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In order to inhibit pathogenic complications and to enhance animal and poultry growth,

antibiotics have been extensively used for many years. Antibiotics applications not only

affect target pathogens but also intestinal beneficially microbes, inducing long-lasting

changes in intestinal microbiota associated with diseases. The application of antibiotics

also has many other side effects like, intestinal barrier dysfunction, antibiotics residues

in foodstuffs, nephropathy, allergy, bone marrow toxicity, mutagenicity, reproductive

disorders, hepatotoxicity carcinogenicity, and antibiotic-resistant bacteria, which greatly

compromise the efficacy of antibiotics. Thus, the development of new antibiotics

is necessary, while the search for antibiotic alternatives continues. Probiotics are

considered the ideal antibiotic substitute; in recent years, probiotic research concerning

their application during pathogenic infections in humans, aquaculture, poultry, and

livestock industry, with emphasis onmodulating the immune system of the host, has been

attracting considerable interest. Hence, the adverse effects of antibiotics and remedial

effects of probiotics during infectious diseases have become central points of focus

among researchers. Probiotics are live microorganisms, and when given in adequate

quantities, confer good health effects to the host through different mechanisms. Among

them, the regulation of host immune response during pathogenic infections is one of the

most important mechanisms. A number of studies have investigated different aspects

of probiotics. In this review, we mainly summarize recent discoveries and discuss two

important aspects: (1) the application of probiotics during pathogenic infections; and

(2) their modulatory effects on the immune response of the host during infectious and

non-infectious diseases.

Keywords: antibiotic resistant bacteria, antibiotics alternative, probiotics, pathogenic infections,

immunomodulating

INTRODUCTION

The term probiotic is derived from the Greek word (πρoβιoτ ικó: πρó and β
,
ιóς) meaning

“for life” (1, 2). Probiotics have a very old history since their first description; the first clinical
trial investigating the remedial effects of probiotics in constipation was started in 1930 (3).
Probiotics have a wide range of applications in poultry, livestock, aquaculture, and also in

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.616713
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.616713&domain=pdf&date_stamp=2021-04-08
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cuishangjin@caas.cn
mailto:Zhangguangzhi@caas.cn
https://doi.org/10.3389/fimmu.2021.616713
https://www.frontiersin.org/articles/10.3389/fimmu.2021.616713/full


Raheem et al. Effects of Probiotics During Pathogenic Infections

humans for the prevention and treatment of disorders, ailments,
and infectious and non-infectious diseases (e.g., bacterial,
viral, parasitic, or fungal diseases, nervous system disorders,
obesity, cancer, and allergic problems), as well as preoperative
and postoperative processes. Nowadays, probiotics are an
inevitable part of human nutrition with elevated consumption
levels through naturally and microbially fermented products
with enormous amounts of viable beneficial microbes, such
as fermented animal products, fermented fruits and their
juices, and various other food products (4). Different probiotics
like Lactobacillus, Lactococcus, Leuconostoc, Pediococcus,
Enterococcus, Vagococcus, Bacillus, Clostridium butyricum,
Micrococcus, Rhodococcus, Brochothrix, Kocuria, Pseudomonas,
Aeromonas, Shewanella, Enterobacter, Roseobacter, Vibrio,
Zooshikella, Flavobacterium, and some yeasts are commonly
used probiotics to control infectious diseases as well as
to improve health and quality of aquaculture production
(5, 6). The application of specific probiotics culture in the
poultry and livestock industry has become very common in
recent days. Many economically important poultry diseases
like Salmonellosis, Clostridial diseases, Coccidiosis etc.,
respond positively during probiotics treatment (7). Genus
Bacillus, Pediococcus, Lactobacillus, Enterococcus, Streptococcus,
Aspergillus, and Saccharomyces are usually used in poultry (1).

To increase meat production and inhibit pathogenic growth,
antibiotics are usually supplemented in the feed of poultry
and livestock leading to the emergence of antibiotic-resistant
bacteria. Antibiotic-resistant bacteria are becoming very
common, presenting difficulties to the treatment of clinical
infections with current chemotherapeutics, thus effective and
novel strategies which will enable the host immune system to
combat the infections are urgently needed (8). Probiotics exert
beneficial effects to their hosts by diverse mechanisms, e.g.,
antimicrobial peptide (AMP) production, fatty acids production,
stabilization of disturbed intestinal microflora, competitive
pathogen exclusion, and modulation of host innate and adaptive
immune responses (9). Nowadays, strategies using probiotics as
an immunomodulator to control infectious diseases have become
popular. Antimicrobial effects of probiotics by modulating the
innate and adaptive immune responses of hosts have been
extensively reported in numerous in vitro and in vivo studies.

Immune cells or epithelial cells can express a series of
pattern recognition receptors (PRRs). The typical PRRs consist
of Toll-like receptors (TLRs), retinoic acid-inducible gene-
I-like receptors (RLRs), nucleotide oligomerization domain
(NOD)-like receptors (NLRs), and C-type lectin receptors (10).
Pathogen-associated molecular patterns (PAMPs) of probiotics
interact with PRRs to initiate appropriate signaling pathways
for the expression of different genes and subsequent production
of immune mediators, which help the hosts to counteract
the pathogenic infections (11). Besides these immune remedial
effects, probiotics also provide other health-promoting effects
on hosts. Indigenous microbiota possess different biological
activities extending from anabolism to catabolism of large
molecules, resulting in beneficial effects on host health as well
as microbiota themselves. Intestinal microflora can ferment
endogenous mucus and indigestible diet residues and produce

vitamins, such as vitamin K and B (12). The following sections of
this review provide a brief introduction to probiotics and discuss
the mechanism of probiotic functions and their application
during pathogenic infections.

HISTORY OF PROBIOTICS

In the early 1900s, Louis Pasteur asserted that microorganisms
were responsible for food fermentation, while Élie Metchnikoff
stated that the increased longevity of individuals living in the
rural areas of Bulgaria was closely associated with the daily
consumption of fermented dairy products, such as yogurt. He
claimed that lactobacilli could mitigate the putrefactive effects of
gastrointestinal metabolism, which contributed to diseases and
aging. Approximately 2,000 years earlier, Hippocrates claimed
that “death sits in the bowl” (13). Fermented foods have a long
history; fermented milk can be traced back to the Neolithic age.
The fermentation of milk was first reported around 10,000 BC in
the Middle East and India, and around 7,000–5,000 BC in Egypt,
Rome, Greece, and the rest of Europe. The first appearance of
soy sauce is estimated around 4,000 BC and 3,000 BC in China,
Japan, and Korea; fermented rice first appeared around 2,000 BC
in Asia. Fish sauce originated from northern Africa and South
East Asia around 1,000 BC. The use of wine possibly started in
North Africa around 3,000 BC, and subsequently expanded in the
Middle East, Greece, Egypt, and Rome. The use of beer may have
started around 7,000 BC in China and probably around 5,000 BC
in Mesopotamia (2, 14) (Table 1).

SELECTION CRITERIA AND HEALTH
BENEFITS OF COMMONLY USED
PROBIOTICS

A number of microbes have been used as probiotics. The
number of microbial organisms with probiotic characteristics
is remarkable. Among them, lactic acid bacteria (LAB) are
a group of non-spore forming, Gram-positive rods or cocci
with tolerability to markedly low pH; they are fermenters
of carbohydrates and use carbon as final electron acceptors.
LAB have a wide range of applications and are the most
commonly used probiotics (15, 16). They are classified on the
basis of their cellular morphology and glucose fermentation
mode, into Phylum-Firmicutes, Class-Bacilli, and Order-
Lactobacillales. Currently, the LAB genera include Lactobacillus,
Streptococcus, Leuconostoc, Carnobacterium, Lactococcus,
Aerococcus, Enterococcus, Pediococcus, Oenococcus, Weissella,
Alloiococcus, Tetragenococcus, Dolosigranulum, and Vagococcus
(17, 18). The most frequently utilized genera of bacteria used
in probiotic formulations are Lactobacillus, Enterococcus,
Streptococcus, Bacillus, and Bifidobacterium, as well as some
fungal strains of the genus Saccharomyces, such as Saccharomyces
boulardii (S. boulardii). Most of these are regarded as the
intestinal commensal microbiota (2).

The process for the identification of newly-isolated probiotic
candidates is the first problem that needs to be addressed. From
isolation to market launching, knowledge needs to be collected
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TABLE 1 | Some fermented foods history and origin.

Food origin Aproximate

appearance year

Region

Fermented milk 10,000 BC Middle East

Product of fermented

milk

7,000–5,000 BC Egypt, Italy, Greece

Mushroom 4,000 BC China

Wine 3,000 BC North Africa, Middle East, Europe

Soy sauce 3,000 BC China, Korea, Japan

Fermented honey 2,000 BC Middle East, North Africa

Fermented rice 2,000 BC China, Asia

Fermented malted

cereals: beer

2,000 BC China, Middle East, North Africa

Chees 2,000 BC China, Middle East

Fermented meats 1,500 BC Middle East

Bread 1,500 BC Egypt, Europe

Pickled vegetables 1,000 BC China, Europe

Fish sauce 1,000 BC Southesat Asia, North Africa

Sourdough bread 1000 BC Europe

Tea 200 BC China

on host health, adhesion properties, and resistance to host
biochemical environments. Probiotics must be safe, adhere to
the lining of intestinal cells with high survival potential, have
an immunostimulatory function, have the ability to colonize
the tract lumen, withstand exposure to low pH and bile salt,
and should have antipathogenic characteristics (19, 20). Other
probiotic properties may be considered for selecting probiotic
strains with cognitive effects, such as their ability to lower
cholesterol, antioxidant function, or cytotoxic impact on cancer
cells. Of note, a prospective probiotic does not need to follow or
meet all aforementioned selection criteria (21). Figure 1 shows
some properties of good probiotics.

The microbiota inhabiting the animal body provide crucial
services to the ecosystem, such as the production of important
resources and bioconversion of different nutrients, which are
beneficial for both the host andmicrobes. Microbiota can execute
different crucial biological activities, ranging from anabolism
to catabolism of large molecules. These biological activities can
be beneficial for host health and the microbes. The metabolic
functions of intestinal microflora reduce the energy costs of
their host, as they ferment endogenous mucus and indigestible
food residues, and also produce vitamins such as vitamin K and
B (12). Therefore, due to their biological activities, probiotics
have positive health effects on hosts, including reduction of the
energy required during digestion and provision of beneficial
nutrients. Different kinds of commercially available probiotics
products are available to boost the health of adults and children
(www.probioticchart.ca, www.usprobioticguide.come) (22).

PROBIOTICS ENCAPSULATION

Because of the substantial decrease in their viability in the harsh
gastrointestinal environment of the host (gastric pH, protease,

lipase, and peristalsis) and during different food processing and
storage conditions (high temperature, pH changes, oxygen, and
hydrogen), the possible beneficial health effects of probiotics
may not be recognized. A number of systems have been
designed to improve orally administered probiotics viable
number in gastrointestinal tract (GIT), including coating and
embedding systems (23). Microencapsulation is an efficient
technique that is used to increase the viability and resistance
of probiotics against the harsh environmental conditions of
GIT and during storage conditions. Microencapsulation is a
physicochemical or mechanical process in which probiotics
are usually inserted or coated with food-grade materials like
lipids, biopolymers, or other hydrocolloidal materials, providing
protection against adverse conditions such as heat shock, low
pH, bile salts, cold shock, etc. (24). Several studies have been
reported that microencapsulation increases the viability of
probiotics Encapsulation of Bifidobacterium longum with milk
increases its viability during storage time (25). Lactococcus lactis
subsp. cremoris LM0230 encapsulation in alginate increases its
stability and viability (26). Similarly, Lactobacillus rhamnosus
GG encapsulation with pectin increases its viability in simulated
GIT conditions. Muhammad et al. (27) reported Lactobacillus
plantarum KLDS 1.0344 ability to alleviate chronic lead toxicity
in mice increases when encapsulated with starch originated from
tomatoes (27). The study of Riaz et al. (28) shows that the survival
rate under simulated GIT conditions of zein-coated alginate
Bifidobacterium bifidum significantly increases.

POTENTIAL MECHANISMS OF THE
PROBIOTIC FUNCTION

The mechanisms of probiotic function are complex,
heterogeneous, and specific to probiotic strains. They include
competitive exclusion of pathogens (29), ability to colonize
the intestine (30), intestinal barrier function improvement
by increasing the expression of tight junction proteins and
mucin expression along with the interaction of PAMP to PRRs,
AMP production (31), and immune system regulation. Some
important mechanisms are briefly discussed below.

Competitive Pathogen Exclusion
This refers to a condition in which one bacterial species has
a greater potential to attach the epithelia, through a receptor,
than other species (11). The known mechanisms of competitive
exclusion mainly include lowering the pH in the lumen,
contesting for nutrient utilization, and AMP production against
competitors (32). Interaction between molecules distributed in
the gut epithelia and the surface of bacterial cells mediates the
adhesion and colonization of bacteria. Commensal or probiotic
bacteria produce adhesive surface molecules (e.g., enolases,
glyceraldehyde-3-phosphate, and pyruvate dehydrogenase) and
adhere to the extracellular matrix of the host (33, 34). These
adhesive surface molecules assist commensal bacteria and
probiotics in contesting and preventing pathogenic bacterial
attachment and colonization (35, 36). Lactobacillus fermentum
(L. fermentum) competitively binds to collagen I of host epithelial
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FIGURE 1 | Probiotics properties and their action.

cells by expressing its collagen-binding protein genes and inhibits
the binding of Campylobacter jejuni. Similarly, Lactobacillus
gasseri expresses aggregation-promoting factors on their cell
surface, which helps in self-aggregation and its binding with the
host extracellular matrix fibronectin component. This facilitates
the colonization of probiotics and the exclusion of pathogens
from the GIT (37). L. gasseri also inhibits the adhesion of
Helicobacter pylori (H. pylori) to AGS gastric epithelial cell
lines by expressing its Sortase A (srtA) gene, which produces
surface molecules that facilitate L. gasseri aggregation, as well
as binding and adhesion to AGS cell lines (38). Pretreatment
with some probiotics impedes pathogenic bacterial attachment
to host cell receptor sites by steric hindrance pose, and
reduces the colonization of unwanted microbes by producing
negative growth factors for pathogens (39). Seaweed Bacillus
probiotics have good adhesion properties to shrimp intestinal
mucosa with competitive exclusion ability and eliminate Vibrio
parahaemolyticus strain 3HP (40).

