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Neuroinflammatory and neurodegenerative diseases are a major public health problem
worldwide, especially with the increase of life-expectancy observed during the last
decades. For many of these diseases, we still lack a full understanding of their etiology
and pathophysiology. Nonetheless their association with mitochondrial dysfunction
highlights this organelle as an important player during CNS homeostasis and disease.
Markers of Parkinson (PD) and Alzheimer (AD) diseases are able to induce innate immune
pathways induced by alterations in mitochondrial Ca2+ homeostasis leading to
neuroinflammation. Additionally, exacerbated type I IFN responses triggered by
mitochondrial DNA (mtDNA), failures in mitophagy, ER-mitochondria communication
and mtROS production promote neurodegeneration. On the other hand, regulation of
mitochondrial dynamics is essential for CNS health maintenance and leading to the
induction of IL-10 and reduction of TNF-a secretion, increased cell viability and diminished
cell injury in addition to reduced oxidative stress. Thus, although previously solely seen as
power suppliers to organelles and molecular processes, it is now well established that
mitochondria have many other important roles, including during immune responses. Here,
we discuss the importance of these mitochondrial dynamics during neuroinflammation,
and how they correlate either with the amelioration or worsening of CNS disease.

Keywords: mitochondria, neuroinflammation, neurodegenerative diseases, Alzheimer disease, Parkinson disease,
multiple sclerosis
INTRODUCTION

The central nervous system (CNS) depends on a complex and intricate network of molecular and
cellular interactions to maintain appropriate function and homeostasis. This well-organized
network when disturbed, leads to resident cells activation, inflammatory leukocyte infiltration,
and further tissue damage. During recovery, counterregulatory mechanisms take place, and the
activated cells return to the homeostatic state. However, in the absence of these finely tuned
org March 2021 | Volume 12 | Article 6249191

https://www.frontiersin.org/articles/10.3389/fimmu.2021.624919/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.624919/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.624919/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:jeanpierre@usp.br
https://doi.org/10.3389/fimmu.2021.624919
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.624919
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.624919&domain=pdf&date_stamp=2021-03-16


de Oliveira et al. Mitochondria Dynamics and Neuroinflammation
regulatory loops, the coordination is broken and chronic
neurodegenerative and neuroinflammatory diseases may occur.

Neurodegenerative diseases represent a heterogeneous group
of diseases of major public health concern. The World Health
Organization (WHO) have estimated that until 2030, deaths
attributed to neurological diseases will increased up to 12.22%
(1). Due to their overly complex pathophysiology, interdisciplinary
approaches and breakthrough science are highly needed to unravel
disease mechanisms, and thus developing effective new therapies.
In fact, with the extension of our life expectancy and the dramatic
change in the age pyramid during the last decades, these studies are
mandatory either to avoid or delay their impact on society
and economy.

A common feature of neurodegenerative and neuro-
inflammatory diseases is the activation of CNS resident cells
(2–4). Microglia and astrocytes may actively start, promote, or
dampen neuroinflammation (5–8). The reason is because many
immune-related receptors and molecules are extensively
produced by these cells, not only during disease but also
during physiological processes (3, 9). Conversely, these
mechanisms demand high energy consumption, promoting
important metabolic changes in the cell. In this context, the
importance of mitochondria and mitochondria-related pathways
is unquestionable.

More than just power houses of the cells (10), the role of
mitochondria have been remarkably appreciated and revisited.
Recent research has revealed important correlation of
mitochondrial dynamics and the pathophysiology of brain
diseases, as Alzheimer’s. Disease (AD), Parkinson’s Disease (PD)
and Multiple Sclerosis (MS) (11–13). Disturbances in
mitochondrial dynamics may influence many cellular and
molecular pathways, as calcium-dependent immune activation,
transcription factors phosphorylation, cytokine secretion,
organelle transference and even cell death. Moreover,
dysfunctional dynamics may also affect the release of
mitochondrial damage-associated molecular patterns
(mDAMPs), triggering innate immune responses in both
resident and infiltrating cells (14). The release of mDAMPs
leads to NOD-like receptors (NLRs), Toll-like receptors (TLRs)
and cGAS-STING activation, promoting inflammatory cytokine,
chemokines, and reactive oxygen species production, impacting
disease outcome. However, although much has been learned
regarding mitochondrial function during health and disease,
mitochondrial dynamics during neuroinflammation and
neurodegenerative disorders remains to be fully elucidated.
Here, we aimed to summarize recent knowledge in the field,
correlating dysfunctional mitochondrial dynamics with the
worsening of CNS diseases.
MITOCHONDRIAL DYNAMICS AND
NEUROINFLAMMATION

