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Leishmaniasis are Neglected Tropical Diseases affecting millions of people every year in at
least 98 countries and is one of the major unsolved world health issues. Leishmania is a
parasitic protozoa which are transmitted by infected sandflies and in the host they mainly
infect macrophages. Immunity elicited against those parasites is complex and immune
checkpoints play a key role regulating its function. T cell receptors and their respective
ligands, such as PD-1, CTLA-4, CD200, CD40, OX40, HVEM, LIGHT, 2B4 and TIM-3
have been characterized for their role in regulating adaptive immunity against different
pathogens. However, the exact role those receptors perform during Leishmania infections
remains to be better determined. This article addresses the key role immune checkpoints
play during Leishmania infections, the limiting factors and translational implications.
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INTRODUCTION

Global warming is progressively changing the distribution of pathogenic microbes, and
consequently humans are more exposed to new or re-emerging infections, especially those
transmitted by vectors and reservoirs (1–3). Leishmaniasis affects millions of people living in
endemic regions and kills thousands of them every year, and its distribution is changing due to the
occurrence of sandflies in new areas (4–7). Those diseases are listed by the World Health
Organization (WHO) as important Neglected Tropical Diseases (NTDs) affecting mainly poor
people living with less than one dollar per day (8).

Leishmaniasis are complex parasitic protozoan infections, usually transmitted through the bite of
infected hematophagous invertebrates, capable of surviving and proliferating in human tissues and
blood (9–11). So far, the best option to control the diseases is through vector and host reservoir
control, and by treating infected individuals (12, 13). Nevertheless, the drugs are often inaccessible
due to high cost and toxicity and there is currently no safe and effective vaccine to be applied in
humans (14–16). One of the reasons for the lack of therapeutic approaches is the complex immunity
against these parasites and, therefore, many gaps in understanding this puzzle (17). In this regard,
this review aims to address some key pieces which were initially observed in cancer and chronical
viral infections.

Development of immunity is accompanied by an upregulation of receptors (and their ligands)
with regulatory function, also known as immune checkpoints (18–20). Some of them are potentially
stimulatory and others induce an inhibitory effect. For this, it was demonstrated that the
upregulation of co-inhibitory receptors and their ligands on antigen presenting cells (APCs) and
activated T cells are capable to suppress the immunity by delivering negative signals, rendering T
org March 2021 | Volume 12 | Article 6201441
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cells suppressed in their function (21–24). Nonetheless, antibody
blocking can restore T cell capacity to destroy cancer or viral
infected cells. Among those, anti-Programmed Death (PD)-1
and anti-Programmed Death Ligand (PD-L)1 are currently used
to treat melanoma and other types of cancer (25, 26). Those
treatments paved the way for studies with similar interventions
for chronic infections, including leishmaniasis.

This review wants to address the following question: what is the
role of immune checkpoints in leishmaniasis? Some investigations
are ongoing; however, given the limited understanding of their
function, dissecting it would significantly amplify our knowledge
regarding the function of the human immune system, how it reacts
to the intracellular parasite Leishmania and other similar
infections. More importantly, it would widen treatment
perspectives for the affected individuals.
AN OVERVIEW ON ANTI-LEISHMANIA
IMMUNITY

Immunity against Leishmania is complex and depends on many
factors, such as genetic diversity, parasite species and isolates
Frontiers in Immunology | www.frontiersin.org 2
(27–29). Leishmania spp. are inoculated into the skin as
metacyclic promastigotes (30) and once the parasites are in
close contact with the body, immunity is triggered (Figure 1).
The complement system has an important, although limited
function in this task, since glycoproteins, such as GP63 (also
known as Leishmanolysin), from the surface of the parasites are
capable to bind complement factor C3b and inactivate it (C3bi),
blocking the capacity to lyse the parasites and enhancing its
recognition by complement receptor-3 (CR3) on macrophages
(31–33). As soon as phagocytic cells reach the entry site, they
engulf free parasites and factors such as chemokine (C-C motif)
ligand 3 (CCL3) are secreted by neutrophils, which in turn attract
dendritic cells (DCs) (34–36). C-C-chemokine receptor type 2
(CCR2)-driven monocytes secrete reactive oxygen species (ROS)
to kill free parasites and these cells migrate to draining lymph
nodes and differentiate to monocyte-derived DCs (9, 37–39).
DCs displaying Leishmania antigens coordinate the secretion of
interleukin (IL)-12 which instructs the differentiation of T helper
type (Th)1 cells to produce and secrete IFN-g (40–42). IFN-g
levels collectively produced by CD4+ Th1 and other activated
cells types, such as CD8+ T cells and natural killer (NK) cells, is,
so far, known as the best correlate of protection in leishmaniasis
FIGURE 1 | Aspects of immunity against Leishmania parasites. Upon Leishmania entry into the dermis, different phagocytic cells infiltrate to the site, such as neutrophils
and monocytes. The parasites are phagocyted by these infiltrating cells and also by resident macrophages and tissue dendritic cells (DC). Neutrophils produce increasing
levels of chemokine (C-C motif) ligand 3 (CCL3) to attract dendritic cells to the site. C-C chemokine receptor type 2 (CCR2)+ monocytes produce and release reactive
oxygen species (ROS) to kill free parasites. Then, adaptive immunity is elicited through the migration of monocytes and tissue DCs carrying Leishmania antigens to the
draining lymph node. These cells present parasite antigens and produce Interleukin (IL)-12 and thus induce CD4+Th1 cell differentiation, Th1 cells migrate to the infection
site and finally produce and secrete Interferon (IFN)-g. Activation of infected macrophage by the action of IFN-g leads to the production of nitric oxide (NO) by iNOS and thus
Leishmania killing. IFN-g is also locally produced by natural killer (NK) and CD8+ T cells. IL-10 production and parasite persistence are necessary to maintain memory cells.
March 2021 | Volume 12 | Article 620144
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(43, 44). Protection takes place by production of nitric oxide
(NO) by the inducible NO synthase (iNOS) in macrophages in
order to kill the amastigotes (45–48).

