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Vascular endothelial growth factor A is known to play a central role in tumor angiogenesis.
Several studies showed that VEGF-A is also an immunosuppressive factor. In tumor-
bearing hosts, VEGF-A can modulate immune cells (DC, MDSC, TAM) to induce the
accumulation of regulatory T-cells while simultaneously inhibiting T-cell functions.
Furthermore, VEGFR-2 expression on activated T-cells and FoxP3high regulatory T-cells
also allow a direct effect of VEGF-A. Anti-angiogenic agents targeting VEGF-A/VEGFR
contribute to limit tumor-induced immunosuppression. Based on interesting preclinical
studies, many clinical trials have been conducted to investigate the efficacy of anti-VEGF-
A/VEGFR treatments combined with immune checkpoint blockade leading to the
approvement of these associations in different tumor locations. In this review, we focus
on the impact of VEGF-A on immune cells especially regulatory and effector T-cells and
different therapeutic strategies to restore an antitumor immunity.

Keywords: VEGF-A (vascular endothelial growth factor-A), effector T-cells, regulatory T (Treg) cells, tumor,
anti-angiogenic therapy, immunosuppression, immune check point inhibitor (ICI)
INTRODUCTION

Vascular endothelial growth factor A (VEGF-A) is considered to be a critical regulator of
angiogenesis, which is the formation of new blood vessels from pre-existing ones, both in
physiological and pathological states such as tumor angiogenesis (1). VEGF-A production is
regulated by transcriptional factors such as HIF-1 (hypoxia-inducible factor 1) during a hypoxic
stress or by oncogenes (2). Its pro-angiogenic activities are mediated by the activation of VEGF
receptors (VEGFR-1, VEGFR-2) which can be expressed on endothelial cells, tumor cells and some
immune cells (1). However, VEGF-A has a dual function in supporting tumor progression: first, by
inducing vessel formation and second, by acting as an immunosuppressive factor (3–5). The
immune system has emerged as a pivotal actor in controlling tumor growth. Cytolytic CD8+ T
lymphocytes, which have been previously activated by mature dendritic cells presenting tumor
antigen-derived peptides, can lyse tumor cells. However, different escape mechanisms are developed
by the tumor to evade the immune system such as the development of regulatory T cells (Tregs) or
the induction of T cell exhaustion (6). Different works have highlighted a direct or an indirect
impact of VEGF-A on this T cell-based immunosuppression. This review will summarize these
studies and focus on the immunomodulation induced by anti-angiogenic agents.
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REGULATORY T-CELLS

Tregs play a critical role in immune homeostasis by regulating
effector T cell functions. The proportion of Tregs is enhanced in
tumor-bearing mice and in cancer patients and is often
associated with a poorer overall survival (7). A correlation
between VEGF-A in malignant effusions and the accumulation
of Tregs has been observed in cancer patients suggesting a
potential role of VEGF-A on Tregs (8). A meta-analysis also
revealed that VEGF-A expression is positively associated with
intratumoral Tregs in hepatocellular carcinoma (HCC) (9).
Thus, VEGF-A has been associated with the induction and
maintenance of regulatory T-cells in tumor microenvironment
in a direct or indirect-dependent manner.

Indirect Induction of Regulatory
T-Cells by VEGF-A
In cancer, Tregs accumulation could occur through different
mechanisms, such as expansion of pre-existing Tregs or
conversion of conventional CD4+T cells into Tregs. Immature
dendritic cells (DC) can induce Tregs proliferation in a TGF-b-
dependent manner in tumor-bearing rodents (10). An initial study
showed that tumor cell lines-derived VEGF-A affects the
development of hematopoietic progenitor cells (HPCs) at an
early state resulting in impaired DC differentiation and
maturation (11). Inhibition of DC differentiation is mediated by
VEGFR-2 (12). In mouse models, VEGF-A binding to VEGFR-1
on HPCs blocked the activation of nuclear factor kB (NF-kB)
thereby blocking DC maturation (13, 14). In cancer patients, an
increased VEGF-A plasma level is correlated with the presence of
immature DC in the peripheral blood (15). This team also
reported that the decrease of mature DC is associated with an
increase of myeloid-derived suppressor cell (MDSC) in the
peripheral blood of cancer patients (16). MDSC, especially Gr-
1+CD11b+CD115+ (monocytic) MDSC, can also generate tumor
specific Tregs in tumor-bearing mice and in cancer patients by
secreting IL-10 and TGF-b (17, 18) or by arginase activity (19).
VEGF-A has also been involved in MDSC increase in a VEGFR-2-
dependent manner in mice (13, 20) and in ovarian cancer patients
(21). Activation of JAK2 -STAT3 pathway by VEGF-A facilitates
circulating MDSC accumulation (22). Accumulation of VEGFR-
2+ MDSC in tumors contributes to poor prognosis (21). Thus,
VEGF-A can act on both DC maturation and MDSC in tumor-
bearing hosts. These myeloid cells producing immunosuppressive
factors such as TGF-b or IL-10 could be involved in Tregs
accumulation. Furthermore, a correlation has been observed
between MDSC decrease and Tregs reduction in metastatic renal
cell cancer patients during sunitinib treatment (a tyrosine kinase
inhibitor targeting VEGFR) suggesting a link between MDSC and
Tregs (23)

