73 samples thus scored were added to the binary score table of
the 63 previous samples and consensus clustering was performed.
63 of the 73 LTBI samples clustered with one of the four major
clusters (C-a, C-b, C-c and C-d) showing the patterns to be
significant for LTBI condition (Figure 5A). Similar to the
discovery datasets, C-a contained a minimum number of DEGs
(fold change ≥1.5, p value ≤0.05), which is 54, whereas C-d
showed the highest number of DEGs, 325. C-b and C-c had 229
and 134 DEGs respectively (Supplementary Figure 1). The
significant difference in the validation set samples from the
previous set was that a higher frequency of perturbations in
FGFR mediated signaling pathway was observed in all clusters
and the higher frequency of perturbation in IL-2 mediated
A
B

C

FIGURE 3 | LTBI samples can be divided into groups based on pathway perturbation. (A, B) The LTBI samples can be divided into 9 substantially stable clusters
based on their pathway perturbation patterns. The cumulative distribution function (CDF) plot shows that CDF reaches an approximate maximum as early as k=9
cluster. The clusters are significantly different from each other. 4 of the clusters contain the majority of the samples, whereas the few other samples show a highly
varied pathway profile. (C) The dendrogram shows the samples in each cluster. The clustering was not biased by cohort or dataset as each of the large clusters
contains samples from different datasets.
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FIGURE 4 | Pathway perturbation pattern in sample clusters. The pattern of the perturbations in each sample arranged according to their clusters (as mentioned in
Figure 3C) is depicted in a binary scoring manner. Blue signifies that the pathway is perturbed in the patient and light yellow signifies no perturbation. Red lines
demarcate the clusters.
A

B

C

FIGURE 5 | Validation of clustering pattern with independent RNAseq datasets. (A) There are 8192 possible combinations of binary scoring patterns for the 13
pathways used for clustering analysis. 14 out of 16 samples from GSE107993, 49 out of 57 samples from GSE107994 and 13 out of 15 samples from GSE84076
clustered into one of C-a, C-b, C-c or C-d. This is significantly more enriched than the random possibilities, validating the clustering pattern of pathways.
(B) Similarly, in datasets without uninfected samples, 251 out of 288 samples clustered with one of the recognized immune subtypes. Notably, in GSE79362,
153 non-progressors were analyzed and 60 of them clustered with C-d, showing a bias for non-progressor for this subtype. (C) 44 of the 46 LTBI progressor
samples from GSE79362 and GSE107994 clustered one of the 4 subtypes, with a clear bias towards C-c. 5 of the 12 active TB datasets also showed immune
perturbation patterns similar to the subtype C-c.
Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 5957468
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signaling in C-b among validation samples (Supplementary
Figure 1).

In the second validation step, clustering patterns of the LTBI
samples from the datasets lacking uninfected samples were
analyzed in a similar manner. The gene expressions were
calculated with respect to uninfected samples from other
datasets as mentioned in the Methods section. These four
datasets contained a total of 288 LTBI samples, of which 251
clustered with one of the four major clusters with significant
hypergeometric p-value (Figure 5B and Supplementary Figure
2). These validation analyses clearly suggest that the host
immune system in majority of the LTBI individuals follow one
of the 4 identified subtypes.

As evident from Figure 4 and Supplementary Figures 1 and
2, no pathway was perturbed in every sample, nor did any sample
have perturbation in all pathways. Thus each of the clusters
showed specific immune response subtypes associated with TB
latency, of which 4 subtypes (C-a, C-b, C-c and C-d) are more
frequently observed. This indicates that different individuals with
the same phenotype of latent TB are associated with different
genotypes for either establishing or maintaining latency. The
samples in each cluster have similar perturbation (and similar
genotypes) among them and hence form a subtype. The analysis
clearly shows multiple subtypes, indicating that latency could be
maintained by different molecular routes.