The role of Th1 cells is well verified in the two main mouse
models of L. major infection: the susceptible mouse strain BALB/c
shows a weak Th1 and strong Th2 immunity that results from the
contribution of distinct factors such as an IL-4-mediated down
regulation of the IL-12Rb on Th2 cells or increased production of
IL-12(p40)2 homodimers that antagonize the effect of the IL-12
active form on IL-12R (41, 42, 49); on the other hand, Leishmania-
resistant C57BL/6 mice are good controllers of the infection with a
strong Th1 response (50–52).

Another important component are Th17 cells and its main
cytokine IL-17 that contributes activating iNOS and inducing
production of GM-CSF, IL-1b, IL-6, IL-8, TNF-a, and
chemokines (53). Th17 cells have been implicated in the
recruitment of neutrophils to the lesions caused by Leishmania,
and disease progression was prevented in IL-17A-deficient BALB/
c mice (54, 55). Nevertheless, disease progression was not affected
in IL-17-deficient C57BL/6 mice (56).

The role of CD8+ T cells is still controversial and has been
associated with more inflammation, increased Granzyme B,
TNF-a and IL-1b production, inflammasome activation, tissue
damage and disease severity (57–59). On the other hand, it has
been shown that CD8+ T cell-derived IFN-g is a key factor for
disease control (60, 61).

Additionally, regulatory T cells (Treg) are necessary to
control the activation of the immune response and excessive
inflammation by diverse mechanisms, such as inhibitory
receptors and enzymes, and production of IL-10 (62).
Moreover, evidence indicates that they are necessary to control
the inflammation process and contribute to parasite persistence
in resistant mice (63–65). In this regard, it was shown that
Langerhans cells (LCs), during Leishmania infection, induced
expansion of Treg. Moreover, Treg-derived IL-10, retinoic acid
independent, contributes parasite persistence and selective
depletion of Treg induces larger lesions (66, 67).

In humans, the immunity against Leishmania is more
complex, and often many findings achieved in the mouse
models cannot be directed translated to humans (17, 68, 69).
The key players during the immunity in CL and VL are similar,
however, the tissue milieu is distinct and that influences the
course of immunity and final outcome.
MAIN CLINICAL MANIFESTATIONS

Even so, in many cases immunity is unable to properly control
parasite growth and they end up replicating as amastigotes in
macrophage phagolysosomes (70, 71). From the point of
inoculation, some species can have a dermis tropism, causing
localized or disseminated skin lesions, or mucocutaneous lesions.
L. braziliensis, L. major, L. panamensis, L. mexicana, and
L. guyanensis are species associated with these clinical forms.
Other Leishmania species have a tropism for the mononuclear
Frontiers in Immunology | www.frontiersin.org 3
phagocyte system from spleen, liver, and bone marrow, and can
cause visceral leishmaniasis (VL), which is the deadliest form of
leishmaniasis if left untreated (6, 72, 73). Thus different species of
the parasite are involved with distinct clinical forms (11, 74).

This broad clinical spectrum adds another layer of complexity
to understand immunity against Leishmania (28, 75, 76). The
activation of the immune system has been used to detect
antibodies and/or cellular immunity for diagnostic purposes,
and, so far, it is not fully understood how it works to contain the
infection and how can we boost it (77–81). Overall, immunity
against Leishmania parasites is very complex and involves many
cellular and molecular players that act against the different
species of parasites, which can cause infection, and also the
intrinsic factors, that influence it (Figure 1).
WHAT ARE THE IMMUNE CHECKPOINTS
IN LEISHMANIASIS?

Different stimulatory and inhibitory immune checkpoints
pathways are activated or deactivated during an immune
response. Those interactions are cell to cell (trans), usually
between a T cell and a macrophage, DC, monocyte and
neutrophil. However, it has been shown that some interactions
are on the same cell (cis) with important consequences for the T
cells (82). Altogether, different checkpoints receptors have been
discovered with distinct functions that are relevant to consider
and to investigate in the context of intracellular infections such as
Leishmania (Figure 2).

Inhibitory Checkpoints
Programmed Cell Death 1 (PD-1) and Programmed
Death-Ligands 1 (PD-L1) and 2 (PD-L2)
The programmed cell death protein 1 (PD-1; CD279) and its
ligands PD-L1 (B7-H1) and PD-L2 (B7-DC), which are members
of the B7/CD28 family are important axis which were
investigated in leishmaniasis (83–85). Engagement of PD-1 to
PD-L1 or PD-L2 induces phosphorylation of tyrosine residues in
PD-1 intracellular domain which recruits tyrosine phosphatases
such as Src homology 2 domain-containing phosphatase (SHP)-2.
Thereafter, distinct kinases necessary for cell survival and
proliferation are dephosphorylated (86–89). The resulting effect
of this signaling cascade is T cell inhibition and exhaustion (90,
91). It has been shown in different models that PD-1/PD-L1 are
important to maintain immune homeostasis by inducing
peripheral tolerance and protecting tissues from autoimmune
attack (24). The role of these molecules during acquisition of
immunity against many infectious agents is not well established
and PD-1/PD-L1 may suppress immunity allowing chronic
infection (92–94). Infection by L. mexicana can cause a localized
cutaneous lesion (LCL) or a diffuse form (DCL) and it has been
observed that patients with DCL have low numbers of CD8+ T
cells in their lesions when compared to LCL (83). Moreover, CD8+