VEGF-A Directly Promotes Regulatory
T-Cells Proliferation
Different studies have recently highlighted a population of Tregs
expressing VEGFR-2 in tumor-bearing mice and cancer patients
(24–26). In a mouse model of colorectal cancer, we observed that
a subset of activated/memory Tregs express VEGFR-2 (unlike
Frontiers in Immunology | www.frontiersin.org 2
healthy controls) and that VEGF-A induces Tregs proliferation
in a VEGFR-2 dependent manner (25). In humans, Suzuki et al.
showed that VEGFR-2 is selectively expressed by human
FoxP3high Tregs but not on FoxP3low Tregs and may have
stronger suppressive function (24). Effector CD45RA-

FoxP3+CD4+ Tregs subset infiltrating the tumors has also been
reported to express VEGFR-2 in advanced gastric cancer
patients. Furthermore, the ability of VEGF-A to increase Tregs
proliferation has been confirmed in this setting (26). VEGFR-2+

Tregs in tumor tissues is also associated with clinical outcome
since intratumoral FoxP3+ VEGFR-2+ Tregs, unlike intratumoral
FoxP3+ VEGFR2- Tregs are significantly correlated with poor
overall survival and disease-free survival. It is an independent
factor of recurrence and poor survival in colorectal cancer
patients suggesting that VEGFR-2+ Tregs may be a prognostic
biomarker in colorectal cancer (27). In some tumor locations, the
prognostic role of tumor-infiltrating Tregs is still controversed.
Taking VEGFR-2+ Tregs into account and not all Tregs could be
more accurate to evaluate patient prognosis. Furthermore,
specifically targeting VEGFR-2+ Tregs and not all Tregs could
be of interest in cancer patients since it could help to restore an
efficient anti-tumor response while limiting autoimmune
adverse events.
EFFECTOR T-CELLS

Disruption of effector T cell infiltration or activation are important
mechanisms of tumor-induced immunosuppression. VEGF-A has
also been reported to take part in these mechanisms.

Immunosuppressive State Mediated by
VEGF-A Inhibits Effector T-Cells Functions
As we described above, VEGF-A can block DC maturation and
increase MDSC accumulation. Therefore, immature DC are not
able to efficiently activate T-cells (11). MDSC are also highly
efficient at suppressing effector T cells by different mechanisms:
L-arginase depletion (28), NO or ROS production (29, 30) and
CD40-CD40L ligation (31). Likewise, tumor-associated
macrophages (TAM) express PD-L1 which upon binding with
PD-1 inhibits TCR signaling leading to an inactivation of T-cells
(32). VEGF-A contributes to TAM recruitment; mainly into
poorly vascularized tumor areas, exercising a chemoattractant
effect via VEGFR-1 expression on macrophages surface.
Nevertheless, VEGF-A alone is not sufficient to their activation
which requires other tumor-produced factors such as IL-4 and
IL-10 (33, 34). The up-regulation of these pro-inflammatory
cytokines seems to be favored by VEGF-A over-expression.