Competitive exclusion of probiotics exerts the beneficial
effects on the GIT and other organs of the host, increases
the adhesion of probiotics, and performs protective actions
against pathogens by competing for binding sites of the
host. Furthermore, this adhesion of probiotics increases the
opportunity for interaction with the host, which favors the
immunostimulatory effects of probiotic surface molecules
(ligands for receptors of the host) and their metabolites
(41, 42). Therefore, the competitive exclusion properties of

probiotics offer several benefits to host health, including the
reduction of pathogenic attachment, colonization (many diseases
arise because of pathogen colonization), further spread of the
pathogen, and pathogenic load in hosts. Furthermore, this
property of probiotics enables them to colonize the host GIT,
which is necessary for the further beneficial action of probiotics
to their hosts.

Intestinal Colonization
The potential of probiotics to colonize the intestine is one of the
most important properties recommended by WHO/The Food
and Agriculture Organization of the United Nations (FAO). The
positive characteristics of probiotics, such as antagonisms to
harmful microbes or the modulation of the immune system,
are linked to their intestinal colonization, which is investigated
in vitro using simulated intestinal cells, as in vivo investigation
is difficult (43). The adhesion of LAB with intestinal cells
has been extensively reported. Interaction between molecules
distributed on gut epithelia and the surface of bacterial cells
mediates the adhesion and colonization of bacteria and is highly
variable between different bacterial strains. García-Ruiz et al. (44)
reported 0.37–12.2% adhesion of wine-isolated LAB (44) and
Pisano et al. (45) reported 3–20% adhesion of LAB (45).

Intestinal Barrier Function
As the intestinal epithelial barrier acts as a physical and
biochemical barrier and is important for preventing systemic
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entry of toxins, bacteria, and other foreign unwanted
compounds, so its integrity and full function are quite
important. It has been reported in many studies that LAB
can improve intestinal epithelial barrier damage induced by
pathogenic infection (46–51). Probiotics possess a diverse
mechanism of action to improve the intestinal barrier function
and maintain homeostasis. “Lactobacillus contains a HSP27-
inducible polyphosphate (poly P) fraction. Probiotic-derived
polyphosphates, strengthen the epithelial barrier function and
keep intestinal homeostasis through the integrin-p38 MAPK
pathway” (52). Lactobacillus casei DN-114 001 and Lactobacillus
acidophilus strain LB have the potential to improve intestinal
epithelial barrier during Escherichia coli infection (53, 54).
Strains of Lactobacillus, Bifidobacterium, and Streptococcus
stimulate tight junction proteins (occludin, claudin-1) results in
enhanced barrier stability (55). L. plantarumWCFS1 significantly
increases occludin and ZO-1 in tight junction vicinity by TLR2
dependent pathway and protect tight junction disruption by
toxins, pathogens, and cytokines (49). Qin et al., also showed
that L. plantarum has protective effects on intestinal barrier by
rearranging tight junction proteins (occludin, claudin-1, JAM-1
ZO-1) disturbed by E. coli and ameliorates barrier function
(50). Another strain of L. plantarum, MB452 increases occludin
expression and improves intestinal barrier integrity (46). E. coli
Nissle 1917 (EcN) ameliorates E. coli induced intestinal epithelial
barrier dysfunction by regulating the expression of occludin and
claudin (56). L. rhamnosus (LR: MTCC-5897) and L. fermentum
(LF: MTCC-5898) significantly improve the E. coli disturbed
tight junction proteins (Occludin, ZO-1, cingulin-1, claudin-1)
in Caco-2 cells (57).

Several other reports of Lactobacilli study have also been
shown that Lactobacilli ameliorate the intestinal barrier damage
and pro-inflammatory cytokines production induced by
Salmonella (47, 58). Probiotics are also effective to improve
malnutritional induced intestinal barrier damaged as indicated
by the study of Garg et al. on a malnutritional mice model,
in which they reported that Lactobacillus reuteri LR6 feeding
significantly improves the intestinal morphology damaged
during malnutrition (59).

Antimicrobial Peptide Production
Different criteria are applied to AMP classification according to
their source (animals, fungi, plants, and bacteria), mechanisms
of action (AMP acting on cell surface molecules or intracellular
components), structure (patterns of covalent bonding), and
biosynthetic pathway (non-ribosomally synthesized or
ribosomally synthesized) (60). Bacteriocins (AMP from
prokaryotes) of LAB are classified into three classes: Class
I, post-translationally modified (e.g., lantibiotics); Class II,
non-modified, heat stable with size <10 kDa (e.g., pediocin
PA1, leucocin A, plantaricin A, and enterocin X); and Class III,
heat labile, large peptides with size >30 kDa (e.g., helveticin
J) (16). Bacteriocins have low molecular weight and form
pores in target cell membranes, leading to the death (61) of
pathogenic bacteria, and also act as anti-cancerous agents.
Furthermore, bacteriocins also possess immunomodulatory
properties with pronounced anti-inflammatory effects during

pathogenic infections. As bacteriocins are non-toxic, particularly
those derived from LAB, they are used in food preservation.
A number of studies showed that certain kinds of probiotics
inhibit many types of pathogenic bacteria (proteus spp., E. coli,
Acinetobacter baumannii, Pseudomonas aeruginosa, Klebsiella
pneumoniae, Listeria monocytogenes, Citrobacter freundii, H.
pylori, Enterobacter aerogenes, Compylobacter jejuni,Micrococcus
luteus, Salmonella spp., Shigella spp., and some fungi) by the
action of their bacteriocins (62). Bacteriocins from Lactobacillus
salivarius inhibit foodborne and other medically important
bacteria, such as Listeria monocytogenes, many genera of
staphylococcus, Neisseria gonorrhoeae, Bacillus, and Enterococcus;
the bacteriocins kill these bacteria by creating membrane pores
and subsequent leakage of cellular material. Further, these
bacteriocins also assist L. salivarius colonization in the intestine
without showing any prominent adverse effects on other lactic
acid bacteria (63) L. plantarum also exerts antimicrobial activities
by producing many types of bacteriocins with antimicrobial
effects against food spoilage bacteria, such as Alicyclobacillus
acidoterrestris (64), Salmonella spp., Listeria monocytogenes,
Staphylococcus aureus, and E. coli; thus, they may be used as
preservatives for pork meat (65). Apart from bacteria, some
bacteriocins from L. plantarum are also effective against yeast
and molds, such as Fusarium, Candida, Aspergillus, and Mucor
(66). Bacteriocins from other probiotic species markedly induce
apoptosis and inhibit tumor formation, cancer cell proliferation,
and membrane depolarization of cancer cells during treatment
(61). There are different classification systems for AMP and,
owing to their diverse mechanism of actions, they have a
wide range of applications in humans and animals, as well as
aquaculture fields (67). They inhibit growth and even kill diverse
pathogens by creating pores in their cell membranes, as well as
initiating appropriate immune responses.

Immune Regulation
It is well-established that probiotic bacteria exert an
immunomodulatory effect and have the potential to
communicate and interact with a series of immune cells
(e.g., DCs, lymphocytes, epithelial cells, monocytes, and
macrophages). The immune response generally comprises
the innate immune response and adaptive immune response.
Innate immune response responds to PAMPs distributed on
the majority of bacteria (11). The principle immune response
to any pathogen is activated following the interaction of PRRs
(i.e., TLRs, NLRs, and C-type lectin receptors) with PAMPs
and initiates cell signaling. Intestinal epithelial cells are the host
cells that most extensively come into contact with probiotics.
However, probiotics may also interact with DCs, which play
a significant role in the innate immune response and bridge
the innate and adaptive immune responses. Through their
PRRs, both intestinal epithelial cells and DCs can communicate
and react to gut microorganisms (68, 69). Under the effects of
probiotics/commensal microbiota, the activated DCs induce the
appropriate immune response (e.g., naïve CD4T cells to Treg cell
differentiation), which generally inhibits Th1-, Th2-, and Th17-
mediated inflammatory response. Furthermore, probiotics blunt
intestinal inflammation (70) by downregulating the expression
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of TLRs via secretion of TNF-α inhibitory metabolites and
inhibition of nuclear factor-κB (NF-κB) signaling in enterocytes
(68). Probiotics also modulate the expression of various kinds of
cytokine production.

Cytokines Mediated Immune Response and

Probiotics
Probiotic benefits related to immunoregulation for the
treatment of various diseases have been extensively studied.
Immunomodulatory effects of probiotics are mainly due
to the induction of the release of cytokines including
interleukins, transforming growth factor (TGF), tumor
necrosis factors (TNFs), interferons (INFs), and immune
cells released chemokines, which further regulate the immune
system (71, 72). Immunostimulatory and immunoregulatory
actions of probiotics have been reported in various studies.
Immunostimulatory probiotics are capable of acting against
infection and cancer cells, inducing the release of IL-12,
which stimulates the NK cells and produces the Th1 cells.
By maintaining the balance between Th1 and Th2, these
probiotics also work against allergies. Contrary to this finding,
immunoregulatory probiotics are attributed to Treg cells and
IL-10 production to blunt excessive inflammatory responses,
inflammatory bowel disease, and autoimmune disorders (73, 74).
So, probiotics immunomodulatory effects via cytokines are
strain-specific as indicated by the in vitro study of Haller et al.
(75) using Caco-2 cells in which they reported that Lactobacillus
sakei is capable of inducing pro-inflammatory cytokines (IL-1β,
TNFα, and IL-8) whereas Lactobacillus johnsonii induced anti-
inflammatory cytokines (TGF-β) (75). A mixture of Lactobacillus
paracasei and L. reuteri to Helicobacter hepaticus IL-10-defcient
mice leads to reduced colitis and pro-inflammatory cytokines
production (76). Kourelis et al. (77) study on Fisher-344
inbred rats and BALB/c, demonstrated that L. acidophilus
NCFB 1748 and L. paracasei subsp. Paracasei DC412 induce
specific immune markers and innate immune responses via
recruiting polymorphonuclear cell and production of TNFα
(77). Probiotics-induced cytokines expression for immune
system modulation of the host has been briefly discussed in the
relevant section.

Toll-Like Receptor-Mediated Immune Response and

Probiotics
Toll-like receptors and single-pass membrane-spanning
receptors are very important protein receptors expressed on
several non-immune (epithelial, fibroblasts) and immune
[macrophages, B cells, natural killer (NK) cells, DCs] cells.
Activation of the TLR signaling pathway, except TLR3 (78),
generally leads to the recruitment of MyD88, which results
in activation of the NF-κB and mitogen-activated protein
kinase (MAPK) pathway. TLR-induced signaling is also
responsible for the maturation of DCs characterized by increased
expression levels of DC markers (CD80, CD83, and CD86)
and chemokines receptor C-C motif chemokine receptor
7 (CCR7). TLR9 is crucial for the mediation of the anti-
inflammatory effects of probiotics, though many other receptors
are also involved.

Lactobacilli ligands initiate cell signaling after binding to
TLR2 in combination with TLR6, endorsing dimerization and
NF-κB activation via recruitment of MyD88 (79). Engagement
of a bacterial ligand with TLR2 results in cytokine production
and increases the transepthelial resistance for conquering
microbes (79, 80). Several Lactobacillus strains induce their
immunomodulatory effects by binding to TLR2, which
recognizes peptidogycan (a component of the cell wall of Gram-
positive bacteria). An in vitro study showed that L. plantarum
and L. rhamnosus increased TLR2 expression in human cells
(Caco-2). L. casei showed similar effects in Salmonella-infected
and healthy mice, and induced TLR expression, as well as
interleukin-10 (IL-10), interferon-gamma (IFN-γ), and TNF-α
production (81, 82).

Numerous other probiotics interact with TLR4 to induce
an appropriate immune response. For example, during pre-
and post-Salmonella challenges in mice, L. casei increased the
production of IL10, IFN-γ, and IL6, and reduced the levels
of TNF-α by interacting with TLR4 (82, 83). Likewise, L.
rhamnosus GG (heat-inactivated) and Lactobacillus delbrueckii
subsp. Bulgaricus (L. delbrueckii) reduce TLR4 expression in
DCs (human monocyte-derived) (84). TLR9, another important
TLR, identifies bacterial CpG DNA and CpG-ODN (engineered
unmethylated oligonucleotide mimics). Unmethylated pieces of
DNA comprising CpG patterns produced from probiotics also
have the propensity to mediate anti-inflammatory activities
via TLR9.

In the case of the differentiated epithelium, apical, and
basolateral stimulation results in the activation of different
signaling pathways. Basolateral TLR9 activation causes activation
of the NF-κB cascade by the degradation of IκBα. Of note,
apical activation of TLR9 results in the suppression of NF-κB
by the aggregation of ubiquitinated IκB in the cytoplasm (85).
Apical or basolateral stimulation of these receptors is important
and involves different signaling cascades leading to various
immune responses. The results from the study conducted by
Ghadimi et al. show that polarized T84 and HT-29 cells increase
TLR9 expression in a specific manner in response to apically
applied natural commensal origin DNA. They reported that
when LGG DNA is applied to these cells, it attenuates TNF-α
enhanced NF-κB activity by reducing IκBα degradation and p38
phosphorylation (86).

Lactobacillus plantarum-purified DNA also modulates the
immune response of host cells by interacting with TLRs, as
reported by Kim, whose studies show that L. plantarum-
purified DNA inhibits LPS induced TNF-α production in THP-
1 cells. Furthermore, L. plantarum-purified DNA blunt the
expression of TLR4, TLR2, and TLR9, which induce NF-
κB activation through the LPS signaling pathway, leading to
pro-inflammatory cytokines upregulation (87, 88). TLRs are
important membrane receptors; most intracellular signaling
pathways involve the activation of membrane receptors.
Furthermore, TLRs play a key role in the induction of
immune response by probiotics through the recruitment of
specific intracellular signaling molecules. Depending on their
interaction with specific TLRs, probiotics may decrease or
increase TLR expression.
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NLR-Mediated Immune Response and Probiotics
In tissues with blunt TLR expression, NLRs are important and
present in the cytoplasm. Thus far, more than 20 NLRs have
been recognized. Among them, NOD1 and NOD2 are the
most studied and important NLRs (89). NOD1 is expressed in
many cells and recognizes peptidoglycan moieties (comprising
Gram-negative meso diaminopimelic acid). NOD2 is mainly
expressed on DCs, lungs cells, macrophages, intestinal cells,
buccal epithelium, and Paneth cells. It senses muramyl dipeptide
motifs which are present in a wide range of bacteria (90). NOD1
and NOD2 undergo self-oligomerization following recognition
by their agonist. This results in the recruitment and activation of
receptor interacting serine/threonine kinase 2 (RICK; an adaptor
protein, kinase responsible for the regulation of apoptosis via
CD95), which is necessary for MAPKs and NF-κB activation
and the subsequent production of inflammatory mediators
such as cytokines and chemoattractants. Another important
signaling factor that NLRs trigger is, apoptosis-associated speck-
like protein with caspase induction to trigger caspase 1 (CASP1;
an adaptor protein required for the functionally effective and
mature forms of pro IL18 and pro IL1). NLRs are involved in the
formation of the inflammasome that results in CASP1 activation.
There are three major inflammasomes named according to
the NLRs involved: NOD-like receptor family pyrin domain
containing protein 1 (NLRP1), NLRP3, and NLRC4. Murymyl
dipeptide, bacterial and viral RNA, and lipopolysaccharides
are sensed by NLRP3 (91). Many Lactobacillus species exert
their immune regulatory effects via NLRs. In galactose-1-
phosphate uridylyltransferase (GALT) of swine, L. gasseri and
L. delbrueckii increase the expression of NLRP3 via TLR and
the NOD signaling cascade, leading to appropriate activation
of NLRP3. Furthermore, NOD1, NOD2, TLR2, and TLR9
agonists also enhance NLRP3 expression. L. salivarius exerts
its anti-inflammatory effect by producing IL10 via regulation
of NOD2 (92, 93). Probiotics modulate systemic and local
immune responses of the host in a strain-specific manner by
the expression of PAMPS, such as flagellin, lipopolysaccharides,
CpG-DNA, and other surface proteins. PAMPs are recognized
by PRRs expressed on numerous immune and epithelial cells.
TLRs, C-lectin type receptors, and NLRs are the best studied
PRRs. PRRs have broad specificity and their limited number can
recognize a wide range of PAMPs. Interaction between PAMPs
and PRRs results in the activation of multiple molecular signaling
cascades that generate a specific cellular response against the
encountered microbes.