T cells isolated from the blood of DCL exhibited less capacity to
proliferate under antigen specific stimulation, less IFN-g
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production, and enhanced expression of PD-1 (83). This cell
phenotype observed has been typically associated with CD8+ T
cell exhaustion (25). However, particularly in this study, other
exhaustion markers have not been extensively investigated and
this could give a better idea on the level of CD8+ T cell exhaustion
undergone by those infected patients. During human CL, higher
frequencies of CD4+PD-1+ T cells were observed in active CL
disease patients compared to post-treated patients and uninfected
individuals (95). Interestingly, it was observed a continuously
increasing frequency of PD-1+ T cells together with the
development of CD4+ T cells subpopulations (95). Lower
frequencies of PD-1+ among T naïve (CD45RO-CCR7+) and
higher frequencies among T terminally differentiated (CD45RO-

CCR7-) (95).
According to the most recent investigations, a distinct pattern

of co-inhibitory receptors might also be associated with each
species of Leishmania involved, such as the case for L. major
infection, which causes CL. The main role of these checkpoints
could be to limit T cell activation during the initial phase of the
immunity, during antigen presentation by APCs (96). Specific
molecules, e.g. on parasites, might be involved in inducing the
expression of checkpoint receptors by different cell subsets upon
infection, such as the case of lipophosphoglycan (LPG). This
molecule is expressed on the surface of Leishmania parasites, and
when mice were vaccinated with different LPG concentrations,
CD8+ T cells upregulated PD-1 on its surface, but not CD4+ T cells
Frontiers in Immunology | www.frontiersin.org 4
(97). Additionally, it was recently shown in BALB/c footpad
infection with L. amazonensis that either anti-PD-1 or anti-PD-L1
treatment reduced the parasite burden and this effect was
potentially mediated by CD8+IFN-g+ T cells (98). Among the
different clinical forms of leishmaniasis, there is evidence
supporting the role of PD-L1 as one regulator of anti-VL
immunity (85, 99, 100). However, there is very few evidence
supporting the same role for PD-L1 during CL. Since both CL
and VL take place in different organs in the body, PD-L1 may act
distinctly in those sites and its role is not fully understood yet.

It has been shown in L. donovani infections that blocking of
PD-L1 results in an increased survival of CD8+ T cells and
partially restores their function, a notion supported by resulting
lower parasites numbers upon treatment (101). Other authors
have reported the same effect in that infection by L. donovani
induced PD-1 expression on CD8+ T cells and its ligand on
splenic DCs (102, 103). Treatment with antibody to block the
PD-1/PD-L1 interaction was able to partially restore the function
of CD8+ T cells, which may indicate that other checkpoint
receptors were involved in CD8+ T cell exhaustion (102).

Regarding CD4+ T cells, Esch et al., 2013 have observed that
CD4+ T cells from L. infantum-infected dogs have a significant
increase in PD-1 expression which was associated to some extent
with CD4+ T cell exhaustion. By blocking PD-L1 in vitro, an
increase in the production of ROS in monocytes derived
phagocytes was found (85). In murine models it has been
FIGURE 2 | Immune checkpoints investigated in leishmaniasis. Distinct immune checkpoints have been investigated for the function during the immunity against
Leishmania. Cytotoxic T lymphocyte attenuator 4 (CTLA-4; CD152) binds to CD80/CD86 and blocks its stimulatory effect on T cells. Programmed cell death protein
1 (PD-1; CD279) binds to its ligands PD-L1 or PD-L2 and inhibit T cells. CD200 (OX-2) and CD200R engagement results in an important inhibitory signal to T cells.
T cell immunoglobulin and mucin domain-containing protein (TIM)-3 and Galectin 9 engagement deliver an inhibitory signal to T cells. Binding of CD160, lymphotoxin
LT-like (LIGHT) and B and T lymphocyte attenuator (BTLA; CD272) to herpesvirus entry mediator (HVEM) induces inhibitory signals in T cells. When HVEM from
T cells binds to LIGHT on antigen presenting cells (APC) stimulatory effects on T cells are induced. Engagement of CD40 and CD40 Ligand (L) delivers a stimulatory
effect to T cells. 2B4 and CD48 binding results in stimulatory effects to T cells. Binding of OX40 to OX40L results in stimulatory effects to T cells.
March 2021 | Volume 12 | Article 620144
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described that infection with L. donovani restricted the
expansion of specific CD8+ T cells. Moreover, these cells were
also more prone to undergo apoptosis and upregulated PD-1,
and this dysfunctional phenotype was partially recovered by
blocking of PD-L1. Upon PD-L1 inhibition, the authors also
detected lower numbers of parasites which might reflect a better
infection outcome (102). Furthermore, it has been shown that
PD-L1 inhibition restored the function of CD4+ and CD8+ T
cells in the bone marrow of L. donovani-infected mice.
Upregulation of PD-L1 by macrophages and of PD-1 by CD4+,
CD8+ T and Tregs IL-10+Foxp3+ upon infection was also
observed. Phenotypically, blocking of PD-L1 led to decreased
parasite burdens and inhibited autophagy, which is regarded as
one of the mechanism used by Leishmania to obtain nutrients in
the host cell (99). Other studies have also previously described an
upregulation of PD-1 and PD-L1 on T cells and macrophages,
respectively, upon infection with L. infantum or L. donovani (85,
102). Nevertheless, it was also demonstrated Pdl1-/- mice
infection with L. major induced lower frequencies of a
population of CD4+Ly6Chi effector T cells and higher
frequencies of Foxp3+ Tregs compared with WT mice (95).