Aberrant Tumor Vasculature Mediated by
VEGF-A Decreases T-Cell Infiltration
of the Tumor
Although tumor angiogenesis driven by pro-angiogenic factors
intends to contribute to blood supply to the tumor, the induced
vascular network is abnormal. It is characterized by chaotic,
immature, disorganized, poorly perfused and permeable blood
March 2021 | Volume 12 | Article 616837
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vessels which are partially mediated by an abnormal level of
tumor-secreted VEGF-A and other factors such as TGF-b, PDGF
(platelet-derived growth factor) and angiopoietin 2 (35, 36). In
many human and mouse solid tumors, the aberrant structure
and function of the tumor vasculature generates a barrier to the
CD8+ T-cell infiltration and contribute to the maintenance of an
immunosuppressive tumor microenvironment (37). Deletion of
Rgs5-gene (regulator of G-protein signaling 5), which is
responsible for the aberrant morphology of blood vessels,
induced a vascular normalization and CD8+ T-cell infiltration
in tumor-bearing mice (38). Several in vitro studies have
demonstrated that the decrease of T-cell adhesion resulting in
a restricted migration is associated with the decrease of
intercellular adhesion molecules 1 (ICAM-1) and vascular cell
adhesion molecules 1 (VCAM-1) on endothelial cells (39–41).
The cooperation of VEGF-A with IL-10 and prostaglandin E2 is
also able to induce FasL expression on tumor endothelial cells. In
ovarian, colon, bladder, prostate, and renal cancers, FasL+

endothelial cells acquire the ability to kill T-cells while
allowing FoxP3+ Tregs accumulation and infiltration (42).
Finally, the down-regulation of adhesion molecules and
expression of FasL on tumor endothelial cells mainly induced
by VEGF-A are responsible for a decrease of tumor infiltration
by T-cells.

VEGF-A Directly Suppresses
T-Cell Functions
In tumor producing elevated levels of VEGF-A, studies revealed
that this factor and its receptors have important roles in the
aberrant hematopoiesis resulting in defects in immunity (20).
Mice exposed to recombinant VEGF at similar concentrations to
those observed in patients with advanced cancer develop a
thymic atrophy with a reduced number of CD4/CD8
thymocytes (43). These results demonstrate that VEGF-A
directly interferes with the thymic development of T-cells from
HPCs and can contribute to the immune deficiencies associated
with tumors. Studies revealed that VEGF-A directly impacts
effector T cells. Indeed, in vitro activated T-cells but also tumor-
infiltrating T cells express VEGFR-2 (44). In advanced ovarian
cancer, VEGF-A directly suppresses T cell proliferation and
cytotoxic activity via VEGFR-2 (45, 46). Although Basu et al.’
study reported an enhanced IFN-g and IL-2 production and
migratory responses induced by VEGF-A in human CD45RO+

CD4+ memory T-cells (47), there are growing evidences to support
the immunosuppressive role of VEGF-A/VEGFR in T-cells (5)
especially on tumor-induced T-cell exhaustion (44, 48). T-cell
exhaustion is phenotypically characterized by the co-expression of
immune inhibitory receptors called immune checkpoints such as
program cell death-1 (PD-1), T-cell immunoglobulin mucin-3
(Tim-3), cytotoxic T-lymphocyte-associated protein (CTLA-4),
lymphocyte activation gene 3 (Lag3) in CD8+ T-cells and by a
gradual loss of function (49). VEGF-A increases PD-1 expression
and other immune checkpoints CTLA-4, Tim-3 and Lag-3 on CD8+

T-cells but also their co-expression which is related to exhaustion.
The VEGFR-2- PLCg- calcineurin- NFAT pathway is involved in
this effect (44). These results have been confirmed by others (48, 50).
Frontiers in Immunology | www.frontiersin.org 3
Recently, a study carried out on patients with microsatellite stable
colorectal cancer (MSS CRC) resistant to anti-PD-1 therapies has
identified that VEGF-A-dependent upregulation of immune
checkpoints involved the TOX transcription factor (50).

In conclusion, VEGF-A acts as an immunosuppressive factor
in modulating immune cells. Its effects are summarized in
Figure 1.
ANTI-ANGIOGENIC THERAPIES

Based on these properties, the immunomodulatory role of anti-
angiogenic (AA) agents targeting VEGF-A/VEGFR in antitumor
immunity has been investigated in tumor models and cancer
patients (51). These effects are summarized in Table 1.