Individuals With Immune Response
Like Subtype C-c Might Be at Higher Risk
of TB Reactivation
From the pattern of pathway perturbation, it could be seen that
samples in C-c showed perturbation in the highest number of
pathways in the identified IPLTB. We sought to test if it
corresponded to the state of the disease or possibility of
progression into active TB. 46 LTBI samples with information
on confirmed progression into active disease were available in
two datasets, GSE107994 and GSE79362. The perturbation
pattern of IPLTB in these samples was analyzed using the
same network analysis method and their clustering pattern was
observed. Although the samples did not exclusively belong to any
of the subtypes, a bias towards C-c was indeed observed (Figure
5C and Supplementary Figure 3). Interestingly, among the non-
progressor LTBI samples from GSE79362, a clustering bias was
observed for C-d, which had the highest number of non-
progressors (60 of the 153) samples (Figure 5B). Although, 12
of the 16 genes from the Zak16 signature (18) were present in
some of our sample LTBINets, only a few were DEGs in early
time points and no specific pattern in cluster membership of
those genes was observed, indicating that the Zak16 signature is
not repurposable for subtyping LTBI samples. We also studied
the membership of genes from other progression signatures,
RISK4 (42) and PREDICT29 (43) in IPLTB, but did not find any
correlation between the signatures and our pathway-
based subtypes.

12 transcriptomic datasets (Supplementary Table S1.B) on
whole blood from active TB and uninfected cases were also
analyzed. Since, gene expression perturbations in active TB
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condition are significantly homogeneous (Figure 1A), the
datasets were analyzed as sample pools instead of as individual
samples. The perturbation pattern of IPLTB in active TB
condition showed that 7 of the datasets showed similarity with
the LTBI subtypes, of which 5 resembled C-c (Figure 1C and
Supplementary Figure 3). The rest of the datasets were not
similar to any of the subtypes, which can be expected since the
immune response in LTBI and active TB conditions vary greatly.
This also suggests that the samples in C-c might have higher
resemblance in their immune status with active TB state than the
other subtypes. From these two observations it can be suggested
that the samples in C-c have a higher possibility of the presence
of subclinical disease or propensity towards progression into
active TB than the samples from any other subtype.
DISCUSSION

In asymptomatic LTBI cases, the balance between bacterial
containment and persistence is caused due to certain immune
responses in the host, which prevents the pathogen from
multiplying and causing the disease. Although whole blood
transcriptomic studies have previously been widely successful
in identifying differential gene expression signatures for active
TB (7, 13–17), they have not been successful in differentiating
between the HC and asymptomatic LTBI populations (7, 13). All
of these studies, along with other gene expression meta-analysis
have clearly shown that there is no statistically significant
differential gene expression between these two (20). Our
independent analysis of the datasets here corroborates
these findings.

We hypothesized that the specific molecular alterations that
enable the host to keep Mtb in a latent state are not universally
the same in all individuals, and thus the gene expression profiles
are also vastly different leading to the observation of no common
DEGs across different cohorts. It is possible however, that there
are broad similarities at the level of pathways among these
individuals, which we have investigated in this work. We
adapted the network analysis method from our previous work
and have carried out a meta-analysis of the LTBI samples at the
level of networks. This allowed us to identify the common key
subnetworks and the pathways that are frequently perturbed in
LTBI individuals through different gene expression patterns.