Different species of mammals can act as reservoirs for the
parasite, i.e. dogs are an important reservoir for human infection.
In the case of dogs VL, it has been shown that there is an
impaired CD4+ T cell function, IFN-g production, combined
with T cell exhaustion through PD-1 expression (104). On the
other hand, one work has shed light upon the role of PD-L1 on
regulatory B cells during dog VL, since the specific blocking of
PD-L1 on B cells restored Th1 responses (84). The PD-1/PD-L1
axis might exert its function during infection with Leishmania by
reducing the phagocytic capacity of macrophages. However, it is
not yet clear which other cell subsets may also be involved since
they can also upregulate PD-L1 upon Leishmania infection, e.g.
regulatory B cells and DCs. The exact role of PD-L1 expression
on these cell subsets is not yet clear, and they might contribute to
disease progression and T cell exhaustion. In the case of the PD-1
and PD-L1 pathway it has also been shown for other protozoan
infections, blocking the pathway may rescue the function of
exhausted cells, such as CD8+ T cells and B cells, and this could
lead to parasite control and less mortality (105).

PD-L2 is another ligand that binds PD-1 with a two to six fold
higher affinity than PD-L1 (106), and it is expressed by
macrophages, DCs, bone marrow-derived mast cells, B cells,
and intestinal stromal cells (107–111). Expression of PD-L2 is
induced by IL-4, IFN-g and granulocyte-monocyte colony
stimulating factor (GM-CSF) (112, 113). More importantly,
comparing the roles of PD-L1 and PD-L2 during murine
infection with L. mexicana, it was observed that Pdl2-/- mice
displayed larger lesions and higher parasite burden when
compared to Pdl1-/- and WT mice. The most important
difference were increased levels of L. mexicana IgM and IgG2a
that the authors associated with poor disease resolution (114).
Those results emphasize a potential role of PD-L2 regulating T-
independent (IgM) and -dependent (IgG2a) B cell responses.

In summary, the PD-1 and PD-L1/PD-L2 axis likely regulates
immunity against Leishmania parasites, and specific blocking of
Frontiers in Immunology | www.frontiersin.org 5
PD-1/PD-L1 potentially boosts T cell responses which are
necessary for parasite elimination. Nevertheless, it is not fully
clear how this axis works to control parasite proliferation or
killing and the role of the different cells that express PD-1/
PD-L1.

Cytotoxic T Lymphocyte Attenuator 4
(CTLA-4; CD152)
CTLA-4 was discovered many years ago and it is one of the most
classical co-inhibitory receptors constitutionally expressed in
intracellular vesicles in Foxp3+ regulatory T cells (Tregs) and
conventional T and B cells during immune activation (115). The
first works addressing its function reported that mice lacking
CTLA-4 undergo massive lymphocyte proliferation and organ
failure (116, 117). CTLA-4 acts by: trans-endocytosis of CD80
and CD86 on APCs to inside the T cells, depleting these ligands
(118); inducing IL-10 or TGF-b which down modulate co-
stimulatory ligands on APCs (119); finally, it is also suggested
that binding of CTLA-4 to CD80/CD86 in DCs induces
indoleamine 2,3-dioxygenase (IDO) which degrades tryptophan
(120). Lack of tryptophan is also an important mechanism of
cell cycle arrest and T cell suppression (121). In 2011, the first anti-
CTLA-4 antibody was approved for treatment of melanoma, a
type of skin cancer (122, 123).

However, information about the effect of CTLA-4 blocking as
an immunotherapeutic intervention against chronic infections is
limited. Interestingly, it was observed that susceptible mice
treated with anti-CTLA-4 one day post L. donovani infection
displayed reduced parasite numbers and also induced IFN-g and
IL-4 producing cells (124). However, mice lacking CTLA-4
transducing cytoplasmic tail displayed more susceptibility to
infection with L. major and increased Th2 responses compared
to mice with intact CTLA-4 which were resistant to infection and
had stronger Th1 responses (125). Complementary studies have
also shown in vivo blocking of CTLA-4 promoted Th2 responses
and exacerbated disease in L. major-infected susceptible mice
(126, 127). Additionally, in proliferating CD4+ T cells of Ctla4-/-

mice increased production of Th2 cytokines was observed (128).
Importantly, CTLA-4 engagement results in transforming
growth factor (TGF)-b production and this cytokine blocks
IFN-g production inducing parasite survival and proliferation
(129, 130). Moreover, blocking of CTLA-4 and neutralization of
TGF-b resulted in increased production of IFN-g and parasite
elimination in coculture systems (131, 132). Overall, those
remarkable results indicate an important role for CTLA-4
controlling T cell responses during anti-Leishmania imunity
with important effects mediated by TGF-b.

In humans, expression of CTLA-4 in CD8+ T cells of patients
infected with L. panamensis was described (133). Besides its
potential as a potent T cell booster, the role of this receptor
during leishmaniasis is still questionable and it needs to be
better understood.

CD200 (OX-2)
Another axis that has been lately investigated is the engagement
of CD200, which is expressed by APCs, with CD200R on T cells
March 2021 | Volume 12 | Article 620144
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(134–136). Following signaling there is formation of a complex
of proteins that inhibits Ras activation and results in inhibition of
mitogen kinases such as Phosphoinositide 3-kinase (PI3K) and
Extracellular Signal-regulated Kinase (Erk) delivering an
important inhibitory signal (137–140). Cortez et al., 2011 have
shown a correlation between L. amazonensis and the expression
of CD200 as a mechanism to potentiate its virulence in the host.
The authors demonstrated that infection of macrophages with
L. amazonensis, and not with L. major, induces the expression of
CD200 transcripts over time (141). Moreover, the lack of CD200
abrogated parasite proliferation in macrophages and this was
rescued by the administration of recombinant Fc-CD200. In vivo,
mice which lack CD200 (Cd200-/-) harbored smaller lesions with
fewer parasites compared to wild type counterparts. In contrast,
the same result was not found in mice infected with L. major,
indicating that CD200 has an important role at regulating the
amount of parasites and the outcome of the infection specifically
for L. amazonensis. Another interesting point showed by this
paper is the improvement of iNOS activity in Cd200-/- mice
already 1-h post L. amazonensis infection. This suggested that
CD200 has a iNOS regulating role during infection. Upon
in vitro infection of bone marrow macrophages, Leishmania-
induced increased levels of CD200 in bone marrow macrophages
and the lack of CD200 (BMM Cd200-/-) inhibited parasite
proliferation. Furthermore, it was demonstrated that
Leishmania (amazonensis) DNA recognized by TLR9 is
necessary to activate TRIFF and MyD88 and consequently
activate CD200/CD200R cis interaction (142). The role of
CD200 was also investigated in the context of L. donovani
infection. The interaction of CD200/CD200R aid activated
CD4+CD44+ T cells to produce IL-4, IL-10, TGF-b, and IL-27.
Overall this effect abrogated macrophage effector functions and it
was restored by the administration of anti-CD200 which induced
more IL-2, IL-12 and IFN-g by T cells, and therefore activated
macrophages to produce NO (143). Additionally, immunization
with centrin-deleted L. donovani resulted in CD200/CD200R
downregulation and consequently suppression of IL-10-
producing CD4+ T cells and more Th1 cells compared to WT
infection (144).