Anti-VEGF-A/VEGFR Therapies Modulate
Immune Cells Including T-Cells
During the last decade, different AA molecules have been
developed and approved to treat cancer patients. They can be
classified in three main classes: (i) small tyrosine kinase
inhibitors (TKI) such as sunitinib, sorafenib and axitinib (ii)
monoclonal antibodies (mAb) such as bevacizumab (anti-VEGF-
A) and ramucirumab (anti-VEGFR-2) (iii) aflibercept which is a
fusion protein composed of extracellular domains from VEGFR-
1 and VEGFR-2 (52). Whereas TKI target VEGFR pathway (but
also other receptors), monoclonal antibodies and fusion proteins
directly target circulating pro-angiogenic factors or their
receptors present on the cell membrane.

Tyrosine Kinase Inhibitors
Sunitinib. Sunitinib is a TKI currently used to treat different types
of cancers, in particular metastatic renal cell carcinoma (mRCC)
(52). After sunitinib treatment, the percentage of splenic FoxP3+

Tregs in mouse models of renal cancer and circulating Tregs in
mRCC patients is decreased (23, 53–55). Sunitinib also reduces
MDSC numbers which is correlated with Treg decrease in the
tumor microenvironment (23, 56) and favors CD4+ and CD8+

infiltration in the tumor site while reducing PD-1 expression on
CD8+ T-cells (44, 53). Moreover, sunitinib suppresses the
conversion of CD4+CD25- naïve T cells in Tregs in mouse
tumor models (57). In humans, in vitro studies reported a
significant improvement of Th1 cytokine response in mRCC
patients receiving sunitinib. This effect seems to be linked to a
reduction of Tregs (23, 54). In addition, in RCC tumor cells and
tumor-associated MDSC, sunitinib inhibits Stat3 activity leading
to tumor cell apoptosis and promoting antitumor effect (56).

Sorafenib. As well as sunitinib, sorafenib can reduce Tregs
and MDSC proportion in mouse models of liver cancer (58) and
in HCC patients (59) or RCC (60). However, sorafenib seems to
modulate T-cell functions differently from sunitinib and had no
impact on Th1 response (60, 70). An in vitro study examining the
effects of sorafenib on the proliferation and activation of human
peripheral blood T-cells showed that sorafenib targets LCK
phosphorylation implicated in the TCR signaling causing the
loss of T-cell immune responses (71). Controversially, studies
March 2021 | Volume 12 | Article 616837
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have revealed that this treatment seems to up-regulate the
tumor-specific effector T cell functions while PD-1 expression
on CD8+ T-cells is down-regulated (59, 61, 62). Currently, the
effects of sorafenib on T-cell functions remain unclear.

Axitinib. Axitinib is a highly selective VEGFR tyrosine kinase
inhibitor and has demonstrated its efficacy in the treatment of
advanced RCC (aRCC) (63). In tumor bearing mice, axitinib
suppressed MDSC accumulation through the inhibition of Stat3
activity and it was correlated with the reversal of T-cell
suppression (64, 65). Indeed, the proportion of CD8+ T-cells is
increased in a mouse model of renal cancer (64) and an in vivo
study in a mouse melanoma model showed an increase of tumor-
infiltrating immune cells (65).

Monoclonal Antibodies
Bevacizumab. Bevacizumab, a humanized anti-VEGF-A
monoclonal antibody which directly targets VEGF-A, reduced the
proportion of Tregs in tumor-bearing mice and in patients with
metastatic colorectal cancer (mCRC) (25, 66). This phenomenon is
linked to a decrease of Ki67+ expression in Tregs (25). In mCRC
patients treated with bevacizumab, Manzoni et al. revealed an
increase of CD4, CD8 and CD3 lymphocyte numbers (29),
Frontiers in Immunology | www.frontiersin.org 4
whereas Tsavaris et al. observed a better proliferation and
cytokine production of circulating T-cells compared to patients
treatedwith chemotherapy only (67).Moreover, the administration
of anti-VEGF-A in tumor-bearingmice decreased PD-1 expression
on intratumoral CD8+ T-cells and limited the co-expression of
inhibitory checkpoints associated with exhaustion (44). Recently, a
study conducted on non-small-cell lung cancer (NSCLC) patients
revealed that bevacizumab addition to the chemotherapy doublet
based on cisplatin and oral etoposide decreased the plasmatic
VEGF-A level and improved cytotoxic T-lymphocytes responses
(68) while simultaneously restoring DC functions.