Probiotics and Regulation of the NF-κB Pathway
The NF-κB pathway is involved in many pathological conditions
and controls the expression of many (∼150) pro-inflammatory
and anti-inflammatory cytokines genes. These genes are
extensively involved in both adaptive and innate immune
responses. NF-κB is found in nearly all types of cells (94,
95). Many probiotics regulate the activation of the NF-κB
pathway. L. casei inhibits Shigella fexneri-induced activation
of the NF-κB pathway (96). L. rhamnosus and Lactobacillus
helveticus downregulate the Th1 pro-inflammatory response and
improve Th2 response during Citrobacter rodentium infection

(97). Bifdobacterium lactis inhibits IκBα degradation during
colitis (98). Some researchers have claimed that dietary yeast
downregulates TLR2, NF-κβ p65, MyD88, IL8, and IL1β (99).
L. reuteri, L. casei, and L. paracasei show anti-inflammatory
characteristics via NF-κB pathway regulation; for example,
L. reuteri decreases the expression of inflammatory mRNA
cytokines production and increases anti-inflammatory cytokines
production, and also improves the production of apoptosis-
inhibiting proteins to improve cell survival and its immune
response. L. reuteri do this by interfering the ubiquitination
of IκB and nuclear translocation of p65 (NF-κB subunit),
respectively (100–102). L. casei and L. paracasei hinder the
production of pro-inflammatory cytokines by inhibiting the
phosphorylation of IκBα and nuclear translocation of p65, and
also reverse the degradation of IκBα (103, 104). Similar inhibitory
effects on the NF- κB pathway have been shown by L. plantarum
and L. brevis. L. plantarum inhibits NF-κB-activating factors by
decreasing the binding activity of NF-κB (105), while L. brevis
prevents interleukin 1 receptor associated kinase 1 (IRAK1)
and AKT phosphorylation (106). Bifdobacterium infantis and
Streptococcus salivarius also reduce NF-κB activation (101).

Besides these probiotics have several other mechanisms of
action related to antifungal, antibacterial, antiviral, antiparasitic,
antiallergic, anti-cancerous, antidiabetic, amelioration of the
cardiovascular system, the reproductive system, and the central
nervous system which has been briefly discussed in the
relevant section.

IMMUNE REGULATION-BASED
THERAPEUTIC APPLICATION OF
PROBIOTICS DURING INFECTIOUS
DISEASES

Probiotics have a wide range of applications covering numerous
non-infectious and infectious diseases, including bacterial, viral,
parasitic, fungal, and many other non-infectious diseases. They
exert anti-pathogenic effects by modulating both the innate and
adaptive immune responses of the host.

Bacterial Diseases
Due to the several disadvantages associated with the preventive
use of antibiotics, strict controls have been introduced to
prohibit or reduce their use during the treatment of bacterial
diseases. In the last three decades, the dietary application of
feed additives has been attracting attention as a replacement for
antibiotics. Probiotics have been among the most effective feed
additives for the control or treatment of bacterial diseases (5).
Immune modulatory therapies with probiotics for some selected
pathogens are briefly discussed below (Table 2).

Salmonella Infection
Probiotics may be used as alternatives to the prophylactic use
of drugs for the control and prevention of salmonellosis (137).
Salmonella causes a foodborne disease in both animals and
humans with high morbidity (93.8 million human infections)
and mortality (155,000 deaths) worldwide annually (138–142).
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TABLE 2 | Probiotic therapies during bacterial diseases.

Probiotics Target bacteria Study models Mechanism of action Effects References

L. rhamnosus S1K3 S. Typhimurium Caco-2 cells, mice ↑ Claudin-1

↑ sIgA, sIgA secreting cells

Maintain IL-4, IL-12 protein level

↓ TGFβ

↑ Barrier integrity

↓ Salmonella count

Improves health status

(107)

Multistrain formula consisting

of different Lactobacilli

S. Typhimurium Chicken ↓ IFN-γ production ↓ Salmonella complications

↑ Recovery rate

(47)

L. plantarum LPZ01 S. Typhimurium Chicken ↓ IFN-γ production

Regulate miRNA

↓ Salmonella load and

associated complications

(108)

L. casei DBN023 S. pullorum Chicken ↓ TNF-α and IFN-γ

↑ IL10

↑ Villi height

↑ Muscle thickness

↑ Intestinal immune functions

↓ Mortality

↓ Pathological changes

↓ Inflammation

(58)

L. casei CRL 431 S. Typhimurium Mice ↑ IL10 ↓ Salmonella associated

complications

(82)

S. cerevisiae strain 905 S. Typhimurium Mice ↑ IgA, IgM in serum

↑ Kupffer cells in liver

↓ IL-6, TNF-α, and IFN-γ

↓ Salmonella load in Peyer’s

patches, spleen, mesenteric

lymph nodes, liver

↓ Mortality

(109–111)

S. boulardii S. Typhimurium T84 cells ↓ NF-kB, MAPKs ERK1/2, p38,

and JNK activation

↓ IL-8

↓ Salmonella associated

complications

(112)

L. gasseri Kx110A1 H. pylori THP-1 cells ↓ TNF-α, IL6 ↓ Salmonella associated

complications

(113)

L. fermentum UCO-979C H. pylori AGS cells ↓ IL8, IL1β, MCP-1 ↓ H. pylori induced gastric

inflammation

(114)

L. acidophilus and L.

rhamnosus

H. pylori AGS cells ↓ NF-κB and MAPK activation

↓ IL8, IL6, MAP-2, IL1β, TNF-α.

↓ H. pylori induced gastric

inflammation

(115–117)

L. bulgaricus NQ2508 H. pylori GES-1 cells ↓ TLR4 expression

↓ NF-κB activation

↓ IL8

↓ H. pylori induced gastric

inflammation

(118)

L. rhamnosus GG H. pylori AGS and Caco-2 cells ↓ Gastrin-17

↓ IL8 and TNF-α

↓ H. pylori induced gastric

inflammation and ulceration

(119)

L. paracasei 06TCa19 H. pylori MKN45 cells ↓ NF-κB and p38 MAPK

activation

↓ IL-8 and RANTES

↓ H. pylori induced gastric

inflammation and ulceration

(120)

S. boulardii Clostridial infection BALB/c mice ↑ IgA, IgG, IgM ↓ Clostridial infection severity (121)

S. boulardii Clostridial infection Mice Inhibits the Clostridium toxins

A-induced ERK1/2 and

JNK/SAPK signaling pathways

↓ Clostridial infection severity (122)

S. boulardii Clostridial infection Rat Degrades Clostridial toxins by its

protease action

↓ Binding of toxins to host cell

↓ Clostridial infection severity (123)

L. casei BL23 S. aureus Bovine mammary

epithelial cells

↓ IL8, IL6, TNF-α, IL1β, and IL1α ↓ Inflammation of the mammary

glands

(124)

B. subtilis DS991 EPS S. aureus C57BL/6J mice ↓ Pro-inflammatory cytokines,

chemokines and T-cell activation

↓ Inflammation (125)

L. salivarius BGHO1 L. monocytogenes Rats ↑ CD14, TNF-α, IL1β

↓ Listeria toxins

↑ Protection against Listeria

monocytogenes

(126)

L. delbrueckii UFV-H2b20 L. monocytogenes Mice ↑ TNF-α and IFN-γ

Stimulates macrophages to

increase bacterial killing

↑ Lifespan

↓ Bacterial load from liver and

spleen

↓ Liver immunopathology

(127)

Heat-killed Enterococcus

faecium BGPAS1-3 cell wall

protein

L. monocytogenes Caco-2 cells ↑ TGF-β and claudin production

↑ TLR4 expression

↓ TLR2 expression

↓ Listeria monocytogenes

infection

(128)

(Continued)
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TABLE 2 | Continued

Probiotics Target bacteria Study models Mechanism of action Effects References

Enterococcus faecium JWS

833

L. monocytogenes Mice and peritoneal

mouse macrophages

↑ TNF-α, IL1β, Nitric oxide (NO) ↓ Listeria monocytogenes

complications

(129)

L. fermentum MTCC 5898 E. coli Mice ↑ IFN-γ, TFNα, MCP-1

↑ IgA, IgG1

↑ Antioxidant enzymes activity ↓

IL-4 and IL-10

↓ E. coli load in liver, spleen,

intestine, and peritoneal fluids

(167)

L. rhamnosus MTCC 5897 E. coli Mice ↑ IgA, IgG

↑ Antioxidant enzymes activity

↓ E. coli load in liver, spleen (168)

L. rhamnosus (LR:

MTCC-5897)

E. coli Caco-2 cells ↑ Claudin-1, Occludin, ZO-1,

Cingulin

↓ Hyperpermeability

Maintains barrier integrity

(170)

L. fermentum (LF:

MTCC-5898)

E. coli Caco-2 cells ↑ Claudin-1, Occludin, ZO-1,

Cingulin

↓ Hyperpermeability

Maintains barrier integrity

(57)

L. rhamnosus ACTT 7469 E. coli pig ↓ TLR4

↓ TNF-α, IL8

↓ E. coli associated inflammation (130)

L. plantarum B1 E. coli chickens ↓ TLR4 expression

↓ IL2, IL4, IFN-γ

↑ Mucosal antibodies (IgA)

↓ E. coli associated inflammation (131, 132)

L. jensenii TL2937 E. coli PIE cells ↓ IRAK-M, BCL3, TOLLIP, A20 ↓ E. coli associated inflammation (133)

L. amylovorus DSM 1669 E. coli Caco-2 cells and pig

explant

Modulates Tollip and IRAK-M

↓ TLR4 expression

↓ phosphorylation of the IKKα,

IKKβ, IκBα, and NF-κB subunit

p65

↓ IL-1β and IL8 production

↑ Hsp72 and Hsp90

↓ E. coli associated inflammation (134)

L. delbrueckii TUA 4408 E. coli PIE cells ↓ MAPK and NF-κB activation ↓ E. coli associated inflammation (135)

L. rhamnosus ATCC 7469 E. coli IPEC-J2 cell model ↑ ZO-1 and Occludin

↓ TLR4 and NOD2 mRNA

expression

Maintain epithelial barrier

↓ E. coli associated deleterious

effects

(136)

After attachment and internalization into the lamina propria,
Salmonella induces an inflammatory response, e.g., release
of pro-inflammatory cytokines, followed by inflammation,
ulceration, diarrhea, and destruction of the mucosa (143).
Persistent infection is established due to the ability of Salmonella
to evade the host immune system (144). The persistence of
infection is further aided by virulent factors of Salmonella that
are responsible for the clonal deletion of CD+ T cells (145).

When administered in adequate amounts, probiotics have
the ability to modulate the expression of immune-related
cytokines, including interleukins IL4, IL6, IL12, IFN-γ, and
IL1β in lymphoid cells during Salmonella infection (47, 107,
108, 142, 146). L. rhamnosus S1K3 maintains IL-4 and IL-
12 protein levels and reduces TGFβ during the late stage of
Salmonella enterica serovar Typhimurium (S. Typhimurium)
NCDC infection in mice and also increases the level of IgA
secreting cells in lamina propria, IgA in serum, and secretory IgA
level in intestinal fluids during S. Typhimurium NCDC infection
in mice. This probiotic also reduces the S. Typhimurium
NCDC count in feces, prevents its further spread in the liver,
spleen, and intestine of mice, and improves overall health.
Furthermore, in an in vitro study on Caco-2 cells, L. rhamnosus
S1K3 improves the tight junction proteins (occludin and
claudin-1) (107). The production of IFN-γ, a pro-inflammatory

cytokine, is induced by Salmonella. IFN-γ delays recovery from
intestinal inflammation, boosts inflammatory mediators [TNF,
ILβ, inducible nitric oxide synthase (iNOS)], and hampers
IL22- and lectin REGIIIβ-mediated antimicrobial defense (147).
Probiotics beneficially regulate the immune response of the
host and suppress the expression of pro-inflammatory cytokines
and subsequent inflammation. IFN-γ is suppressed by the anti-
inflammatory action of probiotics, greatly reducing the severity
of Salmonella infection. During salmonellosis, immune players,
macrophages, and monocytes secrete IL6, which serves as a
pro-inflammatory cytokine and its expression levels are reduced
by Lactobacillus spp. for the effective and rapid prevention of
Salmonella infection in broiler chickens (47). A study conducted
by Chen et al. showed that L. plantarum (LPZ01) reduces
S. Typhimurium load, IFN-γ expression, TNF-α level, and
associated inflammation in broiler chickens by regulating the
expression of certain miRNAs involved in immune regulation
and inflammatory responses (108). Supplementations with some
probiotics increase the activation of B cells and antibody
production by increasing IL10 expression. The latter is an
important immunoregulatory and anti-inflammatory cytokine
involved in antibody production during Salmonella infection.
L. casei (DBN023) improves, regulates, and enhances intestinal
immune functions, while cytokines balance and reverse the
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detrimental effects of Salmonella pullorum, characterized by
higher levels of anti-inflammatory cytokines (IL10) and lower
levels of pro-inflammatory cytokines (TNF-α, IFN-γ, and
IL17). During prophylactic feeding of probiotics in chicken
infected by Salmonella pullorum, L. casei (DBN023) increases
villi height and muscle thickness and reduces Salmonella
pullorum-associated mortality and pathological changes in
intestinal epithelial tissues (58). L. casei CRL 431 also
increases the expression of IL10 to reduce the severity of S.
Typhimurium infection in BALB/c mice (82). In this manner,
probiotics improve the host immune response by hampering
the overexpression of inflammatory cytokines, as well as
increasing the expression of anti-inflammatory cytokines and
production of anti-Salmonella antibodies to blunt the severity of
Salmonella infection.