Collectively, the evidence suggests that Leishmania can also
influence the expression of CD200 as escape mechanism, thus
the blocking of this axis holds potential to boost T cell responses
and control parasite growth. More investigation is required to
address distinct the effect of various parasite species, specific cell
types involved, and the relevance for the human situation.

Stimulatory Checkpoints
CD40 and CD40-Ligand (CD40L)
CD40 is a member of the TNF receptor superfamily expressed
mainly in B cells and its interaction with CD40L (CD154),
expressed on CD4+ T cells, stimulates T cells and is crucial to
promote germinal center formation and antibody class switching
(145–147). It has been shown, in vitro, that infection of
peritoneal macrophages from BALB/c mice with L. major
induces different isoforms of CD40-induced N-Ras protein,
which in turn induces activation of the ERK-1/2 pathway
Frontiers in Immunology | www.frontiersin.org 6
consequently resulting in less production of IL-12 and more of
IL-10 (148). Moreover, the inhibition of CD40 induced N-Ras
activation and reduced L. major infection. These authors have
proposed a model in which the interaction of LPG with TLR2
regulates the different effects mediated by the isoforms of Ras.
Thus, this finding highlights one important mechanism by which
Leishmania species might directly influence immunity through
the modulation of CD40-induced Ras protein. Altogether, more
investigation is required to broadly clarify those escape
mechanisms used by Leishmania, and to demonstrate its
potential to control Leishmania infection in vivo.

OX40 (CD134)
OX40 is predominantly expressed by activated T cells and when
it binds to its ligand OX40L (CD252), expressed by DCs,
macrophages and B cells, induces the expression of survival
proteins Bcl-2 and Bcl-XL that blocks apoptosis and allows cell
cycle progression (149–151). There are evidences indicating
OX40/OX40L axis promoting Th2 responses and other
refusing this effect (152–155). Zubairi et al. (2004) has shown
that treatment of L. donovani-infected C57BL/6 mice with
OX40-Fc alone or in combination with anti-CTLA-4
diminishes parasite burdens through and IFN-g and IL-12
dependent manner (155). In contrast, a distinct outcome was
observed after infecting Ox40l-/- C57BL/6 mice with L. donovani
(156). Ox40l-/- C57BL/6 infected mice eliminated parasites in
chronic phase and displayed stronger IFN-g responses compared
to WT mice (156). Differently, OX40L-deficient BALB/c mice
were resistant to L. major infection and exhibited reduced
production of Th2 cytokines (154). Likewise, transgenic BALB/c
mice overexpressing OX40L displayed pronounced Th2 responses
accompanied by a high parasite burden (154). Interestingly,
Ox40l-/- BALB/c mice infected with L. mexicana or L. major
developed increased lesions compared to Ox40l+/+ counterparts
(157). Nevertheless, a Th2 cytokine response bias was verified only
for L. major infection (157). This pathway has a strong potential to
regulate Leishmania immunity and it is yet to clarify the exact
mechanisms involved during responses against different species.

Herpes Virus Entry Mediator (HVEM)
The herpesvirus entry mediator (HVEM) is an important
member of the tumor necrosis factor (TNF) superfamily with
distinct ligands: lymphotoxin LT-like (LIGHT) and LTa3 that
are members of the TNF superfamily; and, B and T lymphocyte
attenuator (BTLA; CD272) and CD160 that are members of the
Immunoglobulin (Ig) superfamily (158–162). HVEM has
cysteine-rich domains 1 and 2 (CRD1, CRD2), where BTLA
and CD160 bind to CRD1 and LIGHT binds to CRD2 (163–165).
Upon binding, cross linking of HVEM induces a cascade
resulting in NF-kB activation (166–168). In another way,
HVEM can also act as ligand and pass signals to cells
expressing BTLA (169). HVEM has a similar effect (as LIGHT)
and controls IL-12 secretion (170). Although there is some
evidence on the role of LIGHT/HVEM signaling during
Leishmania infection (171), the role of one of its main ligands,
BTLA, during the infection is not clear yet.
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Lymphotoxin Exhibits Inducible Expression and
Competes With Herpes Simplex Virus Glycoprotein d
for Herpes Virus Entry Mediator, a Receptor
Expressed by T Cells (LIGHT) or Tumor Necrosis
Factor SuperFamily member 14 (TNFSF14)
LIGHT protein is recognized by HVEM and when HVEM is
expressed on T cells and interacts with LIGHT from APCs, this
results in a T cell stimulatory effect (172). LIGHT can also be
expressed by activated T cells, activated NK cells and immature
DCs (173, 174). In addition to binding to HVEM, LIGHT can
also recognize and bind another receptor known as
Lymphotoxin-b Receptor (LTbR) (175). This receptor is found
in non-myeloid cells such as epithelial and stromal cells, and
myeloid cells such as immature DCs, but not on lymphocytes
(176). The axis LIGHT/LTbR is more related with development
of the immune system and maintenance of immune responses
(177–179). However, interaction of LIGHT with either receptors
has been associated with potentiation of inflammatory responses
(172). Some data has been presented supporting the role of
LIGHT, which is a ligand for HVEM, and an important
molecule for the secretion of IL-12p40 by DCs and
macrophages (180). LIGHT has an important function in
CD8a+ DCs during the primary response against L. major,
but no effect in a secondary response in the presence of CD40
(180). Moreover, LIGHT/HVEM has a critical role controlling
parasite burden during the course of L. donovani infection
through the production of T cell-derived IFN-g and TNF-a
(171). However, LIGHT/LTbR suppress anti-Leishmania
immunity in the liver of L. donovani infected mice (171).
Table 1 summarizes the main role of inhibitory and
stimulatory checkpoints in Leishmania infection.