Mitochondrial dynamics is a process by which this organelle
changes size, location, shape, and function inside the cell (15).
Mitochondrial fusion and fission greatly correlate with metabolic
Frontiers in Immunology | www.frontiersin.org 2
changes, depending on the stimuli and energy demand, as it
regulates cellular functions during health as well as during
disease. There is now a better understanding of the changes
that occur during mitochondrial dynamics changes and its
relationship with CNS resident cells.

Mitochondrial Location and Mitochondria-
ER Communication
Mitochondria location within the cell is mostly regulated by the
outer mitochondrial membrane (OMM), anchoring it to the
cytoskeleton’s microtubules motor proteins, kinesin and dynein
(16). For instance, mitochondria’s position in astrocytes
influences Ca2+ levels, directly affecting astrocyte survival and
communication with nearby neurons (17). Intracellular calcium
level is dictated by the transferring between mitochondrial
reticulum (mitRet) and endoplasmic reticulum (ER).
Remarkably, several neurodegenerative diseases correlate with
detrimental calcium homeostasis, evidenced by the disruption of
mitRet and ER communication, as observed in Amyotrophic
Lateral Sclerosis (ALS), a severe condition characterized by
progressive weakness, muscle wasting and paralysis. Impaired
electron transportation chain (ETC) and reduced glutamate
uptake were already described in ALS. This greatly increases
Ca2+ permeable activation of AMPA receptors, leading to
excitotoxicity (16).

Mitochondria-ER associated membranes (MAMs) consist of
around 1500 active proteins. Regardless of their fundamental
importance for cellular metabolism and Ca2+ homeostasis, the
molecular mechanisms that underly the recruitment and
tethering of ER-mitochondria are not fully understood, and
extensively debated. It has been proposed that MAMs tethering
is dependent on the interaction between mitofusin 2 (MFN2) in
the ER, andMFN1 andMFN2 in the OMM (16). Supporting this,
ablation of MFN2 loosens ER–mitochondria interaction strongly
impairing mitochondrial Ca2+ uptake (18). However, the role of
MFN2 is not a consensus in the literature and some studies
consider MFN2 a tethering antagonist that suppresses the
excessive binding between the organelles, preventing toxic Ca2+

transfer within mit-Ret and ER (19, 20).
Tyrosine phosphatase-interacting protein 51 (PTPIP51), and

the integral ER protein vesicle-associated membrane protein-
associated protein B (VAPB) are also listed as tethering
molecules for MAMs formation. Interestingly, during ALS,
fronto-temporal dementia (FTD) and PD, disruption in the
PTPIP51-VAPB interaction also induces dysregulated Ca2+

homeostasis and decreased ATP production (21, 22). Strikingly,
it was orchestrated by fused in sarcoma (FUS) protein, and not by
directly altering PTPIP51- VAPB expression, but by activating
glycogen synthase kinase 3-beta (GSK-3b), evidencing a
correlation between this molecule and ALS.

Additionally, the communication between mitochondrial
voltage-dependent anion channel (VDAC) and inositol 1,4,5-
trisphosphate receptor (IP3R) within the ER membrane via
GRP75 was suggested as a bond of MAMs (23, 24). Curiously,
the PD associated protein, DJ1, is necessary for mitochondrial
Ca2+ uptake and was related with VDAC-IP3R-GRP75 complex
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in the maintenance of MAMS (25). Noteworthy the fact that
mitochondrial Ca2+ uptake occurs in response to ER IP3R
activation (19) and that fluctuations in channel activity does
not affect the binding of MAM (26). Moreover, it is important to
mention that IP3R activation is an important signaling pathway
for immune response (27), as observed for nuclear factor of
activated T cells (NFAT) (28).