Some yeasts are also used as immunobiotics and are effective
in reducing Salmonella infection. The study by Martins et al.
shows that Saccharomyces cerevisiae strain 905 (S. cerevisiae 905)
protects and reduces the mortality of mice, orally challenged by
Salmonella Typhimurium (109), and also significantly reduces
the translocation of S. Typhimurium to the liver of gnotobiotic
mice, and to other organs (Peyer’s patches, the spleen, the
mesenteric lymph nodes, and the liver) of the conventional
mice. The same author in another study shows that this strain
increases the number of Kupffer cells in the liver and induces
a higher level of secretory IgA in the intestinal contents and
IgA and IgM in the serum of mice (110). Furthermore, this
strain reduces pro-inflammatory cytokines (IL-6, TNF-α, and
IFN-γ) levels and modulates activation of MAPK (p38 and
JNK, but not ERK1/2), NF-κB and activator protein-1, signaling
pathways which are involved in transcriptional activation of
pro-inflammatory mediator during Salmonella infection (111).
Another yeast strain S. boulardii reduces S. Typhimurium
induced IL-8 production in T84 cells by exerting its inhibitory
effects on S. Typhimurium induced activation of the MAPKs
ERK1/2, p38, and JNK as well as on activation of NF-kB (112).
S. boulardii possesses the capability to bind with S. Typhimurium
leading to reduced organ translocation of this pathogen, which
results in decreased activation ofMAPK (p38, JNK, and ERK1/2),
phospho-IkB, p65-RelA, phospho-jun, and c-fos in the colon
and signal pathways, involved in the activation of inflammation,
induced by S. Typhimurium kB (148). Therefore, yeast can
survive in host GIT, colonize there, reduce the pathogenic load
from the host, and can modulate the immune response of their
hosts toward a beneficial pattern.

A series of studies show that short-chain fatty acids (SCFAs)
exert diverse beneficial effects on the health of the host gut
and body (e.g., anti-inflammatory effects, prevention of histone
deacetylases, and suppression of NF-κB resulting in IL1β
downregulation), and play a vital role in maintaining intestinal
homeostasis. Many probiotics possess regulatory properties for
SCFA and can directly or indirectly increase their production.
L. acidophilus reduces S. Typhimurium-induced inflammation
directly by increasing the production of SCFA and indirectly
by increasing that of other SCFA-producing gut bacteria (149).
Moreover, L. acidophilus balances Salmonella-induced dysbiosis
in infected mice (150).

Other probiotics have also shown beneficial effects on the
prevention of Salmonella infection and inhibit the pathogenesis
of Salmonella at initial steps. L. plantarum (MTCC5690)
improves the intestinal defense through modulation of
TLR2 and TLR4, and prevents the colonization and further
spread of Salmonella in mice (151). Similarly, E. faecium
(PXN33) in combination with L. salivarius (59) also inhibits
Salmonella Enteritidis colonization in the GIT of poultry
(152). Supplementation of probiotics greatly reduced the
severity of Salmonella infection by their immunomodulatory
mechanisms of action. As probiotics decrease the expression of
inflammatory cytokines and increase the antibody production
and anti-inflammatory cytokine expression during salmonellosis,
supplementation can improve the overall health of the host.

Helicobacter Pylori Infection
Helicobacter pylori, a Gram-negative and spiral-shaped
pathogenic bacterium, resides in >50% of the population
worldwide and causes different diseases characterized by
prominent gastric inflammation which is associated with gastric
ulcers. The mechanism of H. pylori-induced inflammation
includes chemokine (IL8)-mediated infiltration of neutrophils,
increased RANTES level, and H pylori urease-induced
degradation of NF-κB inhibitor (IκBα) (115, 120, 153–155).
H. pylori can survive inside macrophages, arrest phagocytosis,
and induce their apoptosis by preventing nitric oxide (NO)
production. Furthermore, H. pylori stimulates macrophages
to secret TNF-α and IL6, which are associated with gastric
inflammation, by expressing the TNF-α-converting enzyme17
(ADAM17). ADAM17 is a crucial enzyme for the maturation and
functioning of TNF-α and IL6. L. gasseri Kx110A1 inhibits these
pro-inflammatory cytokines from H. pylori-infected THP-1 cells
by inhibiting the expression of the H. pylori ADAM17 enzyme
(113). L. fermentum UCO-979C regulates the immune response
of host macrophages (HumanTHP-1 cell line) and human gastric
epithelial cells (AGS cell line) by stimulating them to secrete
specific cytokines and chemokines. Moreover, it significantly
increases the secretion of inflammatory cytokines (IL6, TNF-α,
and IL1β) in both AGS and macrophages, and the secretion of
IL10, IFN-γ, and IL12p70 only in macrophages prior to H. pylori
challenge. In contrast, it decreases the levels of H. pylori-induced
inflammatory cytokines [IL8, IL1β, monocyte chemoattractant
protein-1 (MCP-1), and IL6] in AGS, and those of TNF-α in
both AGS and macrophages. Thus, prior to infection, treatment
with L. fermentum UCO-979C increases inflammatory cytokines
to counter future infections. In contrast, during infection, L.
fermentum UCO-979C treatment lessens the over-activated
immune response of host cells, as also shown by Garcia-Castillo
et al. (114). The study reported that L. fermentum has the ability
to decrease H. pylori-associated inflammation by improving
TGF-β production in the AGS cell line. TGF-β inhibits NF-κB
activation by upregulating the levels of IκBα. Notably, H. pylori
infection impedes this TGF-β-associated signaling pathway by
inducing SMAD7 expression to promote inflammation.

Similar to L. fermentum, L. acidophilus, and L. rhamnosus
also regulate the immune response of host cells and decrease
their pro-inflammatory immune response against H. pylori. As
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shown by their anti-inflammatory effects in AGS cells, in which
both probiotics greatly reduced the CagA-induced expression
of IL8 by inhibiting its translocation into host cells. CagA is
an H. pylori virulent factor responsible for inflammation by the
degradation of cytoplasmic IκBα and increasing translocation of
NF-κB into the nucleus (116, 156, 157). Moreover, L. acidophilus
activates Th1 response to counter H. pylori infection, suppresses
H. pylori-induced SMAD7 expression as well as the activation
of the NF-κB and MAPK signaling pathways, and decreases
subsequent inflammatory response (production of IL8, IL6,
MAP-2, IL1β, TNF-α, and granulocyte-colony stimulating factor)
during H. pylori infection (115, 117). L. bulgaricus NQ2508 also
shows similar anti-inflammatory effects by reducing H. pylori-
induced IκBα degradation and subsequent IL8 production in
the human gastric epithelial cell line-1 (GES-1). It may also
secrete some soluble proteins which exert inhibitory effects on
TLR4 and inhibit its activation by H. pylori. Moreover, it blocks
subsequent signaling pathways toward NF-κB activation and its
delivery to the nucleus for the transcription of pro-inflammatory
cytokines (118). As mentioned above, gastric ulcers and cancer
are prominent complications of H. pylori infection. They mainly
arise due to the over-immune response of host cells and the
subsequent production of inflammatory cytokines, which are
involved in gastric ulceration. Many probiotics reduce these
complications by regulating the H. pylori-disrupted immune
response. L. rhamnosusGG reduces gastric ulceration and cancer
induced by H. pylori via the IL8/TNF-α/Gastrin-17 pathway.
H. pylori upregulates Gastrin-17 by increasing the levels of IL8
and TNF-α, which in turn upregulate Gastrin-17. Gastrin-17
typically causes gastric cancer, whereas IL8 and TNF-α cause
inflammation and apoptosis leading to ulceration of the stomach.
L. rhamnosus GG shows significant immunobiotic properties
with anti-inflammatory effects and attenuates Gastrin-17 levels
by suppressing the expression of IL8 and TNF-α (119, 158–
161). Similarly, L. paracasei may ameliorate H. pylori-induced
gastric inflammation by regulating the immune response of host
cells. L. paracasei 06TCa19 inhibits H. pylori CagA-induced
p38 and IκBα phosphorylation and increases the levels of these
NF-κB inhibitors in MKN45 cells. This results in inhibition of
the transcription of the inflammatory chemokine genes (120).
Numerous other probiotics are extensively used to ameliorate
H. pylori-induced complications with the aim to regulate the
immune system of the host (162, 163).

Escherichia Coli Infection
Escherichia coli causes different problems for humans and
animals. Enterotoxigenic E. coli (ETEC) causes diarrhea in piglets
and other species by secreting heat-labile and heat-stable toxins.
Through a complexmechanism, these toxins activate the chloride
channel (cystic fibrosis transmembrane channel) resulting in
diarrhea. The E. coli causing postweaning diarrhea mostly carries
F4 (K88) fimbriae (164). F4+ ETEC increases the expression
of membrane and cytoplasmic-associated receptors (TLRs and
NLRs), which are involved in the NF-κB signaling pathway and
subsequent production of pro-inflammatory cytokines (IL8 and
TNF-α) leading to inflammation (130, 164, 165).

Probiotics greatly reduce the expression of these pro-
inflammatory cytokines by reducing the interaction of E. coli
with membrane receptors. L. rhamnosus ACTT 7469 weakens
the E. coli-induced expression of TLR4, TNF-α, and IL8 at the
protein and mRNA levels in piglets. Furthermore, L. rhamnosus
increases the expression of TLR2, TLR9, and NLR in the case of
E. coli infection in piglets, which results in decreased intestinal
inflammation (130). As mentioned above, TLR2 and TLR9 are
involved in the anti-inflammatory effects of many probiotics.

Similar anti-inflammatory effects have also been shown by
supplementation of L. plantarum B1, which reduces E. coli-
induced inflammation in broiler chickens by decreasing the
expression of TLR4 and the levels of cytokines (IL2, IL4, and
IFN-γ) involved in inflammation. L. plantarum also increases the
levels of mucosal antibodies (IgA) (131, 132). Hence, probiotics
(mainly, the Lactobacillus species), regulate the immune response
in a beneficial manner by decreasing the expression of membrane
receptors (TLR4) involved in inflammation associated with
pathogens. On the other hand, probiotics increase the expression
of membrane receptors (TLR2, TLR9) involved in the reduction
of pathogen-induced inflammation. Like, Lactobacillus jensenii
TL2937 in porcine intestinal epithelial cells decreases the
expression of TLRs by increasing the negative regulators [IRAK-
M, BCL3, toll interacting protein (TOLLIP), and A20] of
these receptors and reduces the E. coli induced inflammation
(133). Another study also reported similar anti-inflammatory
effects of other probiotics (Lactobacillus amylovorus DSM 1669
and L. delbrueckii TUA 4408), including inhibition of ETEC-
induced activation of the NF-κB and MAPK pathways via
negative regulation of TLRs, which results in a decrease of
pro-inflammatory cytokines (IL1, IL6, IL-1β, and IL8) and an
increase of anti-inflammatory cytokine (IL10) in pig explant,
caco-2, and porcine intestinal epithelial cells (134, 135). Amdekar
et al. also demonstrated that Lactobacillus species play a key
protective role against E. coli-induced urinary tract infection,
and clearance of pathogens by regulating the expression of
TLRs (TLR2 and TLR4) and subsequent production of anti-
inflammatory cytokines (166). Probiotics induce the expression
of different kinds of cytokines involved in host immune response
during pathogenic infection by regulating the expression of
TLR and their intracellular signaling pathways. They increase
the expression of anti-inflammatory cytokines and reduce
the inflammatory response of host cells during infection. L.
amylovorus shows protective and anti-inflammatory effects in pig
explants and caco-2 cells against E. coli infection and decreases
E. coli-mediated inflammation by increasing the levels of TLR4
negative regulators (IRAK-M and TOLLIP) and decreasing those
of extracellular heat shock proteins (HSP90 and HSP72), which
are crucial for TLR4 functioning. This effect leads to inhibition
of the E. coli-induced increase in the levels of TLR4 and MyD88,
phosphorylation of IκBα, IκB kinase α (IKKα), IKKβ, and NF-
κB subunit p65, as well as the overproduction of inflammatory
cytokines (IL8 and IL1β) (134). Treatment with L. rhamnosus
ATCC 7469 decreases TLR4 and NOD2 mRNA expression
during ETEC infection in IPEC-J2 cell model and reduces
the associated inflammatory response of the host. Notably,
ETEC induced higher mRNA expression of these membrane
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and cytoplasmic receptors that lead to the transcription of
inflammatory genes via the NF-κB pathway (136).

Some probiotics improve the immune status of aging mice
to increase their resistance against infection. The study of
Sharma et al. on mice reported that L. rhamnosus MTCC 5897
feeding alleviates the imbalance of Th1/Th2 immune response
and also increases the activity of antioxidant enzymes (catalase,
glutathione peroxidase, and superoxide dismutase) and reduces
E. coli load in the liver, spleen, and intestines by increasing
the level of E. coli specific antibodies (IgA and IgG) (167).
Similarly, L. fermentum MTCC 5898 feeding in aged mice
increases their protection against E. coli infection by increasing
the IgA and IgG1 levels and inflammatory proteins and reduces
the E. coli load in the intestines, liver, spleen, and peritoneal
fluids (168). Other lactobacilli improve the E. coli disturbed
intestinal barrier function as, E. coli significantly decreases the
intestinal permeability by decreasing the level of tight junction
proteins (Occludin, ZO-1, cingulin-1, claudin-1, etc.) as observed
by Bhat et al. in Caco-2 cells (169). L. rhamnosus (LR: MTCC-
5897) improves these tight junction proteins and significantly
reduces the E. coli induced hyperpermeability in Caco-2 cells
(170). Similar effects were also observed by L. fermentum (LF:
MTCC-5898) treatment during E. coli infection in Caco-2 cells
in which L. fermentum (LF: MTCC-5898) improves the barrier
integrity by reducing E. coli induced lower mRNA expression of
Occludin, ZO-1, cingulin-1, and claudin-1 (57).

Thus, probiotics positively regulate the immune response of
host cells at various steps through different mechanisms of action
and protect the host from ETEC-induced deleterious effects.