Potential Checkpoints to be Investigated
in Leishmaniasis
2B4 (CD244)
2B4 is a member of the signaling lymphocyte activation molecule
(SLAM) family and is found on T cells, NK cells, gd T cells,
basophils, monocytes and a subset of memory-phenotype CD8+

ab T cells (182, 183). 2B4 binds CD48 (also known as BCM-1,
BLAST-1) in APCs resulting in T cell stimulus (184–187). Egui
et al. observed a higher frequency of blood circulating CD8+ T
cells expressing 2B4 in patients with active leishmaniasis caused
by L. panamensis (132).

T cell Immunoglobulin and Mucin Domain-
Containing Protein 3
TIM-3 is another co-inhibitory receptor that was initially
identified in IFN-g producing CD4+ and CD8+ T cells (188,
189). TIM-3 can also be found in other cell types namely Treg,
myeloid cells, NK cells and mast cells (190–193). More recently,
TIM-3 has been identified as an important part of a complex of
co-inhibitory receptors present in dysfunctional or exhausted T
cells (194). Briefly, models indicate that TIM-3 associates with
HLA-B-associated transcript 3 (BAT3) to keep cells active
through recruitment of tyrosine kinase LCK (195, 196).
However, upon binding of either Galectin-9 or CEACAM1 on
Frontiers in Immunology | www.frontiersin.org 7
APCs releases BAT3 and there is recruitment of tyrosine kinase
FYN and disruption of immune synapse, phosphatases
recruitment and apoptosis (197–199). Therefore, TIM-3
together with other co-inhibitory receptors are potential
blocking targets to restore T cell activity (200).
LIMITATIONS OF THE AVAILABLE DATA

One point to consider is that murine models are important to
mechanistically understand the disease and its immunity, however,
they cannot mimic all clinical outcomes of human leishmaniasis,
such as DCL, MCL, and PKDL (Post-Kala Azar dermal
leishmaniasis). Thus, for those clinical forms most of what we
know relies on human data. So far, the information on the role of
checkpoint molecules during CL is very scarce, and the majority of
the work has been done studying human VL.

The role of checkpoint molecules has been extensively
described in chronic viral infections in which these receptors are
up regulated and, usually, suppress the activity of CD8+ T cells.
Their capacity to suppress other cell subsets has been correlated
with the co-expression of different checkpoint molecules and the
production of key cytokines such as IL-10 (201). However, the role
of CD8+ T cells during Leishmania infections is still not clear yet
and depending on the level of its activity, CD8+ T cells might be
involved with the production of local IFN-g and activation of
macrophages to kill parasites or might be involved with
immunopathology and worse tissue outcome.

On the other hand, the role of CD4+ T helper 1 (Th1) cells has
been better described due to its multifunctional production of
cytokines, such as IFN-g and TNF-a, and, consequently, activation
of macrophages to kill parasites. However, the role of checkpoint
molecules being expressed on CD4+ T cells is not clear yet, whether
thesemolecules indicate an activated cell phenotype or depending on
the degree of co-expression an exhausted cell (94, 202–206). So far,
data suggests that duringCL caused by distinct species ofLeishmania
there is an important upregulation of immune checkpoints in CD4+

and, especially, CD8+ T cells. However, the role those pathways play
during infection is still inconclusive and the parasitesmight use some
of them to bypass immunity.

Leishmaniasis imposes a complex scenario in which different
species of one parasite united by the same genus can cause a
broad spectrum of clinical manifestations and thus different
immune responses. Checkpoint molecules appear to have a
distinct role for immunity elicited by the different species of
Leishmania or the different clinical outcomes.
TRANSLATIONAL IMPLICATIONS

One central question to ask is how much of this knowledge can be
translated to human leishmaniasis? Therapies using anti-PD-1,
anti-PD-L1, and anti-CTLA-4 blocking antibodies were approved
by the United States Food and Drug Administration (FDA) and
became an important treatment for different types of cancer (207–
212). Even though there is evidence that in VL the inhibition
of some of those co-inhibitory receptors can restore T cell
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TABLE 1 | Role of main immune checkpoints investigated during Leishmania infection.

Immune checkpoint Target cell type Leishmania
species or
condition

Host
organism

Important remarks Reference

Inhibitory PD-1 CD8+ T cells L. mexicana Humans CD8+ T cells from diffuse form caused by L. mexicana have a
lower capacity to proliferate, lower IFN-g production and
enhanced PD-1 expression.

(83)

CD8+ T cells Lipophosphoglycan
vaccination

Mice Vaccination of mice with LPG induces PD-1 expression in CD8+

T cells, but not in CD4+ T cells.
(97)

CD8+ T cells L. donovani Mice PD-1 expressed on CD8+ T cells and PD-L1 on DCs. Antibody
blocking of PD-1/PD-L1 interaction partially restores CD8+ T cell
function.