NFAT activation typically leads to the transcription of
inflammatory mediators that are upregulated during some
neurodegenerative diseases. For instance, amyloid beta (Ab)
protein uptake by microglia induces dysregulated NFAT
expression, increasing TNF-a secretion and neuronal death
in vitro (29). Interestingly, Ab and a-synuclein deposition,
hallmarks of AD and PD, can both trigger inflammatory
responses via TLR-2 and TLR-4, respectively (30–32).
Conversely, Ma et al. (33) demonstrated that the crosstalk
between TLR-4 and NFAT1 signaling into the mitochondria is
a TRIF-dependent phenomenon, culminating in pro-
inflammatory cytokine and ROS production, mitochondrial
morphological changes and finally, prolonged microglia
activation (33).

Corroborating the proinflammatory statement, it was
demonstrated that cytokine activation of primary astrocytes
and microglia upregulate intracellular Ca2+ mobilization and
NFAT activation. NFAT upregulated genes are associated with a
neurotoxic phenotype of astrocytes, known as A1 astrocytes. In
A1 astrocytes (C3+GBP2+), NFAT is positively regulated by IL-
1b and, in a positive feedback loop, IL-1b expression is NFAT
and L-type Ca2+ channel dependent (34). Thus, bidirectional
interactions between ER and mitochondrial Ca2+ levels, NFAT
activation and upregulated inflammatory mediators, sustain a
positive feedback loop that correlate with the chronicity of the
neuroinflammatory microenvironment.

Mitochondrial Dynamics and Programmed
Cell Death
Besides location and interaction with other organelles within the
cell, mitochondrial fusion and fission is a crucial process for
regulating cell death. Fusion is coordinated by a family of
GTPase proteins with tethering activity. This family of proteins
is localized on the outer mitochondria membrane (OMM),
highlighting MFN1 and MFN2, and in the inner mitochondria
membrane (IMM), optic atrophy 1 (OPA1) (35). The steps that
orchestrate mitochondrial elongation are not fully understood, but
a model suggests that the interaction of MFNs from two opposing
mitochondrion is stabilized by coil-coil heptad repeat-2 (HR2)
(36), increasing the surface of contact (37). Following this, at the
interaction site, guanosine triphosphate (GTP) is hydrolyzed
culminating in conformational changes in the MFNs and thus,
OMMs fusion. Different isoforms of OPA-1 such as long
membrane-bound OPA1 (L-OPA1) and short soluble OPA-1(S-
OPA1), generated by proteolytic cleavage of L-OPA1, are
associated with fusion and fission balance (38). Complete fusion
occurs when cardiolipin (CL) interacts with L-OPA1 resulting in
IMM unification following OPA1-dependent GTP hydrolysis (39).
Mitochondria elongation is associated with efficient metabolism
Frontiers in Immunology | www.frontiersin.org 3
and maintenance of ATP production even during nutrient
deprivation, thus increasing cellular viability (40).

On the opposite, mitochondrial fission is initiated following the
assembly of a pre-constriction site, directing the dynamin related
protein 1 (DRP1) binding site of the OMM. One of the proteins
that compose the pre-constriction site is fission protein 1 (FIS1),
that also inhibits fusion by preventing GTP hydrolysis of OPA1
and MFN1/2 (41). The constriction site is not randomly located,
instead is pinpointed on ER-mitochondria interaction site (42). ER
tubules induce actin polymerization at the narrowing site, whereas
myosin mediates actin contraction and mechanical pressure to
ensure pre-constriction. Then, DRP1 is recruited forming a ring-
like oligomer which following the GTP hydrolysis squeezes the
pre-existing constriction site. Lastly, dynamin 2 is recruited to
DRP1-compression site for mitochondrial fragmentation (43).
The processes that coordinate the OMM fission are better
known that the ones related to IMM. So far, it was shown that
prior to DRP1 recruitment, Ca2+ promotes constriction in the
IMM by favoring proteolytic cleavage of OPA-1 (44). Strikingly,
the pre-constriction site is also spatially linked and critical to
maintain mtDNA replication in the matrix (42). Fragmented
mitochondria tend to present increased stress oxidation,
membrane depolarization and impaired ATP production (45).