We identified 10 pathways to be commonly perturbed in
LTBI samples, which include multiple cytokine mediated
signaling pathways, such as IL2, IL4, IFNg, TNFa, which are
known to be involved in the host immune response to active TB.
Many of these are also reported to be involved in Mtb latency in
animal models, as summarized in Supplementary Table S1.A.
Our networks indicate an increased activity in the IL12 and IFNg
pathways in LTBI. This is in high agreement with previous
reports from literature indicating that an increase in the levels
of IL12 and IFNg impart resistance against Mtb (44–46). Our
method also identified an increase in IL2 in many LTBI cases and
a reduction in activity in IL4 signaling, suggesting a high Th1 and
a low Th2 cell activity in LTBI condition, as compared to healthy
April 2021 | Volume 12 | Article 595746
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samples. The significance of Th1/Th2 balance and the cytokines
IL2 and IL4 in maintaining LTBI has been reported earlier (47–
50). Our networks also suggested that the pro-inflammatory
cytokine TNFa signaling to be perturbed in most of the LTBI
samples as compared to HC. TNFa has been described as a
double-edged sword with respect to its role in tuberculosis.
While it is known to have a beneficial effect on the host by
controlling Mtb infection, it can also cause severe tissue damage
in active tuberculosis (51). However, in Th1 dominant LTBI, it is
known to activate macrophages playing a host protective
function (52). This also explains increased LTBI reactivation in
patients treated with anti-TNF drugs like infliximab (53, 54).
IFNg and TNFa can also synergistically induce oxidative stress
response by macrophages, leading to an antimycobacterial effect
(55). Our analysis also shows TLR2 mediated responses to be
high in some LTBI individuals (clusters 7-9). TLR2 activation
can lead to an induction of an antimicrobial peptide cathelicidin
and also induce Th1 cytokine release, which in turn helps in
containing mycobacterial infection (56–58). Polymorphisms in
TLR2 pathway genes have also been linked to tuberculosis
susceptibility (59, 60). Since mycobacterial cell wall
components can directly induce TLR2 mediated response (57),
it is possible that the extent of TLR2 responses is dependent on
the bacterial burden in the individual. These pathways are also
perturbed in active TB condition to a different extent as reported
in literature as well as observed in our analysis when active TB
samples were compared to HC and LTBI conditions following a
similar method (Figure 6A).

The successful containment of Mtb in the host requires a
protective granuloma structure with a fibrotic capsule and a
necrotic center that can restrict the pathogen (61–63). In
addition to TLR2 and cytokine signaling, our analysis indicated
TGFb, EGFR, PDGFR and FGFR mediated signaling responses
to be highly active in LTBI. TGFb levels are also known to be
high in active TB and are required for intracellular survival of
Mtb (Figure 6A) (64, 65). Drug repurposing studies have
identified that Gefitinib, an EGFR inhibitor, restricts Mtb
growth, providing support for the involvement of the EGFR
signaling pathway in tuberculosis infection (66). High activities
of these pathways are known to be beneficial to the pathogen and
thus are associated with active TB (67). Our analysis suggests that
an increase in the activity of these pathways as compared to HC
is associated with LTBI. Further support for the involvement of
the EGFR pathway comes from an observation that Erlotinib, an
EGFR inhibitor leads to reactivation of LTBI (41). All of these
pathways can cause collagen deposition and fibrosis (68–72). Put
together, these indicate that an increase in activity of the four
pathways compared to HC might help in increasing fibrosis of
granuloma and restricting Mtb dissemination in LTBI cases.
EGFR signaling can increase proliferation of anti-inflammatory
M2 type macrophages in tumor-like environments and adoptive
transfer of M2 macrophages have been reported to attenuateMtb
infection (73, 74). It is possible that a moderately enhanced
activity through this pathway could result in LTBI, while a highly
enhanced activity is associated with active TB (Figure 6A).
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Although all of these pathways can be involved in controlling
Mtb infection, we observed that only a subset of these pathways
are perturbed in any LTBI individual. We could divide the total
LTBI population into 4 large subtypes with a few outliers based
on different molecular routes taken by the individual immune
system to achieve latency. It shows that although there is a
similarity between the host responses in LTBI individuals, there
also exists heterogeneity in exactly how the host system controls
the infection. All of the identified pathways can lead to
inflammation regulation and antimicrobial effect or granuloma
formation (Figure 6B). Therefore, the host immune system can
achieve latency of Mtb by modulating only a combination of
these, giving rise to different possible molecular routes to latency
(Figure 6B). We also observed that LTBI progressors and active
TB samples have a higher tendency of being clustered with C-c
than the others. Although clinical information on the
progression time-course was not available for the other LTBI
samples in discovery and validation datasets, this clustering bias
of known progressors and active TB cases might indicate that the
other LTBI samples belonging to cluster C-c have a higher
propensity for subclinical TB or reactivation. Among the four
subtypes, C-c shows perturbation in the maximum number of
pathways from IPLTB, being the only subtype to show
perturbations in both TLR2 mediated signaling and IL4
mediated signaling. Also, C-c is the only subtype that shows
perturbed IL4 signaling in all the samples. Increased TLR2
mediated signaling could be caused by a comparatively higher
bacterial burden in this subtype as TLR2 can recognize Mtb
antigens and it might be related to a higher chance of reactivation
of LTBI. Repression of IL4 signaling might play a crucial role in
such cases as IL4 can promote pathogenesis, and is therefore
repressed in all the progressor LTBI samples before reactivation.
Overall, the immune status of the samples in C-c varies the most
from uninfected conditions. It is suggestive of LTBI cases with a
higher chance of progression into active disease having more
perturbations in their immune system even at time points much
before TB incidence. This information can provide insights into
immune response responsible for susceptibility towards LTBI
reactivation and also aid in clinical decision making for
personalized therapy of LTBI.