(101, 102)

CD4+ and CD8+ T
cells

L. infantum Dogs Increased levels of PD-1 in CD4+ and CD8+ T cells. (85)

CD4+ and CD8+ T
cells

L. amazonensis Mice Antibody blocking PD-1 or PD-L1 resulted in improved function
of CD8+ T cells with more production of IFN-g and reduced
parasite burden.

(98)

CD4+ T cells L. braziliensis Humans Higher frequencies of CD4+PD-1+ T cells during active
cutaneous leishmaniasis disease compared to post-treated
patients and uninfected individuals. Increasing frequencies of PD-
1+ T cells along with CD4+ T cell subset development.

(95)

CTLA-4 (CD152) IFN-g and IL-4
producing cells

L. donovani Mice Antibody blocking one day post infection reduced parasite
burden one month post-infection, and induced IFN-g and IL-4
producing cells.

(124)

CD4+ and CD8+ T
cells

L. major Mice Lack of CTLA-4 transducing cytoplasmic tail increases Th2
response and disease susceptibility when compared to intact
CTLA-4 transgenic mice resistant to infection and with strong
Th1.

(125)

CD4+ and CD8+ T
cells

L. major Mice Blocking of CTLA-4 induces Th2 response and diseases
susceptibility.

(126, 127)

T cells and
macrophages

L. infantum Mice Blocking of CTLA-4 and neutralization of TGF-b induces Th1
cytokines and parasite elimination in coculture systems.

(131, 132)

PD-L1 and PD-
L2

CD8+ T cells L. donovani Mice Blocking of PD-L1 increases survival of CD8+ T cells and
reduces parasite burden.

(85)

CD4+ and CD8+ T
cells

L. donovani Mice PD-L1 blocking restored CD4+ and CD8+ T cell function in the
bone marrow. Blocking reduced parasite burden and inhibited
autophagy.

(85, 102,
124)

CD4+ and CD8+ T
cells

L. infantum Dogs In vitro blocking of PD-L1 restored CD4+ and CD8+ T cell
function and induced reactive oxygen species in co-culture with
monocyte-derived macrophages.

(85)

B cells L. infantum Dogs B cell specific PD-L1 blocking restored Th1 responses through
CD3+IFN-g+ T cells increase.

(84)

B cells L. mexicana Mice Pdl2-/- displayed increased lesions and high parasite burden
compared to Pdl1-/- and WT mice. Increased levels of IgM and
IgG2a.

(114)

CD4+ T cells L. major Mice Pdl1-/- displayed increased lesions compared to WT mice.
Reduced frequency of CD4+Ly6Chi effector T cells and higher
frequency of Foxp3+ Tregs.

(95)

CD160, 2B4
(CD244), CTLA-
4, PD-1, TIM-3

CD8+ T cells L. panamensis Humans At least 5% of the cells were expressing three or more of those
markers.

(133)

CD200 (OX-2) Macrophages L. amazonensis Mice Infection increases CD200 transcripts. Cd200-/- have smaller
lesions and less parasite compared to WT. Effects were not
observed upon L. major infection.

(141)

Macrophages L. amazonensis Mice Leishmania DNA is recognized by TLR9 and induces CD200-
CD200R interaction.

(142)

CD4+CD44+ T cells L. donovani Mice CD200-CD200R interaction induced IL-4, IL-10, TGF-b and IL-
27 by CD4+CD44+ T cells.

(143)

CD4+ T cells L. donovani Mice Centrin-deleted L. donovani vaccination resulted in CD200/
CD200R downregulation, supression of IL-10, increased Th1
cells (144)

(144)

Stimulatory CD40 and
CD40L

Macrophages L. major Mice L. major infection induces N-Ras through CD40 engagement
which results in more IL-10.

(181)

OX40 (CD134)
and OX40L

CD4+ and CD8+ T
cells

L. donovani Mice Administration of Fc-OX40 diminished parasite burden and
induced IFN-g and IL-12.

(155)

(Continued)
Frontiers in Immunology | www.
frontiersin.org
 8
 March 2021 | Volume 12 | Art
icle 620144

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


de Freitas e Silva and von Stebut Unraveling the Role of Immune Checkpoints in Leishmaniasis
function and control parasite burden, no clinical studies have
been performed.

Lack of translational implications brings two facts for
reflection: recombinant antibody administrations are still
expensive and therefore far from the governments and the
main populations affected by leishmaniasis; and there are
not enough scientists and funding to sponsor those clinical
studies. Biological treatments are still costly and restricted
to populations who can afford that (213, 214). It is still unclear
whether these treatments are going to expand and consequently
drop in price so that treatment of other diseases may benefit as
well. Although Leishmania infections cause disease in one
million individuals every year, the research in the field is still
far beyond necessary for the magnitude and complexity of the
problem. In this scenario, it is difficult to foresee translational
studies in leishmaniasis patients needed in the upcoming future.
As a result of global warming and population growth, substantial
funding is need for research in leishmaniasis.
Frontiers in Immunology | www.frontiersin.org 9
CONCLUDING REMARKS

Immune checkpoints either stimulatory or inhibitory are
induced during the development of immunity against
Leishmania (Figure 3). Stronger data for VL indicates that
both PD-1 and PD-L1 are upregulated by CD4+ and CD8+ T
cells. Moreover, in this setting the blocking strategy under the
course of infection specially restored CD8+ T cell function and
promoted a stronger Type I responses with IFN-g activating
macrophages and reducing parasite burden. The mechanisms
behind the function of immune checkpoints during
dermatotropic Leishmania infections is even more unclear,
but data suggests that LIGHT and CD40 have important roles
in maintaining immunity against Leishmania species inducing
CL. The most promising data obtained with L. major suggested
that LIGHT blockade impairs IL-12 secretion and Type I
responses. Now it will be important to deeply characterize
those pathways dissecting important questions: which are the
TABLE 1 | Continued

Immune checkpoint Target cell type Leishmania
species or
condition

Host
organism

Important remarks Reference

APCs L. major Mice OX40L deficient BALB/c resistant to infection and less
production of Th2 cytokines.