OPA1 and MFN2 genes are essentially related to the
formation of healthy mitochondrial networks. Mechanistically,
total or partial loss of function of OPA1 results in fragmented
mitochondria, leading to a loss of mitochondria membrane
potential (DYm) and thus initiating autophagic and apoptotic
pathways (46, 47). Importantly, in the CNS, these alterations
may lead to massive neuronal and glial cell death, as seen in optic
atrophy-1 and Charcot-Marie-Tooth disease and hereditary
peripheral neuropathy (46, 47). Only recently, studies have
described the role of mitochondrial fusion and fission in
programmed cell death due to DRP1 and MFN2 interaction
with BAX and BAK, respectively. As a result of exposure to toxic
levels of nitric oxide (NO), BAX interacts with DRP1 in neurons
inducing mitochondria fragmentation. In this context, inhibition
of DRP1 impairs BAX deposition and pore formation, improving
neuronal survival (48, 49).

The degradation of damaged organelles and cytosolic
components usually results in autophagy, leading to the
delivery of damaged cellular components to autophagosomes
for degradation (50, 51). Mitochondria specialized autophagy,
named mitophagy, is triggered by OPA-1, DRP1 and MFN2.
These proteins, besides their regulatory role in mitochondria
dynamics, are also responsible for autophagosome formation (50,
51). Mitophagy initiation is also dependent on PTEN−induced
putative kinase 1 (PINK1) and E3-ubiquitin ligase protein
(Parkin). These proteins accumulate in the OMM and
ubiquitinate mitochondria target proteins (52, 53). As OMM has
plenty of PINK1 and MFN2, Parkin is recruited from the
cytoplasm and phosphorylated, hence exerting its ubiquitin
activity (54). Consequently, DRP1, NF-kB essential modulator
(NEMO) and mitochondrial Rho GTPase protein 1 (MIRO1) are
targeted for proteasomal degradation (55, 56). Mitophagy is
consolidated when MIRO1 is degraded by the proteasome and
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mitochondria is detached from its anchoring microtubules (57).
Lastly, mitochondria is sequestrated in a double membrane vesicle
that fuses with autolysosomes that further “digests” the organelle
(58). Importantly, the correlation between Parkin and PINK1
mutations to autosomal-recessive cases of PD is widely known
(59). In this context, the unbalance between damaged
mitochondria and its removal, importantly contributes for PD
progress. This unbalanced mitochondrial dynamic correlates with
impaired clearance of dysfunctional organelles through Parkin and
PINK1 pathway, resulting in deleterious accumulation. The
benefits of mitophagy, however, goes beyond the removal of
damaged mitochondria (59). Ip et al. (60) demonstrated that
PINK1 is essential for microglial secretion of IL-10 and
reduction of TNF-a secretion. Remarkably, elevated IL-10
secretion correlated with mitophagy induction in macrophages
via mTORC1 inhibition and consequently decreasing
inflammation (60). Using a mouse microglial cell line, it was
shown that mitophagy increases DYm and diminishes TNF-a
induced apoptosis by hampering the increase in pro-apoptotic
proteins (61). Furthermore, the role of mitophagy during
neurodegenerative diseases overcome the regulation of immune
responses. In a mouse model of AD, microglial cells under
mitophagy have elevated levels of intracellular Ab aggregates,
suggesting increased phagocytic activity, and thus clearing the
harmful Ab deposits (62).

Autophagy may be beneficial to rebuild healthy mitochondrial
dynamics after pro-inflammatory responses. Following
mitochondrial fragmentation, autophagy is triggered due to
dysregulated respiratory chain and ROS production. Such
mitochondria alterations are promoted by IFN-g and LPS
upregulation of DRP1 and LC3, an autophagy-related protein.
For instance, this mechanism is essential to restore tubular
mitochondrial networks after inflammatory stimulation in
astrocytes, as shown in a mouse model of cortical lesion.
Interestingly, astrocytes located in the core or penumbra
exhibited different mitochondrial patterns, with core
mitochondria prominently fragmented, as opposed to those in
the penumbra (63). This evidences the importance of the
neuroinflammatory microenvironment in orchestrating
mitochondrial shape and size.
Astrocyte-to-Neurons Mitochondria
Exchange
Many factors released from astrocytes provide neurotrophic and
metabolic support for nearby neurons. These range from DNA,
microRNAs, glucose-related molecules, cytokines and even
organelles, such as the mitochondria (64, 65). Despite not
completely understood, several reports have already demonstrated
the importance of damaged and healthy mitochondria transference
in between cells for neuronal metabolism and survival. During brain
injury, astrocytes may release damaged mitochondria to minimize
the amount of detrimental ROS and dysregulated Ca2+ balance (66).
Conversely, healthy mitochondria may also be donated from
astrocytes to damaged neighboring neurons, increasing its
viability (67). Moreover, Davis et al. (68), firstly demonstrated
Frontiers in Immunology | www.frontiersin.org 4
that the exchange of mitochondria among neurons and astrocytes
seem to work in a bidirectional way (68).