Ramucirumab. Ramucirumab is a monoclonal antibody
targeting VEGFR-2. In patients with advanced gastric cancers,
CD45RA- FoxP3+ CD4+ effector Tregs cells expressing VEGFR-2
are present in higher frequency in TIL than in PBMC (26). In vitro
experiments showed that VEGF-A stimulates their proliferation
which can be overcome by ramucirumab. Ramucirumab-
containing therapies strongly reduce effector Tregs in tumors of
advanced gastric cancer patients. A higher frequency of these effector
Tregs in tumors before treatment was associated with an enhanced
proportion of partial response and a longer progression-free survival.
Since VEGFR-2 is highly expressed by this Tregs subset, it could be
FIGURE 1 | Direct and indirect effects of VEGF-A in promoting immunosuppressive tumor microenvironment. Tumor-secreted VEGF-A induces the inhibition of
T-cell functions and proliferation while promoting Tregs accumulation. Both direct and indirect effects of VEGF-A are observed. Direct modulation of T-cell by VEGF-A
is mediated by the binding to VEGFR-2 on their surface, whereas the indirect effects of VEGF-A on T-cell results from the modulation of immune cells such as DC,
MDSC and TAM expressing VEGFR-1 or VEGFR-2. On tumor endothelial cells, VEGF-A can reduce adhesion molecules expression and induce FasL, preventing
tumor-infiltrating CD8+ T-cell. DC, dendritic cells; iDC, immature dendritic cells; MDSC, myeloid derived suppressor cells; TAM, tumor-associated macrophages.
March 2021 | Volume 12 | Article 616837
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envisioned that the proportion of VEGFR-2+ effector Tregs in TIL
could be a biomarker of favorable clinical response to ramucirumab
therapies (26). A decreased expression of PD-1 on CD8+ T-cells was
also reported after ramucirumab treatment (26).

Fusion Protein
Aflibercept. Aflibercept is a VEGFR fusion protein conjugated to
Fc portion of human IgG1, also known as VEGF-Trap. Nowadays
the impact of VEGF-Trap treatments on T cells remains poorly
described in cancer patients but a recent study highlights the
improvement of CD8+ T cell functionality in a mouse model of
glioma. Indeed, they observed a decrease of PD-1 and Tim3
expression on infiltrating CD8+ T-cells. Likewise, they found an
improvement of DC maturation demonstrated by the increase of
co-stimulation molecules expression including CD80, CD86 and
MHC II which are required for T-cell activation (69).

Indirect Impact of Anti-Angiogenic
on Immune Cells
An indirect impact of AA treatment on tumor-induced
immunosuppression could also be proposed. AA treatments can
be responsible of a transient normalization of the vasculature
favoring tumor infiltration by immune cells. However, some
reports have also indicated a potential enhancement of hypoxia
especially during a prolonged AA treatment (72). Hypoxia fuels
Frontiers in Immunology | www.frontiersin.org 5
tumor progression by selecting more malignant cells and also by
inducing an immunosuppressive microenvironment. It can lead
myeloid cells toward an immunosuppressive phenotype or
potentiate regulatory T cell functions (73). Nevertheless, recent
studies highlighted that aggravated hypoxia mediated by anti-
VEGF-A treatment directly enhances CD8+ T-cell functions in an
HIF-1a dependentmanner (74, 75). This aspect of anti-angiogenic
impact needs further investigation.

Combination of Anti-VEGF-A/VEGFR
Treatments With Immunotherapies
To enhance anti-tumor effects, combining AA therapies with
immunotherapies such as immune checkpoint blockade (ICB:
anti-PD-1, anti-PD-L1, anti-CTLA-4) have raised great interest.
In mouse tumor models, VEGF-A/VEGFR-2 and PD-1 blockade
induces strong and synergic antitumor responses and limits
T-cell exhaustion in VEGF-A-expressing tumor compared to
monotherapies in mouse models of MSS colorectal cancer (44,
50). Two studies have been carried out in murine lung cancer
models using anti-VEGF/VEGFR combined to anti-PD-L1. They
have demonstrated strong anti-tumor effects which are
associated with an increase of TIL and T-cell responses (48,
76). The association of anti-VEGFR-2 plus anti-PD-L1 could
rescue the PD-1/Tim3 exhaustion T-cell phenotype, while
improving overall survival (48). In preclinical murine models,
TABLE 1 | Modulation of T-cells by anti-angiogenic therapy.