Clostridial Infection
Clostridial species are rod-shaped, Gram-positive toxins and
spore-producing bacteria. Clostridium difficile is linked to a wide
range of clinical problems (171) and produces many toxins
(e.g., cytotoxins and enterotoxins), which cause diarrhea (172).
It mainly produces the exotoxins TcdA and TcdB with a size
of ∼300 kDa. When it binds apically with epithelial gut cells,
TcdA causes tight junction interruption and also facilitates
the binding of TcdB toxins to the basal lamina. TcdB causes
an increase in vascular permeability, release of neurotensin,
induction of pro-inflammatory cytokines, fluid secretion, and
eventually diarrhea (173).

Probiotics may subside the detrimental effects of clostridial
infection by modulating the innate (mucus, lysozymes, and
alpha defensin production, and modulation of membrane
receptors such as TLRs and NLRs) and adaptive (production of
immunoglobulins, anti-inflammatory cytokines, antigen uptake,
and modulation of antigen-presenting cells) immune responses
and cell signaling pathways (NF-κB and MAPK) of the host
(173, 174). S. boulardii is a type of yeast that may be used as a
probiotic against clostridial toxins. It increases the production
of antibodies (IgA, IgG, and IgM) acting as adjuvant in BALB/c
mice (121) and has numerous other mechanisms of action
associated with immune regulation. It inhibits the activation of
theNF-κB andMAPK signaling pathways, and pro-inflammatory
cytokine (IL8) production induced by C. difficile toxin A in
human colonic epithelial cells (NCM460). This toxin activates

the extracellular signal-regulated kinase 1/2 (ERK1/2) and stress-
activated protein kinases (SAPK)/Jun amino-terminal kinases
(JNK) (JNK/SAPK) pathways, resulting in the transcription
of pro-inflammatory cytokine (IL8) genes and leading to
inflammation. S. boulardii inhibits the Clostridium toxins A-
induced ERK1/2 and JNK/SAPK signaling pathways in mice
(122). Furthermore, it degrades C. difficile toxins by its protease
action and decreases the binding of toxins to host cell (rat ileum)
receptors (123).

Staphylococcus Infection
Staphylococcus is a major cause of bovine contagious mastitis
and persistent infection in bovine mammary epithelial cells in
animals. Via upregulation of TLR2 and TLR4, Staphylococcus
aureus (S. aureus) increases the secretion of basic fibroblast
growth factor and TGF-β1 through activation of the NF-κB
pathway by inhibiting NF-κB inhibitors in bovine mammary
epithelial cells (175). Many probiotics are used to treat and
control Staphylococcus infection. Probiotic L. casei (BL23)
significantly reduces inflammation of the mammary glands
during S. aureus infection by suppressing the expression of S.
aureus-induced pro-inflammatory cytokines (IL8, IL6, TNF-α,
IL1β, and IL1α). This results in potent anti-inflammatory effects
against S. aureus infection in bovine mammary epithelial cells
(124). Bacillus subtilis has shown protective effects against S.
aureus infection in mice, by activating macrophages, limiting
systemic inflammation induced by S. aureus, and decreasing
the pathogen load. Bacillus subtilis-secreted exopolysaccharides
(EPS) have an immunomodulatory function, producing hybrid
macrophages (having the functions of both M1 and M2) with
anti-inflammatory and bactericidal phagocytic characteristics.
These hybrid macrophages limit S. aureus—induced T-cell
activation and kill S. aureus by increasing the levels of reactive
oxygen species and decreasing the levels of pro-inflammatory
cytokines and chemokines [chemokine (C-C motif) ligand
2 (CCL2), CCL3, CCL4, TNF] (125). Paynich et al. (176)
study on mice showed that Bacillus subtilis-exopolysaccharides
induces anti-inflammatory macrophages (M2), which inhibit T-
cell (CD4+ and CD8+) activation by secreting TGF-β and PD-L1
molecules. These molecules have inhibitory effects on CD4+ and
CD8+ cells, showing a significant anti-inflammatory property in
T cell-dependent immune reaction (176). In this way, probiotics
beneficially regulate the immune response of host cells; they
activate immune cells to kill S. aureus and decrease pathogen-
associated inflammation by limiting the overexpression of
inflammatory cytokines from pathogen-activated immune cells.

Listeria Monocytogenes Infection
Listeria monocytogenes causes several infections, including
maternal-fetal infection, septicemic pneumonia, pleural infection
(177), foodborne diseases with a 20–30% mortality rate (178),
and neurolisteriosis leading to meningitis and encephalitis
(179). Several probiotics (mostly Lactobacilli species) are used
to protect the host against L. monocytogenes infection. L.
salivarius (BGHO1) therapies against L. monocytogenes exert
protective effects by modulating the adaptive and innate immune
responses during L. monocytogenes infection in rats. BGHO1
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increases the mRNA expression of CD14, TNF-α, and IL1β and
decreases listeriolysin (Listeria toxins) in the intestinal tissues.
In mesenteric lymph nodes, BGHO1 co-administered with L.
monocytogenes enhances CD69 and OX-62 mRNA expression
(126). L. delbrueckii induces the production of TNF-α and IFN-γ,
which stimulates the macrophages to kill L. monocytogenes.Mice
infected with L. monocytogenes which received L. delbrueckii
UFV-H2b20 have a longer lifespan, less liver immunopathology,
and less bacterial load in the spleen and liver (127). These
probiotics stimulate macrophages by inducing the expression
of specific cytokines to increase their bactericidal activities and
decrease the level of toxins, as well as assist the host in eliminating
pathogens from their body and accelerate recovery.

Heat-killed E. faecium BGPAS1-3 cell wall protein, which is
resistant to high temperature, has shown protective and strong
anti-listeria activity. It stimulates Caco-2 cells to increase TGF-
β production. TGF-β exerts protective effects on epithelial tight
junctions by upregulating the expression of claudin (128). These
innate immunomodulatory effects are achieved by modulation of
the MyD88-dependent TLR2 and TLR4 pathways in intestinal
cells against Listeria infection. L. monocytogenes induces TLR2
and suppresses the expression of TLR4 mRNA in Caco-2
cells. Heat-killed BGPAS1-3 decreases the expression of TLR2
mRNA in Caco-2 cells. In contrast, the expression of TLR4
mRNA in Caco-2 cells is increased by both heat-killed and
live BGPAS1-3 before and after L. monocytogenes infection,
respectively. Furthermore, heat-killed or live BGPAS1-3 has
inhibitory effects on the expression of IL8 in uninfected and
infected L. monocytogenesCaco-2 cells (180). Heat-killed and live
probiotics, as well as their cellular components, can regulate the
immune response of the host through interaction with TLRs,
increase the protective innate immune response, and decrease
the inflammatory response of host cells. Cho et al. showed the
protective and immunomodulatory effects of heat-killed and live
E. faecium JWS 833 using a L. monocytogenes mice model and
peritoneal mouse macrophages, respectively. Both heat-killed
and live JWS833 show immunomodulatory properties. When
administered orally, live JWS833 increases the levels of serum
cytokines (TNF-α and IL1β) and NO against L. monocytogenes
in mice. Heat-killed JWS833 stimulates the macrophages to
produce TNF-α, NO, and IL1β (129). Probiotics have diverse
immunomodulatory functions, assisting the host to counter
pathogenic infections.

Viral Diseases and Probiotics
The threat of viral illness has recently increased significantly
due to the changes in the environment (e.g., anthropogenic
climate change and increased global movement of passengers
and cargo). Viral infections cause variable morbidity and
mortality with a detrimental effect on community well-being
and cause widespread economic losses. Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), which infected millions of people
worldwide during the 2019–2020 pandemic is a good example
of this global economic loss (181). Thus, finding alternative and
effective strategies to prevent viral infections and reducing the
morbidity and mortality of viral infections is critical (Table 3).
Nevertheless, many vaccines and antiviral drugs aiming to be

effective in infections are available, but a major challenge is
the new viral strains that appeared after mutations, particularly
in RNA viruses. It is wise to have some alternative strategies
that could be used as supplemental or preventive remedies.
To reduce the severity of viral infections and their numbers, a
balanced diet including nutrients or food additives that boost and
potentiate immune system response, is a beneficial alternative
measure. The use of probiotics is one of the dietary approaches
used in recent years to increase immunity and decrease the
risk of infections (213). Many probiotics (mainly Lactobacilli
species) are used for the prevention or treatment of viral
illnesses. In addition, to alter the crosstalk between gut bacteria
and the mucosal immune system, probiotics have many other
immune modulatory and non-immune functions to combat
viral incursion. The application of probiotics for the control
and prevention of clinically important viral diseases is briefly
discussed below.

Rotavirus
Bifidobacterium infantis (MCC12) and Bifidobacterium breve
(MCC1274) modulate immune response during human rotavirus
infection in the porcine intestinal epithelial cell line. Both species
are able to blunt IL8 production and increase IFN production
by increasing the activation of interferon regulatory factor 3
(IRF3) through the suppression of A20 (a zinc-finger protein
with negative effects on IRF3 activation) (182). These probiotics
activate various interferon-stimulated genes (ISGs), including
RNase L (2

′
-5

′
oligoadenuylate dependent endoribonulecase)

and myxovirus resistance protein A (MxA) (183). MxA decreases
virus replication by binding with virus nucleoproteins (219).
RNase L has antiviral activity and lessens viral replication
through the elimination of infected cells by inducing apoptosis
and IFN amplification by activating RLRs (220, 221). RLRs are
intracellular PRRs involved in virus recognition. L. rhamnosus
GG (strain ATCC 53103) and B. lactis Bb12 enhance the
efficacy of human attenuated rotavirus vaccine (AttHRV)
during rotavirus infection in gnotobiotic human rotavirus
pig model, by increasing T-cells subset (CD3+, CD4+) in
intestinal tissues and T-cells subset (CD3+, CD8+) in the blood
and spleen. Further, the severity of diarrhea and virus load
was also less in vaccinated pigs receiving ATCC 53103 and
Bb12 as compared to only vaccinated pigs (184). Similarly,
S. boulardii and several Bifidobacterium and Lactobacillus
species have anti-rotaviral effects, mitigate the severity
and duration of diarrhea, viral shedding, and incidence of
infections associated with rotavirus, and modulate the immune
response of the host (222–226) Lactobacillus species and
Bifidobacterium in combination with some prebiotics (human
milk oligosaccharide, short-chain galactooligosaccharides, and
long-chain fructooligosaccharides) show antiviral response.
L. casei (Lafti L26-DSL) and Bifidobacterium adolescentis
(DSM 20083) reduced the infectivity of virus in MA104 cells
(embryonic Rhesus monkey kidney cells) by interacting with
virus protein (NSP4). NSP4 has been characterized as virus toxin
and is associated with diarrhea in host (185, 186). L. rhamnosus
(strain GG) and Gram-negative E. coli Nissle (EcN) decrease
human rotaviral complications by modulating the immune
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TABLE 3 | Probiotics therapies during viral diseases.

Probiotics Target viruses Study models Mechanism of action Effects References

Bifidobacterium infantis

(MCC12)

Rotavirus PIE cells ↓ IL-8, ↓ A20, ↑ IRF3, ↑ IFN, ↑

ISGs

↓ Virus replication

↑ Infected cells apoptosis

(182, 183)

Bifidobacterium breve

(MCC1274)

Rotavirus PIE cells ↓ IL-8, ↓ A20, ↑ IRF3, ↑ IFN ↓ Virus replication

↑ Infected cells apoptosis

(182, 183)

Bifidobacterium lactis Bb12 Rotavirus Pig rotavirus model ↑ T cells subset (CD3+, CD4+)

↑ Vaccine efficacy

↓ Virus load (184)

Bifidobacterium adolescentis

(DSM 20083)

Rotavirus MA104 cells Interact with virus protein (NSP4) ↓ Diarrhea (185, 186)

L. rhamnosus GG (strain ATCC

53103)

Rotavirus Pig rotavirus model ↑ T cells subset (CD3+, CD4+)

↑ Vaccine efficacy

↓ Virus load (184)

L. casei (Lafti L26-DSL) Rotavirus MA104 cells Interact with virus protein (NSP4) ↓ Diarrhea (185, 186)

L. acidophilus and L. reuteri Rotavirus Pig model ↑ Intestinal IgM and IgG

↑ Serum IgM titers

↑ Total intestinal IgA secreting

cell response

↓ Virus load (187)

Lactobacillus delbrueckii ssp.

bulgaricus OLL1073R-1

fermented yogurt

Influenza virus 96 volunteers Affect IgA levels in saliva Help to prevent influenza

infection

(188)

L. paracasei Influenza virus Mice ↑ IL1α and IL1β before infection

↑ Recruite immune cells before

infection

↑ IL10 after infection

↓ Viral load

↓ Morbidity

↓ Mortality

(189)

L. casei DK128 Influenza virus Mice ↑ IgG1, IgG2a, ↓ IL6 and TNF-α

↑ Monocytes

↓ Inflammation

↑ Host survival rate

(190)

L. plantarum (O6CC2) Influenza virus Mice ↑ IFN-a and Th1 cytokines ↓ Infection severity (191, 192)

L. paracasei CNCM I-1518 Influenza viruses Mice ↑ Early recruitment of IL-1α,

IL-1β

Recruit immune cells before

infection

↑ Protection against virus (189)

L. plantarum (AYA) Influenza virus Mice ↑ IgA ↓ Infection severity (193)

L. GG and L. johnsonii (NCC

533)

Influenza virus Mice ↑ IgA, IFN-g ↓ Mortality

↓ Morbidity

↓ Virus titer

↓ Cell death

(194)

Bifidobacterium longum

BB536

Influenza virus Mice ↑ Activities of neutrophils and NK

cells.