(154)

APCs L. major Mice BALB/c overexpressing OX40L presented high parasite burden
and strong Th2 responses.

(154)

APCs L. major
L. mexicana

Mice Ox40l-/- BALB/c mice displayed increased lesions compared to
WT counterparts.

(157)

LIGHT
(TNFSF14)

CD8a+ DCs L. major Mice Blockade of LIGHT induces impaired IL-12 and IFN-g responses. (170)
March 2021 | Volume 12 | Art
FIGURE 3 | Immune checkpoints with a role in Leishmaniasis. In mice models: The PD-1/PD-L1 axis inhibits T cell responses, both CD4+ and CD8+, during
infection. LIGHT has an important role for IL-12 and Th1 responses. CD40 is a key factor for immunity against cutaneous leishmaniasis (CL). CD200 expression is
implicated with escape mechanisms by the parasite and CTLA-4 is an important inhibitor of T cell responses against Leismania. In humans, PD-1 TIM-3, 2B4, and
CD160 have been potentially mediating CD8+ T cell exhaustion.
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cell types participating in this regulatory process and how those
mechanisms act at the molecular, cellular and tissue levels.
Translational application of those studies are still far from the
field; however, they are shedding light on important
mechanisms of the human system to control intracellular
pathogens such as Leishmania.
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30. León B, López-Bravo M, Ardavıń C. Monocyte-derived dendritic cells
formed at the infection site control the induction of protective T helper 1
responses against Leishmania. Immunity (2007) 26:519–31. doi: 10.1016/
j.immuni.2007.01.017

31. Brittingham A, Morrison CJ, McMaster WR, McGwire BS, Chang KP,
Mosser DM. Role of the Leishmania surface protease gp63 in complement
March 2021 | Volume 12 | Article 620144

https://doi.org/10.1172/JCI135003
https://doi.org/10.3390/ijerph16245114
https://doi.org/10.1080/20477724.2020.1783865
https://doi.org/10.1080/20477724.2020.1783865
https://doi.org/10.1016/S0140-6736(18)31204-2
https://www.who.int/gho/neglected_diseases/leishmaniasis/en/
https://www.who.int/gho/neglected_diseases/leishmaniasis/en/
https://doi.org/10.7554/eLife.02851
https://doi.org/10.7554/eLife.02851
https://doi.org/10.3389/fpubh.2020.00011
https://doi.org/10.3389/fpubh.2020.00011
https://doi.org/10.1016/S0140-6736(09)60233-6
https://doi.org/10.1371/journal.ppat.1007374
https://doi.org/10.1371/journal.pntd.0003575
https://doi.org/10.4161/hv.7.11.17752
https://doi.org/10.4161/hv.7.11.17752
https://doi.org/10.2174/092986712799828300
https://doi.org/10.1371/journal.pntd.0007616
https://doi.org/10.1007/s00281-020-00796-y
https://doi.org/10.1016/j.exppara.2020.107849
https://doi.org/10.3390/vaccines7040156
https://doi.org/10.1038/ni.2853
https://doi.org/10.1111/imr.12823
https://doi.org/10.1111/imr.12823
https://doi.org/10.1016/j.smim.2019.101305
https://doi.org/10.3389/fimmu.2019.03039
https://doi.org/10.4049/JIMMUNOL.179.8.5064
https://doi.org/10.1182/blood-2010-01-264960
https://doi.org/10.1182/blood-2010-01-264960
https://doi.org/10.1146/annurev-immunol-030409-101202
https://doi.org/10.1146/annurev-med-012017-043208
https://doi.org/10.1002/jcp.28358
https://doi.org/10.3389/fimmu.2019.00492
https://doi.org/10.1155/2019/2603730
https://doi.org/10.1016/j.imlet.2019.10.004
https://doi.org/10.1016/j.immuni.2007.01.017
https://doi.org/10.1016/j.immuni.2007.01.017
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


de Freitas e Silva and von Stebut Unraveling the Role of Immune Checkpoints in Leishmaniasis
fixation, cell adhesion, and resistance to complement-mediated lysis.
J Immunol (1995) 155:3102–11. doi: 10.1016/0169-4758(95)80054-9

32. Esch KJ, Schaut RG, Lamb IM, Clay G, Morais Lima ÁL, do Nascimento
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Phenotypic and Functional Profiles of Antigen-Specific CD4+ and CD8+
T Cells Associated With Infection Control in Patients With Cutaneous
Leishmaniasis. Front Cell Infect Microbiol (2018) 8:393. doi: 10.3389/
fcimb.2018.00393

134. Chen Z, Kapus A, Khatri I, Kos O, Zhu F, Gorczynski RM. Cell membrane-
bound CD200 signals both via an extracellular domain and following nuclear
translocation of a cytoplasmic fragment. Leuk Res (2018) 69:72–80.
doi: 10.1016/j.leukres.2018.04.007

135. Gorczynski RM, Zhu F. Checkpoint blockade in solid tumors and B-cell
malignancies, with special consideration of the role of CD200. Cancer Manag
Res (2017) 9:601–9. doi: 10.2147/CMAR.S147326

136. Ngwa C, Liu F. CD200-CD200R signaling and diseases: a potential
therapeutic target? Int J Physiol Pathophysiol Pharmacol (2019) 11:297–309.

137. Manich G, Recasens M, Valente T, Almolda B, González B, Castellano B.
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