Anti-angiogenic Target Effects of anti-angiogenic therapy

Tyrosine Kinase Inhibitor
Sunitinib VEGFRs(+ c-Kit, PDGFR,Flt-3) Decrease the percentage of splenic Tregs* (23)

Decrease the percentage of circulating Tregs (correlated with reduction of MDSC numbers in TME)d (53–58)
Suppress the conversion of CD4+ CD25- T cells in Tregsd

Enhance Th1 cytokine response (IFN-g production)d

Favor CD4+ and CD8+ T-cells infiltration in the tumor*
Reduce PD-1 expression of intra-tumoral CD8+ T-cells*

Sorafenib VEGFRs(+ c-Kit PDGFR, Raf-
kinases, RET)

Decrease Tregs proportion (correlated with reduction of MDSC numbers in the TME)d,e,* (59–61)
(64, 65)Enhance effector T-cell functionse

Reduce PD-1 expression on CD8+ T-cellse,*
Axitinib VEGFR-2 Induce the reversal of T-cell suppression through the suppression of MDSC accumulation* (66–68)

Increase CD8+ T-cells proportion*
Favor immune cells infiltration in the tumor*

Monoclonal antibody
Bevacizumab VEGF-A Decrease the percentage of splenic Tregs* and circulating Tregsa (8, 29,

44)
Increases CD4, CD8 and CD3 lymphocyte numbers and T-cell proliferationa (69–71)
Enhance cytokine production of circulating T-cellsa

Enhance cytotoxic T-lymphocytes responsesb

Reduce PD-1 expression on intra-tumoral CD8+ T-cells*
Limit co-expression of inhibitory checkpoint associated with exhaustion*

Ramucirumab VEGFR-2 Reduce effector Tregs (CD45RA- FoxP3+ CD4+ Tregs) expressing VEGFR-2c (26)
Reduce PD-1 expression on CD8+ T-cells (only for patients with high frequency of effector Tregs
before treatment)c

Fusion Protein
Aflibercept Enhance CD8+ T-cells functions* (72)

Reduce PD-1 and Tim3 expression of intra-tumoral CD8+ T-cells*
March 2021 | Volume 12 | Artic
aColorectal cancer patients.
bNon-small cell lung cancer patient.
cGastric cancer patients.
dRenal cell carcinoma patients.
eHepatocellular carcinoma patients.
*tumor-bearing mice.
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the association of axitinib with ICB (anti-PD-L1 and anti-Tim3
antibodies) resulted in a synergistic therapeutic efficacy (77).

Based on the interesting results from preclinical studies, many
clinical trials have been conducted to evaluate combination
therapies in cancer patients (78). In 2014, a phase I clinical
trial (NCT00790010) investigated the combination of
ipilimumab, an anti-CTLA-4 monoclonal antibody, and
bevacizumab in 46 patients with a metastatic melanoma (79).
The authors observed an upregulation of VCAM-1 and other
adhesion molecules on intratumoral endothelial cells leading to
endothelial cell activation. Furthermore, the trafficking of CD8+

T-cells across tumor vasculature was enhanced. When combined
to ipilimumab, bevacizumab seems to influence tumor
vasculature morphology and immune responses (79). Although
antitumor response efficacy has been demonstrated, important
immune-related adverse events are induced. Anti-CTLA-4
antibodies are known to generate autoimmune diseases (80).
Meta-analysis revealed that about 70% of patients treated with
ipilimumab including 25% of high-grade adverse events develop
skin rashes, gastrointestinal dysfunctions such as colitis or less
frequently endocrine dysfunctions (81, 82). When ipilimumab
was combined to bevacizumab, 29.3% of patients experienced
grade 3-4 adverse events. Inflammatory events were higher than
expected with ipilimumab alone, but remained manageable.
Interestingly, the incidence of colitis was not increased (79).
High grade adverse events are less common for anti-PD-1/PD-L1
antibodies alone compared to ipilimumab. A study conducted in
a small cohort of mRCC patients explored the effects of an anti-
PD-L1 (atezolizumab) plus bevacizumab (NCT01633970) (83).
Similar findings were highlighted including an improved
migration of antigen-specific T-cells and an increase of
cytokines and chemokines production in particular CX3CL1
involved in T-cell trafficking (83). Therapies combining AA
agents plus ICB have shown their efficiency in phase III
clinical trials (84) and have been recently approved in different
locations (i) atezolizumab (anti-PD-L1) and bevacizumab with
chemotherapy in NSCLC (85) (ii) atezolizumab and
Frontiers in Immunology | www.frontiersin.org 6
bevacizumab in unresectable HCC (86) (iii) pembrolizumab
(anti-PD-1) plus lenvatinib (TKI) in advanced endometrial
cancer (87) (iv) pembrolizumab (anti-PD-1) plus axitinib in
RCC (88) and v) axitinib plus avelumab (an anti-PD-L1) in
RCC (89). No major increases of adverse events were reported
with these combinations compared to each agent alone. Results
of these clinical trials are summarized in Table 2.