↓ Weight loss

↓ Virus replication

↓ Infection severity

(195, 196)

L. plantarum (137) Influenza virus Mice ↑ IFN-β ↓ Infection severity (197)

L. delbrueckii ssp. bulgaricus

OLL1073R-1 fermented yogurt

Influenza virus 96 volunteers Affect IgA levels in saliva Help to prevent influenza

infection

(188)

L. acidophilus NCFM and

Bifidobacterium animalis

subsp. lactis Bi-07

Influenza virus like

symptoms

326 children – ↓ Fever incidence (53.0%)

↓ Coughing incidence (41.4%)

↓ Rhinorrhea incidence (28.2%)

(198)

Recombinant L. plantarum Corona viruses

(TGEV and PEDV)

IPEC-J2 ↑ ISGs (OASL, ISG15, Mx1)

↑ B+ IgA+, IgG

↑ IFN-γ

↓ Infection severity (199, 200)

L. casei ATCC39392 vaccine TGEV Pig model ↑ Antibodies

↑ IL17

↓ Infection severity (201)

L. plantarum Probio-38 and L.

salivarius Probio-37

TGEV ST cell line Inhibit virus ↓ Infection severity (202)

cell-free supernatants of L.

plantarum 22F, 25F, and 31F,

live L. plantarum (22F, 25F)

PEDV Vero cells Antiviral activity ↓ Infection severity (203)

Mixture of different Lactobacilli

and Bifidobacteria

HIV Clinical trial on 8 human

positive patients

↑ Serotonin in blood

↓ Tryptophan in plasma

(204)

L. rhamnsosus GR-1 and L.

reuteri RC-14

HIV Clinical trial of 65

confirmed women

– Improved life quality of women (205)

(Continued)
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TABLE 3 | Continued

Probiotics Target viruses Study models Mechanism of action Effects References

L. plantarum 299v HIV Clinical trial of 14

children

Stabilize CD4+ T cells numbers ↓ Inflammation (206)

S. boulardii CNCM I-745 HSV-1 Mice ↑ Anti-inflammatory cytokines

↓ pro-inflammatory cytokines

↓ Gastrointestinal dysfunctioning (207)

L. rhamnosus BMX 54 Human

papillomavirus (HPV)

Clinical trial of 117

women

– Favors recreation of vaginal

balance, may be useful to control

HPV infection

(208)

Bifidobacterium bifidum HPV Mice ↑ IL2

↑ IFN-γ

↓ Virus complication, prevent

tumor growth

(209)

L. reuteri RC-14 and L.

rhamnosus GR-1

HPV Clinical trial of 180

women

– ↓ Abnormal cervical smear rate,

no effect on virus clearance

(210)

L. rhamnosus PTCC 1637 and

E. coli PTCC 25923

Herpes simplex

virus-1

African green monkey

kidney cells

↑ Viability of macrophages

Competitive adhesion with cells

↑ Virus elimination

Antiviral effects

(211)

Enterococcus faecalis FK-23 Hepatitis C virus In vitro trial of 39

positive patients

↓ Alanine transferase Improve health (212)

Bifidobacterium bifidum 2-2,

Bifidobacterium. bifidum 3-9,

L. gasseri TMC0356, L. casei

TMC0409, L. rhamnosus LA-2

L. rhamnosus (LGG),

Streptococcus thermophilus

TMC1543

Enteric common

infectious diseases

Bovine intestinal

epithelial cell line

↑ TLR3 activation

↑ IFN β

↑ Protection against enteric

viruses

(213)

L. fermentum PCC, L. casei

431 and L. paracasei

Upper respiratory

tract viruses and

influenza viruses

Clinical trial of 136

volunteers

↑ Serum IFN-γ

↑ Intestinal IgA

↓ Symptoms of flue and

respiratory tract infection

incidence

(214)

L. plantarum DR7 Upper respiratory

tract virus’s infection

Clinical trial of 209

adults

↑ IL-4, IL-10, CD44, CD117

↓ IFN-γ, TNFα, CD4, CD8

↓ Nasal symptoms and

frequency of URTI

↓ Oxidative stress

↓ Plasma peroxidation

(215)

Bifidobacterium bifidum G9-1

(BBG9-1)

Rotavirus BALB/c mice Induced mucosal protective

factors

Improve lesion and diarrhea (216)

L. helveticus R0052 and L.

rhamnosus R0011

Rotavirus,

Adenovirus,

Norovirus

Clinical trial of children

(816)

– No beneficial effects (217)

L. paracasei N1115 Upper respiratory

tract viruses

274 clinical volunteers’

trial

May stimulate T cell immunity Protection against acute

respiratory tract infection

(218)

response and interacting with rotavirus. In the pig rotavirus
model, EcN and L. rhamnosus GG induced higher total IgA
levels in the intestine and serum post- and pre-human rotavirus
challenge, respectively, and reduced viral shedding. EcN can
regulate the expression of cytokines (IL6 and IL10) and bind
with rotavirus protein 4 to reduce rotavirus attachment to the
host cells (227, 228). In the rotavirus gnotobiotic pig model,
Lactobacilli species (L. acidophilus and L. reuteri) significantly
increased total intestinal IgM and IgG and serum IgM titers and
total intestinal IgA secreting cell responses (187). Furthermore,
Azevedo et al. (229) demonstrated that these probiotics (L.
acidophilus and L. reuteri) significantly increased Th1 and
Th2 cytokines in human rotavirus infected pigs, and also help
in maintaining immunological homeostasis during human
rotavirus infection by regulating the production of TGF-β.
Different probiotics have anti-rotavirus activities involving
various immunomodulatory mechanisms. Bifidobacterium
stimulates ISGs and lowers various pro-inflammatory cytokines,
while Lactobacillus increases anti-rotavirus antibodies and
reduces rotavirus-associated complications.

Influenza Virus
A randomized controlled trial on 96 elderly people showed
that a yogurt fermented with L. delbrueckii ssp. bulgaricus
OLL1073R-1 (1073R-1-yogurt) affected the level of influenza
A H3N2 bound IgA levels in saliva (188). L. acidophilus
NCFM and Bifidobacterium animalis subsp. lactis Bi-07 reduce
the incidence of coughing (41.4%), rhinorrhea (28.2%), and
fever (53%) in a double blind placebo controlled study on
326 children during the winter season (198). Different clinical
trial studies on children, elderly people, adults, and animals
compiled by Lehtoranta et al. (230) shows that probiotic
administration reduced the risk respiratory viruses including
influenza viruses. In mice, L. paracasei showed anti-influenza
effects and beneficially modulated the immune response against
influenza infection, while reducing the viral load, morbidity, and
mortality. L. paracasei increases the levels of pro-inflammatory
cytokines (IL1α and IL1β) and recruitment of immune cells
before infection. This accelerates viral clearance and reduces
the levels of inflammatory cytokines [macrophage inflammatory
protein-1α (MIP1α), IFN-γ, MCP-1, and MIP1β] after influenza
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infection. Moreover, L. paracasei has shown anti-inflammatory
characteristics at the late stage of infection by increasing
the levels of IL10 (189). Heat-killed L. casei DK128 shows
similar anti-inflammatory effects against influenza infection by
decreasing influenza virus-induced pro-inflammatory cytokines
(IL6 and TNF-α), monocytes, and activated NK cells in the
lungs of mice, thereby preventing pulmonary inflammation.
Furthermore, DK128 increases the levels of antibodies (IgG1
and IgG2a) against the influenza virus at an earlier time point
and provides cross-immunity against secondary heterosubtypic
influenza infection with improved health and survival rate in
mice (190). L. plantarum (O6CC2) beneficially modulates the
host immune response during influenza infection in mice by
increasing the production of IFN-α and Th1 cytokines (IL12 and
IFN-γ) as well as the expression of Th1 cytokine receptors which
potentiate NK cell activity at the early stage of influenza infection
in mice. Of note, NK cells are an important line of defense
during this early phase (191, 192). At the late stage of infection,
L. plantarum (O6CC2) decreases IL6 and TNF-α production to
control influenza-mediated inflammation. Furthermore, O6CC2
decreases neutrophil and macrophage infiltration to overcome
the inflammatory response to influenza infection (231). L.
plantarum (AYA) has shown protective immunological effects
against influenza virus infection by increasing production of
mouse mucosal IgA (193). L. GG and L. johnsonii (NCC 533)
are also associated with increased IgA production (232, 233). B.
longum (MM-2) has shown anti-influenza activity by enhancing
the innate immunity through increases in the expression of
NK cell activator genes (IFN-g, IL2, IL12, IL18) activities. This
probiotic reduces mortality, morbidity, virus titer, cell death,
virus-induced inflammation, and the expression of mRNA for
pro-inflammatory cytokines (IL6, TNF-α, IL1β, MIP2, andMCP-
1) in mice infected with influenza virus (194). Similar immune
regulatory and anti-influenza effects of Bifidobacterium have
been observed by other researchers. B. longum BB536 enhances
the activities of neutrophils and NK cells, reduces fever in human
beings (195), reduces IL6 and IFN-γ at the late stage of infection,
and prevents body weight loss and virus replication in the lungs
of mice infected with the influenza virus (196). L. plantarum
(137) induces higher type-1 interferon (IFN-β) levels in the
serum of mice at the early stage of influenza infection (197).
Notably, innate immunity of type-1 interferon is involved in
countering viral infection at the early stage (234). In the case
of the influenza virus infection, gut microbiota have preventive
effects and modulate type I IFNs (235). These IFNs are involved
in innate immunity during viral infection with antiviral activities,
as well as the degradation and inhibition of viral nucleic acids
and viral gene expression, respectively (236, 237). These studies
showed that various probiotics show anti-influenza activities
along with immunoregulatory effects during infection.

Coronavirus
Coronavirus disease 2019 (COVID-19) was officially declared
as a pandemic by WHO on March 11, 2020 (238). SARS-
CoV-2 was first identified in Wuhan city (China) in December
2019 (239) in patients with pneumonia and rapidly spread
to 216 countries (240, 241). Coronaviruses (CoVs) belong

to the family Coronaviridae and genus coronavirus order
Nidovirales and subfamilies: Alphacoronavirus, Betacoronavirus,
Gammacoronavirus, and Deltacoronavirus (242). Subfamilies
alphacoronavirus and Betacoronavirus originate from mammals
mainly bats, and Gammacoronavirus and Deltacoronavirus
subfamilies originate from pigs and birds (243). In SARS-CoVs
virion envelop, there are three main structural proteins—protein
S (Spike), protein M (membrane), and protein E (envelop).
Protein S (Spike) facilitates the SARS-CoVs adherence and fusion
(52). All CoVs are positive sense, single stranded RNA, and
pleomorphic viruses with typical crown shape peplomers of
27–32 kb and 80–160 nM size (239, 244). Genomic structure
analysis showed that the viruses belong to β-coronavirus
including MERS-CoV and SARS-CoV with high mutation rates
because of RNA dependent DNA polymerase transcription error
(242), which is also the main target of drug discovery (245).
Pathogenesis of SARS-CoV-2 includes binding of its spikes
proteins (S) to Angiotensin-Converting-Enzyme-2, which are
highly expressed in lungs as well as in esophagus and enterocytes
in the colon and ileum, to get entry into the cells for infection
(246). TMPRSS2 is a protein, which helps the “S” proteins of
SARS-CoV-2 to get entry into cells, is also highly expressed in
absorbent enterocytes (247). Clinical signs of COVID-19 disease
are different ranging from asymptomatic to non-specific flu
and severe pneumonia, Middle Eastern respiratory syndrome
(MERS) (248), and life-threatening consequences like acute
respiratory distress syndrome and different organ failure. It can
also affect neurological, gastrointestinal, and hepatic systems
(249). According to data from Wuhan city in China, 14% of the
infected cases were severe, 4% died, and 5% needed intensive
care (250).

In spite of the different measurements including hygienic
improvement, screening, and social distancing, COVID-19 is
rapidly spreading and progressing worldwide (22, 240), while
the search for effective drugs and vaccine therapies is underway.
Scientists are battling against the time needed to develop a
vaccine, but it is hard to make an efficient and safe product
as rapidly as the virus is spreading (251). Thus far, there
are no effective drugs available for SARS-CoV-2. However,
according to genomic structure analysis and its similarity with
SARS and MERS, certain drugs (e.g., lopinavir, ritonavir, and
nitazoxanide) may be applicable (252). At the same time, several
studies have compiled alternative data related to general viruses
management and treatment (253–258) including nutritional
supplements like vitamins and some other immune boosts
medicine (259). Some in silico data are in favor of probiotics use
for the treatment of COVID 19 as data indicate that probiotics
derived molecules like lactococcin Gb (L. lactis), subtilisin
(Bacillus amyloliquefaciens), sakacin P (L. sakei) may inactivate
“S” glycoprotein and its receptors molecules i.e., Angiotensin-
Converting-Enzyme-2 (260). Similarly, several other studies have
published their data regarding the use of probiotics for the
general management of viral diseases as it is indicated by some
clinical evidence that some kinds of probiotics are helpful in
preventing bacterial and viral infections like respiratory tract
infections, sepsis, and gastroenteritis. Viruses account for over
90% of upper RTIs as etiological agents. Many studies have
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recorded the positive effect of probiotics on the protection of
upper respiratory tract infections. Reduced risk of getting upper
respiratory tract infections in probiotic supplementations was
recorded in a meta-analysis study of 12 randomized control trials
involving 3,720 children and adults. It was observed in 479 adults
of a randomized, double-blind, placebo-controlled intervention
study that B. bifidumMF 20/5, L. gasseri PA 16/8, and B. longum
SP 07/3 along with mineral and vitamins reduced the duration of
fever and common cold (22). Streptococcus salivarius strain K12
may possibly reduce the severity of COVID-19 complications by
its ability to maintain stable upper respiratory tract microbiota.
As advanced studies have shown that lung microbiota have an
important role in the homeostasis of immune responses (261),
and its dysbiosis makes the patient more vulnerable to viral
infections. In the case of COVID-19, a significant difference in
lung microbiota has been observed in patients with COVID-19
and normal persons (262). Probiotic consumption triggers pro-
and anti-inflammatory cytokines production to clear the viral
infection, reduce the cell damage in the lungs, and improve the
levels of T cells, B cells, NK cells, and type 1 interferons in
the immune system of the lungs, and it may help to prevent
COVID-19 complications (261).

Probiotics and recombinant probiotics with antiviral effects
are effectively used to combat and minimize the detrimental
effects of other coronaviruses, such as alphacoronaviruses—
particularly transmissible gastroenteritis virus (TGEV) and
porcine epidemic diarrhea virus (PEDV)—which cause
substantial economic losses in the pork meat industry.
Recombinant L. plantarum inhibits TGEV and PEDV infections
in the IPEC-J2 cell line by enhancing ISGs (OASL, ISG15, and
Mx1) which have strong antiviral effects (199). Recombinant
L. plantarum (containing the surface S antigen of TGEV)
elicits an immune response characterized by higher numbers of
activated DC cells, B+IgA+ cells, secretory IgA (sIgA), serum
IgG, IFN-γ, and IL4 which help the host to combat TGEV
(200). Similar effects were observed by Jiang and colleague
who reported that a recombinant L. casei ATCC39392 vaccine
modulates the immune response against TGEV infection,
induces IL4, mucosal (IgA), and systemic (Ghosh and Higgins)
antibodies, and polarized Th2 immune response with enhanced
the expression of IL17 against TGEV in a pig model (201).
Similarly, immune protective effects with the elicitation of sIgA
and IgG production against PEDV have also been shown by
a L. casei-based vaccine, consisting of a DC-targeting peptide
attached to the PEDV core antigen (263). Antibiotics and
porcine bile-resistant L. plantarum Probio-38 and L. salivarius
Probio-37 have shown antiviral effects in vitro ST cell line and
inhibit TGE coronavirus without cytotoxic effects (202). Another
study shows that cell-free supernatants of different LAB (L.
plantarum 22F, 25F, and 31F) and live L. plantarum (22F, 25F)
have anti PEDV activity with any cytotoxic effects on Vero cells
(203). E. faecium has protective effects against enteropathogenic
coronavirus TGEV and hinders the virus entry into cells by
interacting with cell surface molecules, reducing viral structural
proteins, and inducing antiviral NO (264, 265). Furthermore,
E. faecium stimulates an antiviral response by increasing the
expression of IL8 and IL6 mRNA (266), which contribute to

the immune regulation against many other enteric pathogens
(267). Studies show that E. faecium (probio-63) and E. faecalis
(KCTC 10700BP) suppress coronavirus growth, responsible for
porcine epidemic diarrhea (268, 269). These findings indicate
that probiotics have antiviral effects, and stimulate the immune
response of the host against viruses. Many probiotics enhance
vaccine efficacy; some probiotics inhibit virus entry into cells
and also stimulate the production of different cytokines during
viral infection.