To the best of our knowledge, this is the first systematic
analysis that compares the LTBI transcriptomes with those of
uninfected individuals that provides an insight into the immune
response of the LTBI condition. These identified pathways could
possibly be further explored as potential preventive targets for
LTBI reactivation in future. This knowledge can also be useful in
taking a cautious approach while treating any LTBI subject with
drugs targeting these pathways for other diseases.
Equations
For active precision network,

NWi = FC(i) =
(Expression  of  gene  ’ i ’  in  one  LTBI sample)

(Median  expression  of  gene  ’ i ’  in uninfected  samples)
(1)
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A

B

FIGURE 6 | Status and function of IPLTB in uninfected (HC), LTBI and active TB patients. (A) The extent of activity of the IPLTB pathways is active TB condition
compared to HC and LTBI was analyzed using a similar network analysis method. From this analysis, as well as literature reports, the status of these pathways in the
3 conditions, HC, LTBI and active TB, are summarized in a semiquantitative manner. IL12/IFNg, TLR2 and EGFR mediated signaling pathways were found to be
more active in LTBI compared to HC and further activated in active TB. IL2 and IL4 showed an opposite trend of activity in LTBI and active TB. TGF and TNF were
more active in LTBI and active TB compared to uninfected, but the difference between LTBI and active TB cannot be commented upon from our analysis. PDGFR
mediated pathway was observed to be more active in both LTBI and active compared to HC, but the extent of activity was higher in LTBI. FGFR mediated signaling
was not observed to be one of the top perturbed pathways in active TB condition. The pathways previously reported to have an important function in the context of
active and LTBI are marked with a tick, whereas no previous report is marked with a cross. (B) The possible effects of the IPLTB on the host immune system are
drawn as a simplified schematic. The pathways can be linked to inflammation, macrophage activation, antimycobacterial effects, granuloma formation and fibrosis,
etc., which can finally help in maintaining TB latency. The different clusters use some of the pathways from IPLTB, as shown in insets, to achieve TB latency. Red
and green correspond to perturbed activities, in comparison to HC. Green denotes the pathways perturbed in all the clusters, whereas red shows pathways
perturbed in different clusters. Dark red signifies that most of the members of the cluster show the perturbation whereas light red signifies about half of the members
to show the perturbation.
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For repressed precision network,

NWi = FC(i) =
(Median  expression  of  gene  ’ i ’  in  uninfected  samples)

(Expression  of  gene  ’ i ’  in  one  LTBI samples)
(2)

Where, NW is node weight and FC is fold change.
The edge weight (EW) between nodes ‘i1’ and ‘i2’ is calculated

based on the node weights as,

EWi1i2 =
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NWi1 � NWi2

p (3)

Path  Cost =
o
n

i=1
EWi1i2

Number   of   nodes   in   path
(4)
NOMENCLATURE

EGFR, Epidermal growth factor receptor; FGFR, Fibroblast
growth factor receptor; IFNg , Interferon gamma; IL,
Interleukin; HC, Healthy (Uninfected) control; LTBI, Latent
tuberculosis infection; Mtb, Mycobacterium tuberculosis;
PDGFR, Platelet derived growth factor receptor; TB,
Tuberculosis; TGFb, Transforming growth factor beta; TLR,
Toll like receptor; TNFa, Tumor necrosis factor alpha
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