Perspectives for a Better Use
of Anti-Angiogenic Agents
The need to find approaches enabling the induction and activation
of immune response against cancer remains considerable and in
this context, novel approaches are important to consider. A better
understanding of the immunomodulatory roles of pro-angiogenic
factors produced in tumor-bearing hosts could help to develop
new therapeutic strategies or combinations. One of the main issues
encountered with AA agents in the development of resistance
mechanisms including activation of alternative pro-angiogenic
pathways such as Angiopoietin 2 (Ang2)/Tie2, HGF/c-Met or
PlGF (90–92). High levels of Ang2 are associated with unfavorable
responses to bevacizumab-containing therapies in patients
suffering from colorectal cancers and metastatic melanoma
treated with ICB (93). Different AA molecules are currently used
to treat cancer patients, but the impact of these different
treatments on anti-tumor immunity remains unclear. In some
tumor locations, combining AA molecules with ICB allowed to
improve the outcome of cancer patients, leading to the approval of
different anti-angiogenic/ICB combinations by the FDA. However,
many questions remain unanswered such as which tumors are
sensitive to these associations, or if targeting alternative pro-
angiogenic pathways in combination with ICB could also
provide interesting anti-tumor effects. Recently, a study has
shown in mouse tumor models that the concomitant blocking of
VEGF-A and Ang2 with a bi-specific antibody stimulated
antitumor immune responses compared with single-agent
therapies and could increase the effectiveness of ICB such as
anti-PD-1 antibody (94). Currently, multiple clinical trials are
TABLE 2 | Current clinical trials of anti-angiogenic therapies combined with immunotherapies.

Anti-angiogenic Immunotherapy Registration
number

Phase Cancer
Location

Clinical efficacy Correlatives

Tyrosine Kinase Inhibitor
Axitinib Avelumab2 NCT02684006 III Advanced

RCC
OS 11.6 months
PFS 13.8 months

As first-line treatment, improved PFS among patients with
PD- L1-positive tumors (89)

Pembrolizumab3 NTC02853331 III Advanced
RCC

OS 89.9%*
PFS 15.1 months

(88)

Lenvatinib Pembrolizumab3 NTC03517449 III Advanced EC (87)
Monoclonal antibody
Bevacizumab Ipilimumab1 NCT00790010 I Metastatic

melanoma
OS 25.1 months Enhance the trafficking of CD8+T-cells across tumor

vasculature (79)
Atezolizumab2 NCT01633970 Ib mRCC Improve migration of T-cellsIncrease cytokine and

chemokines production (83)
NTC03434379 III Unrestable

HCC
OS 67.2%*
PFS 6.8 months

(86)

Atezolizumab2+
chemotherapy

NTC02366143 III NSCLC OS 13.3 months Improved OS in the subgroup of patient with baseline liver
metastasis (85)
1anti-CTLA-4 antibody, 2anti-PD-L1 antibody, 3anti-PD-1 antibody; *at 12 months. (m)RCC, (metastatic) renal cell carcinoma; HCC, hepatocellular carcinoma; NSCLC, non-small cell lung
cancer; EC, endometrial cancer; OS, overall survival; PFS, progression-free survival.
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being conducted to assess dual inhibition of VEGF-A and Ang2 in
patients with cancer and to further investigate mechanisms
involved in alternative pro-angiogenic pathways (95).
AUTHOR CONTRIBUTIONS

MB and MT designed and wrote the main manuscript. JP and
IG-F critically reviewed the manuscript. All authors contributed
to the article and approved the submitted version.
Frontiers in Immunology | www.frontiersin.org 7
FUNDING

JP received financial support from ITMO Cancer AVIESAN
(Alliance Nationale pour les Sciences de la Vie et de la Santé,
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