Probiotics and Parasitic Diseases
Probiotics are widely applicable to the treatment and prevention
of parasitic infections (Table 4). Oral administration of L.
rhamnosus MTCC 1423 during Giardia infection in mice
modulates both cellular and humoral immune responses,
enhances sIgA, IgA+ cells, CD4+ T lymphocytes, and anti-
inflammatory cytokine IL10, and decreases pro-inflammatory
cytokine IFN-γ (277). E. faecium SF 68 stimulates an anti-
giardia immune response, increases CD4+ T cells and the
production of anti-giardia antibodies (intestinal IgA and serum
IgG), and reduces the parasitic load (278). Lactobacillus and S.
boulardii also have positive effects in the treatment of giardiasis,
minimizing interaction between the host and pathogen, reducing
parasite load, and modulating the immune response of the
host. L. johnsonii La1 (NCC533) reduces active trophozoite
of Giardia intestinalis strain WB and infection duration in
Meriones unguiculatus (286). Recombinant L. plantarum NC8
(containing Eimeria tenella protein) induced a higher percentage
of a T-cell subset (CD3+, CD4+, and CD8+) and antibody levels,
provided protection against E. tenella infection in chickens, and
reduced lesion, cecum damage, and oocyst shedding (270). L.
salivarius, L. johnsonii, and S. cerevisiae provided protection
against Eimeria infection in chickens; reduced oocyst count,
improved weight gain and FCR, and stimulated the immune
response with higher antibodies (IgM and IgG) titer and
lymphoproliferative response (271). Pender et al. revealed that
chickens receiving supplementation of commercially available
probiotics; Primalac W/S (L. acidophilus, L. casei, E. faecium,
and B. bifidium) showed lower mortality, higher body weight,
and fewer Eimeria maxima-, Eimeria tenella-, and Eimeria
acervulina-induced lesions; however, there was no effect on
the immune response (272). Lactic acid from L. acidophillus
stimulates the host immune response during Cryptosporidium
infection, increasing the number of lymphocytes, levels of
complement proteins (C3, C4), and antibodies (IgM, IgG), as
well as reducing oocyst shedding from infected rabbits (273).
L. casei, Bifidium bacteria, and E. faecalis exert protective
effects during Cryptosporidium parvum infection and greatly
reduce parasite load and oocyst shedding from the intestine
of infected mice (287–289). In contrast, Oliveira and Widmer
demonstrated that some commercially available probiotics
enhanced the severity of cryptosporidia infection by altering
the intestinal environment in favor of C. parvum proliferation
(290). Bifidobacterium animalis subspecies lactis strain Bb12
stimulates local immune response during Ascaris suum infection
in juvenile pigs and production of anti-parasite antibodies (IgA
in serum and IgG1 and IgG2 in ileal fluid) and glucose uptake
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TABLE 4 | Probiotics therapies during parasitic diseases.

Probiotics Parasites Study models Mechanism of action Effects References

Recombinant L. plantarum

NC8

Eimeria tenella Chicken ↑ CD3+, CD4+, CD8+ ↑ IgA, IgM

and IgG

↓ Lesion

↓ Cecum damage

↓ Oocyst shedding

↓ Inflammation

(270)

L. salivarius, L. johnsonii, and

S. cerevisiae

Eimeria tenella,

Eimeria maxima,

Eimeria necatrix

Chicken – ↓ Oocyst count

↑ Weight gain

↑ FCR

(271)

Primalac W/S (L. acidophilus,

L. casei, Enterococcus

faecium, and Bifidobacterium

bifidium)

Eimeria maxima,

Eimeria tenella, and

Eimeria acervulina

Chicken – ↓ Lesion (272)

L. acidophillus lactic acid Cryptosporidium

parvum oocysts

Rabbit ↑ Complement proteins (C3, C4)

↑ Lymphocytes

↑ IgM and IgG

↓ Parasitic load (273)

Bifidobacterium animalis Ascaris suum Juvenile pigs ↑ IgA in serum

↑ IgG1 and IgG2 in ileal fluid

↓ Parasitic complications (274)

L. rhamnosus Ascaris suum Pigs ↑ TLR9 expression

↑ TNF-α, IFN-γ, and IL10

↓ Parasitic allergic complications (275, 276)

L. rhamnosus Giardia intestinalis

(Portland strain I)

BALB/c mice ↑ sIgA, IgA+ cells, CD4+ ↑ T

lymphocytes

↑ IL10

↓ IFN-γ

↓ Giardia infection severity

Restore intestinal morphology

(277)

Enterococcus faecium SF68 Giardia intestinalis

H7 (ATCC 50581)

Mice ↑ Intestinal IgA

↑ Serum IgG

↑ CD4+ T cells

↓ Parasitic load (278)

L. plantarum, L. reuteri, L.

casei, and L. acidophilus

Schistosoma

mansoni

Mice ↑ IgM

↓ AST, LDH, and gGT

↓ Parasitic complications

↓ Spleen and liver weight

(279)

L. sporogenes Schistosoma

mansoni

Mice ↓ Schistosomiasis cytokine-induced

chromosomal aberration

↓ Chromosomal aberration (280)

L. plantarum Trichinella spiralis Mice ↑ Serum IFN-γ ↓ Larval count

↓ Inflammation

(281)

L. fermentum, Enterococcus

faecium, Enterococcus durans

Trichinella spiralis Mice ↑ Phagocytic activity of leukocytes ↑ Protection (282)

L. casei Trichinella spiralis Mice ↑ IgA and IgG ↑ Protection (283)

L. rhamnosus (JB-1) Trichuris muris Mice ↑ IL10

↑ Mucus-secreting goblet cells

↑ Larval removal (284)

S. boulardii Toxocara canis Mice ↑ IL12 and IFN-γ ↑ Protection (285)

(274). Similarly, L. rhamnosus modulates the expression of
TNF-α, TLR9, IFN-γ, and IL10 gene, which results in decrease
in eosinophil action and allergic skin reaction induced by Ascaris
suum in the pig model (275, 276). Many probiotics are effective
against schistosomiasis; Zymomonas mobilis stimulates immune
response and provides 61% protection during schistosomiasis
(291). L. plantarum, L. reuteri, L. casei, and L. acidophilus
stimulate IgM antibodies against Schistosoma mansoni infection
in mice (279). L. sporogenes reduces schistosomiasis cytokine-
induced chromosomal aberration in mice (280). During
trichinellosis (Trichinella spiralis infection in mice), L. plantarum
increases the levels of IFN-γ and reduces larval count (281).
L. fermentum, E. faecium, and Enterococcus durans enhance
the activity of phagocytes during Trichinella spiralis infection
in mice (282). L. casei induces IgA and IgG during T. spiralis
infection in mice (283, 292). In trichuriasis mice model, L.
rhamnosus (JB-1) increases IL10 and mucus-secreting goblet

cells, resulting in the faster removal of larvae (284). E. faecalis
CECT7121 (Ef 7121) and S. boulardii are associated with
larvicidal activity and high production of IL12 and IFN-γ,
respectively, during Toxocara canis infection in mice (285, 293).
Different probiotics have different mechanisms of action
during parasitic infections. They reduce complications, regulate
cytokine production, and facilitate the production of anti-
parasitic antibodies. However, it has been shown that some
probiotics enhance the parasitic infection as indicated in the
study by Dea-Ayuela and colleague on mice in which they
reported that L. casei decreases cytokines (IFN-γ, TNF-α, IL-4,
and Il-13) and antibodies (fecal IgA) against Trichuris muris,
increasing the susceptibility of T. muris infection. This L. casei
associated increased susceptibility to infection may be related to
deactivation of TNF-α dependent Th2 effector responses against
T. muris due to the strong inhibitory effect of L. casei on this
cytokine (294).
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PROBIOTICS THERAPIES IN
NON-INFECTIOUS DISORDERS

Probiotics improve the central nervous system and mental
function with beneficial effects reported in anxiety, Alzheimer’s
disease, depression, schizophrenia, and autism (295). In an
autism spectrum disorder mice model, an L. reuteri diet led to
a behavioral improvement in an oxytocin-dependent manner
(296). Probiotics can alter the composition of gut microbiota
(297), which in turn acts on the gut–brain axis by secreting
neuroactive substances (298) and significantly influences
and regulates cerebrovascular diseases, neurodegeneration,
and mental dysfunction (299). B. infantis reduces stress by
increasing the levels of tryptophan in plasma, decreasing
the levels of serotonin in the frontal cortex, and regulating
the hypothalamic–pituitary–adrenal axis. L. rhamnosus JB-1
decreases the expression of gamma aminobutyric acid receptor
and corticosterone levels in mice, which are induced during
stress (300–302). Moreover, B. longum, L. helveticus, and L.
plantarum reduce anxiety (303). L. fermentum NCIMB can
produce ferulic acid, which is a strong antioxidant that can
stimulate the proliferation of the nervous system stem cells
and be used to treat neurodegenerative disorder, diabetes, and
obesity. In mice, feeding ferulic acid ameliorates Alzheimer’s
disease symptoms, oxidative stress, and neuroinflammation
(65). Thus, probiotics have positive effects on brain function,
by affecting the functions of the nervous system as well as some
related hormones and their receptors (Table 5). However, a
detailed study of the effects of probiotics on the nervous system
is needed to support the currently available evidence.

Different probiotics regulate obesity (323), which predisposes
individuals to different diseases, such as non-alcoholic fatty liver
diseases, cardiovascular diseases, diabetes, cancers, and some
disorders related to the immune system (324). L. plantarum
CBT LP3 and B. breve CBT BR3 reduce obesity related marker,
and L. rhamnosus, E. faecium, L. acidophilus, B. bifidum, and
B. longum decrease low-density lipoprotein cholesterol, total
cholesterol and oxidative stress level in an in vivo human trial
(320). B. bifidumW23, B. lactisW51&W52, L. lactisW19&W58,
L. brevis W63, L. casei W56, L. acidophilus W37, and L.
salivarius W24 regulate the obesity by decreasing triglyceride,
total cholesterol, homocysteine, and TNF-α level in a randomized
double-blind placebo-controlled trial on 50 women who were
obese (321). Indigenous microbiota play a key role in obesity
by harvesting energy for the host through different metabolic
pathways. Probiotics change the composition of gut microbiota,
thereby influencing obesity (12). Gut microbiota contribute to
obesity via several potential mechanisms, such as lipogenesis,
carbohydrate fermentation, and energy storage, and through
numerous pathways (e.g., different hormones, metabolites, and
neurotranmitters), which regulate energy balance and food intake
(Table 5).

Probiotics also reduce the risk of cancer by different
mechanisms of action, which include the exclusion of
oncogenic bacteria, improvement of epithelial barrier function,
increase of tumor cell death by apoptosis, production of

immune-modulating metabolites (acetate, butyrate, propionate,
conjugated linoleic acids, etc.), increase of cytokine production
with an antitumor response, and TLR modulation. Butyrate
regulates cell proliferation, differentiation, and apoptosis (325), it
can stimulate anti-inflammatory cytokines and IL10 production
and decrease the production of inflammatory cytokines via
inhibition of NF-κB. Furthermore, butyrate regulates apoptosis-
regulating proteins [CASP7, CASP3, BCL2 antagonist/killer
(BAK), and BCL2], suppresses COX2 activity, stimulates the
production of AMPs, and increases glutathione-S-transferase.
These effects lead to downregulation or upregulation of genes
related to the apoptosis, proliferation, and differentiation of
cells (326, 327). Propionic acids and acetic acid have also shown
anti-inflammatory activities by suppressing NF-κB activation
and modulating the expression of pro-inflammatory genes (328).
Some probiotics (Lactobacilli, bifidobacteria, and streptococcus)
can produce conjugated linoleic acid, which has pro-apoptotic
and anti-proliferative activities. This is achieved by increasing
the expression of peroxisome proliferator-activated gamma
receptor (PPARγ), which is involved in immune function and
apoptosis. Some probiotics show their anti-cancerous activities
via cation exchange between their peptidoglycan and the
carcinogenic compound. Furthermore, probiotics decrease the
COX2 enzyme-mediated production of prostaglandins, which
increases the risk of colorectal cancer (329, 330). Probiotics
can increase the production of immunoglobulins, such as IgA,
generating an anti-inflammatory environment. IgA does not
provoke activation of the complement system and acts as a
barrier to reduce contact between the carcinogenic compound
in the lumen and colonocytes, thereby reducing the risk of
cancer (331). A prospective study involving 82,220 individuals
showed that individuals who consume yogurt and sour milk are
less susceptible to bladder cancer. An Italian cohort study on
45,000 volunteers of a 12-year follow up without comparative
group, reports that yogurt consumption decrease in colorectal
cancer (332). L. casei administration in humans for 4 years
showed less recurrence of adenoma atypia, and probiotics
with oligofructose-enriched inulin preparation reduce DNA
damage in colonic epithelial cells and HT29 cells (322). Animal
studies supported the beneficial effects of yogurt against
genotoxic amines and cancer of the bladder and colon. In a
breast cancer mice model, L. acidophilus isolated from yogurt
promoted the proliferation of lymphocytes and decreases
tumor growth (323) (Table 5). Hence, probiotics reduce the
risk of cancer by different mechanisms. Some probiotics assist
in excluding the oncogenic bacteria, while others inhibit
inflammatory pathways and increase apoptosis of tumor cells.
Furthermore, probiotics stimulate the production of immune-
modulating metabolites involved in cell growth, proliferation,
and apoptosis.

Many probiotics have beneficial effects on allergies (Table 5).
L. rhamnosus (MTCC5897) fermented milk (PFM) feeding in
newborn mice alleviates allergic symptoms by shifting Th2 to
Th1 pathway by decreasing albumin specific antibodies (IgE,
IgG, and IgG1), ratio of IgE/IgG2a and IgG1/IgG2a and IL-4,
and by increasing IFN-γ, IgA+ cells, and goblet cells (304, 333).
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TABLE 5 | Probiotics therapies in non-infectious diseases.

Probiotics Disease Study models Major finding References

L. rhamnosus (MTCC5897)

fermented milk (PFM)

Allergy Mice ↑ IgA+ cells in small intestine

↑ Goblet cells number

↓ Ovalbumin-specific antibodies (IgE, IgG, IgG1)

↓ Ratio of IgE/IgG2a and IgG1/IgG2a

↓ Allergic symptoms

(304)

L. plantarum 06CC2 Allergy Mice ↓ Ovalbumin-specific IgE

↓ Total IgE

↑ Antiallergic IL-4 and IFN-γ

↓ Allergic symptoms

(305)

Bifidobacterium infantis

CGMCC313-2

Allergy Mice ↓ IL4, IL13

↓ IgE, IgG1

↓ Allergic symptoms

(306)

Enterococcus faecalis FK-23 Allergy Mice ↓ IL-17

↓ CD4+ cells

↓ TH17 development

↓ Allergic symptoms

(307)

Staphylococcus succinus

14BME20

Allergy Mice ↓ IgE level in serum

↓ Inflammatory cells flux into lungs

↑ CD4+CD25+Foxp3+ regulatory T (Treg)

↑ DCs

↑ IL-10

(308)

Clostridium butyricum

CGMCC0313

Allergy Mice ↓ β-lactoglobulin-mediated intestinal anaphylaxis

Inverts the imbalance between Th1/Th2 and

Th17/Treg cells

↑ forkhead box P3 (FOXP3) Treg cells

↑ TGF-β and IL10

(309)

L. acidophilus KLDS 1.0738 Allergy Mice ↓ Inflammatory cells

↓ IgE production

↓ IL6 levels

↓ Th17 response

↑ Treg cells, CD25, FOXP3

↓ TGF-β

(310)

L. fermentum MTCC:

5898-fermented milk

Cardiovascular Mice ↓ TNF-α and IL-6

↓ Coronary artery risk index

↓ Atherogenic index

↓ Triacylglycerols, low-density lipoprotein

cholesterol, hepatic lipids

↓ Lipid peroxidation

(311)

L. rhamnosus MTCC: 5957 and L.

rhamnosus MTCC: 5897

Cardiovascular Wistar rat ↓ TNF-α and IL-6

↓ hyperlipidemia

↓ Hepatic lipids

↓ Lipid peroxidation

↑ Antioxidant activities

(312)

L. plantarum Cardiovascular Meta-analysis of

randomized controlled

trials of 653

participants

↓ Diastolic and systolic blood pressure

↓ Total serum cholesterol

↓ Low-density lipoprotein cholesterol levels

↓ Atherosclerosis index

↓ Hepatocyte steatosis risk

(313, 314)

L. fermentum CECT5716 and

Bifidobacterium breve CECT7263

Cardiovascular Wistar Kyoto rats ↓ Hypertensions

↓ Endothelial dysfunctioning

↓ Increased blood pressure

(315)

L. rhamnosus GR-1 L. plantarum

299v

Cardiovascular rats ↓ Risk of myocardial infarction

Improve ventricular function

↓ Infarct size

↓ levels of leptin

(316, 317)

L. rhamnosus MTCC: 5957, L.

rhamnosus MTCC: 5897, and L.

fermentum MTCC: 5898

Diabetes Wistar rat Improve glucose metabolism (fasting blood glucose,

glycated hemoglobin, serum insulin)

Improve serum inflammation status (TNF-α and IL-6)

Improve serum lipid profile

(318)

(Continued)
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TABLE 5 | Continued

Probiotics Disease Study models Major finding References

L. plantarum, L. helveticus, L. lactis,

L. pentosus, L. paracasei, L.

paracasei sbusp.tolerans, L.

mucosae, L. rhamnosus, L.

harbinensis, L. hilgardii,

Issatchenkia orientalis, Candida

ethanolica, Kluyveromyces

marxianus, and Pichia

membranifaciens

Diabetes db/db mice and

C57BL/KS

Prevent pancreatic cell apoptosis via upregulation of

the PI3K/AKT pathway and increase GATA like

protein 1 (GLP1) production. GLP1 induces insulin

secretion by upregulating the G protein-coupled

receptor 43/41 (GPR43/41), proconvertase 1/3 and

proglucagon activity

(319)

L. fermentum NCIMB CNS Mice ↑ Ferulic acid

↓ Alzheimer’s disease symptoms

↓ Oxidative stress and neuroinflammation

(65)

L. reuteri CNS Mice Behavioral improvement (296)

L. rhamnosus JB-1 CNS Mice ↓ Gamma aminobutyric acid receptor and

corticosterone levels

(300)

L. rhamnosus, E. faecium, L.

acidophilus, Bifidobacterium

bifidum, and Bifidobacterium

longum

Obesity In vivo human trial ↓ Low density lipoprotein cholesterol

↓ Total cholesterol

↓ Oxidative stress

(320)

Bifidobacterium bifidum W23,

Bifidobacterium lactisW51&W52, L.

lactis W19&W58, L. brevis W63, L.

casei W56, L. acidophilusW37, and

L. salivarius W24

Obesity In vivo human trial ↓ Homocysteine

↓ Triglyceride

↓ Total cholesterol

↓ TNF-α

(321)

L. plantarum CBT LP3,

Bifidobacterium breve CBT BR3

Obesity In vivo human trial Reduced obesity marker (320)

L. fermentum NCIMB 5221 Obesity – ↑ Ferulic acid

↓ Obesity

(65)

L. fermentum NCIMB Cancer AGS, HeLa, MCF-7,

and HT-29 cells

↓ Risk of cancer (65)

L. casei Cancer Colonic epithelial cells

and HT29 cells ↓ Adenoma atypia

↓ DNA damage

(322)

L. acidophilus Cancer Breast cancer mouse

model

↓ Tumor growth (323)

Bifidobacteriales, Bacteroidales, and Lactobacillales in the gut
affect the activities of inhaled allergens. Bifidobacteriales and
Lactobacillales suppress allergen sensitization and are effective
against allergic rhinitis (334). B. infantis CGMCC313-2 represses
allergen-mediated inflammatory cells, IL4, IL13, IgE, IgG1,
and blunt inflammation during allergy in mice model (306).
E. faecalis FK-23 inhibits the development of Th17 cells in
the intestine, spleen, and lungs of infected mice by inhibiting
the expression of TGF-β and IL6 mRNA, thereby facilitating
to reduce ovalbumin-induced allergic complication (307).
Staphylococcus succinus 14BME20 has also shown antiallergic
potential; it significantly decreases the influx of inflammatory
cells into the lungs, suppresses airway hyperresponsiveness, and
reduces the serum IgE and Th2 cells cytokines production
in an ovalbumin mice model (308). Clostridium butyricum
CGMCC0313 increases forkhead box P3 (FOXP3) Treg cells,
TGF-β, and IL10, inverts the imbalance between Th1/Th2 and
Th17/Treg cells, and reduces β-lactoglobulin-mediated intestinal
anaphylaxis, thereby contributing to the reduction of the risk of

allergy in mice (309). Orally administered L. acidophilus KLDS
1.0738 ameliorates allergic symptoms by increasing Treg cells,
CD25, FOXP3, and TGF-β mRNA expression, and inhibiting
inflammatory cells, IgE production, IL6 levels, and Th17 response
in mice (310).

Many probiotics are used for the prevention and treatment
of diabetes (Table 5). L. rhamnosus MTCC: 5957, L. rhamnosus
MTCC: 5897 and L. fermentum MTCC: 5898 feeding Improves
glucose metabolism (fasting blood glucose, serum insulin, and
glycated hemoglobin), oxidative stress (glutathione peroxidase,
superoxide dismutase, catalase activity, and thiobarbituric acid
reactive substances,) serum inflammation status (TNF-α and IL-
6) and serum lipid profile in diabetic rats, and also significantly
reduces mRNA expression of gluconeogenesis related genes
(pepck and g6pase) (318). L. acidophilus KLDS 1.0901 shows
antidiabetic characteristics by reducing glycosylated hemoglobin,
fasting blood glucose level, and increasing the level of glucagon-
like peptide 1 in the serum of mice. Further, L. acidophilus
KLDS 1.0901 increases glutathione peroxidase and superoxide
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dismutase activities and also increases the level of glutathione
with the reduction of malondialdehyde level in mice serum
(335). Similarly, L. paracasei 1F-20, L. fermentum F40-4,
Bifidobacterium animalis subsp. lactis F1-7 also exhibit the
potential to manage the diabetic problem as shown by the in vitro
study of Zhang et al. (241) using CACO-2, STC-, RAW246.7,
and HepG2 cells in which these probiotics increase glucagon-
like peptide 1 and peptide YY hormones and decrease IL-6 and
TNF-α levels (336).

Different species of other Lactobacilli and yeast strains act
also as antidiabetic, preventing pancreatic cell apoptosis via
upregulation of the PI3K/AKT pathway and increased GATA-like
protein 1 (GLP1) production. GLP1-induced insulin secretion by
upregulating the G protein-coupled receptor 43/41 (GPR43/41),
proconvertase 1/3, and proglucagon activity in mice (319). GLP1
is an antidiabetic hormone involved in glucose homeostasis, and
reduction of glucagon secretion and appetite (337–339). Many
probiotics improve glucose metabolism (340) and inhibit NF-
κB pathway overactivation. NF-κB is associated with diabetes
and its inhibition leads to improvement in insulin sensitivity
(94, 309). Probiotics reduce the risk of diabetes by regulating
different cellular signaling pathways and the expression of sugar
metabolism hormones.

Some probiotics improve sperm maturation; L. casei
and B. lactis enhanced the maturation of sperm in diabetic
rats and decreased their glucose levels (341). L. rhamnosus
increased the mRNA expression of androgen receptors α and β,
activin and progesterone receptor 1, serum follicle-stimulating
hormone, luteinizing hormone, and testosterone. These
effects were associated with improvement in spermatogenesis,
sperm motility, and sperm production, along with a decrease
in the percentage of immotile sperm (342, 343). Bacillus
amyloliquefaciens has shown similar beneficial effects on semen
density, live sperm, and overall quality in breeder chicken (344).

Probiotics are also widely applied to cardiovascular diseases;
they significantly decrease hypertension, oxidative stress, blood
pressure, inflammatory mediators, and cholesterol levels (311,
345–348). It is observed that cholesterol-enriched fed mice
show significantly higher levels of serum triacylglycerols, total
cholesterol, low-density lipoprotein cholesterol, atherogenic
index, lipid peroxidation, coronary artery risk index, and
IL-6 and TNF-α in the liver whereas significantly lower
levels of catalase, anti-oxidative enzymes activities, glutathione
peroxidase, and superoxide dismutase in the kidney and liver.
Whereas, L. fermentum MTCC: 5898-fermented milk improves
these adverse physiological conditions (311). Similarly, feeding
of L. rhamnosus MTCC: 5957 and L. rhamnosus MTCC: 5897
maintains healthy liver and kidney conditions of Wistar rats
by increasing antioxidant activities and by decreasing lipid
peroxidation, diet-induced hypercholesterolemia in the feces,
kidney, liver, and blood of the rats. These probiotics also reduce
the expression of mRNA of the TNF α and IL-6 inflammatory
markers (312).

Lactobacillus plantarum has shown beneficial effects during
the meta-analysis of a randomized controlled trial of 653
participants having cardiovascular diseases, lower diastolic
and systolic blood pressure (313), total serum cholesterol,

low-density lipoprotein cholesterol levels, atherosclerosis index,
and hepatocyte steatosis risk. Furthermore, L. plantarum
decreases liver triglyceride and cholesterol, whereas it increases
cholesterol in feces and excretion of bile acid (314). In vivo study
of Robles-Vera et al. (315) showed that L. fermentum CECT5716
and Bifidobacterium breve CECT7263 feeding prevent the
development of hypertension, endothelial dysfunctioning, and
increase in blood pressure in rats (315). L. rhamnosus GR-1
and L. plantarum 299v reduce the risk of myocardial infarction,
improve ventricular function, and reduce the infarct size by
decreasing the levels of leptin in rats (316, 317). Probiotics also
decreased the levels of toxic circulating metabolites (indoxyl-
sulfate and p-cresyl sulfate) associated with cardiovascular
diseases and reduced mortality in patients undergoing dialysis
(349). Probiotics exert beneficial effects on cardiovascular
diseases through different mechanisms of action (i.e., improving
the ratio of low-density and high-density lipids, lowering
cholesterol levels, improving endothelial function, and regulating
the immune cells) (Table 5).

CONCLUSIONS AND FUTURE
PROSPECTS

Due to increasing antibiotic-resistant bacteria and antibiotic
side effects, the use of antibiotics as a feed supplementation
is prohibited in many countries. China also bans the
supplementation of growth-promoting antibiotics in animal
feed since January 1, 2021. Probiotics are considered as a good
alternative for antibiotics, providing an alternative treatment
option. Probiotics are widely used in human aquaculture,
livestock, and poultry to promote health and counteract enteric
pathogens. Probiotics are widely used for the management
and treatment of bacterial, viral, parasitic infections as well
as non-infectious disorders like mental disorders, cancer,
allergies, and metabolic disorders. Concerning their mechanisms
of action, probiotics have immunomodulatory and many
other mechanisms of action, and work in diverse ways to
exert beneficial effects on their hosts, if applied properly.
However, concerning the safety and efficacy of probiotics,
recent screening techniques rely on the capacity of microbes
to elicit cytokine production mostly through cell lines or ex
vivo isolated residual immune cells, even though they do not
reflect the phenotype of intestinal cells. Awareness of the
capability and usage of probiotics to improve the microbiota
equilibrium in the host gut, to serve as immunomodulators,
growth promoters, and to inhibit pathogenic infections is crucial
from a practical point of view. It will help to make more progress
by investigating more expertise, knowledge, and research on
the understanding of probiotics, their specific mechanism of
action, and their complete applicability for the safety of the host.
More importantly, the safety of probiotics during application
should also be carefully considered and strictly evaluated in the
future in case of the emergence and spread of antibiotic-resistant
bacteria between hosts. Thus, high-throughput validation
approaches, as well as comprehensive and credible clinical,
in vivo, and in vitro research on probiotic administration are
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warranted to clearly illustrate the advantages and adverse effects
of probiotics.
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