The release of mitochondria by astrocytes is a CD38/Ca2+

dependent phenomenon (69). It upregulates survival pathways in
neurons after stroke, indicating a neuroprotective role for the glia-
to-neuron mitochondria communication. Also, mitochondria
acquired from astrocytes have a crucial role in maintaining
neuronal energy production under glucose-oxygen starvation.

Joshi et al. (70) showed that previous mitochondria
fragmentation is an essential step for organelle release to the
extracellular space (70). They observed that inhibition of DRP1
diminishes astrocytic and microglial activation and ameliorates
pro-inflammatory phenotype in mice models of AD, ALS and
Huntington’s disease (HD). Interestingly, this phenotype was
dependent on the release of damaged mitochondria by microglia
cells, triggering neuronal death in consequence of A1-
inflammatory-astrocyte activation (70).
MITOCHONDRIAL DAMPS AND
NEURODEGENERATION

Since Polly Matzinger’s “danger theory” (71), the introduction of
damage-associated molecular patterns (DAMPs) has greatly
broadened our understanding of how the immune system
works during tissue damage and repair (71). The idea of
recognizing “danger” and “alarm” signals produced by cells, as
DNA, ATP and HSPs (heat-shock proteins) (72), during
inflammatory events, completely changed the view of
inflammatory processes. Naturally, many advances in the
biology of danger signals, along with the discovery of stress-
associated molecules acting as DAMPs were achieved (71, 73).
Accordingly, one important source of DAMPs that has gained
increased attention is the mitochondria.

Examples of mDAMPs receptors are the classical PRRs
(pattern recognition receptors), such as the TLRs, NLR (NOD-
like receptors), as well as STING (stimulator of interferon-genes)
and RAGE (receptor for advanced glycation products) (74). It is
important to note that the signaling of these receptors, ultimately
lead to inflammatory responses that may promote an auspicious
environment for neurodegeneration. Moreover, the activation of
TLR-7/9 and STING induces a IFN-I response (75) which has
been recently demonstrated by microglial single-cell analysis in
mice that, during aging, three clusters of interferon-responsive
microglia appear, and that they correlate with subsequent CNS
disease (76). Although the role for mitochondrial dynamics in
this phenomenon is still to be addressed, the existence of
mDAMP-IFN pathways denotes a possible correlation, as
reviewed (74).

Cardiolipin is a phospholipid located at the IMM providing
the structure for the electron transportation chain (ETC),
binding to Complex IV and maintaining other ETC complexes
and mitochondrial content in place and sharply functional (77).
Cardiolipin molecules are particularly sensitive to oxidative
damage created by unbalanced mitochondrial functioning and/
March 2021 | Volume 12 | Article 624919
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or ROS produced by activated microglia. Interestingly, a highly
oxidative environment causes loss of Dym and promotes the
repositioning of cardiolipin molecules to the OMM (77). Then, it
can be sensed by cytosolic immune receptors, as NLRP3,
initiating inflammasome activation, inflammatory cytokine
secretion and dysregulation of mitochondrial dynamics (78).
Other effects include loss of functional ETC and release of
intrinsic apoptotic molecules located between the IMM and
OMM, such as cytochrome C and SMAC/Diablo (79, 80). The
release of Mitochondrial Transcription Factor A (MTFA) can
also initiate inflammatory processes when released
extracellularly. This is because MTFA shares high homology
with High Mobility Group Box (HMGB), an important DAMP,
and thus proinflammatory (65). Interestingly, a subset of
Gamma-delta T cells (Tgd) increased in Multiple Sclerosis
(MS) patients has been shown to be activated by cardiolipin.
Although their exact role is still not clear, it suggests an
important role for cardiolipin also activating adaptive immune
responses during CNS disease progression (81).

Mitochondrial DNA is the most studied mDAMP, and it has
a high correlation with many pathological processes. Among
their distinct characteristics, mtDNA codes only 13 proteins,
including mitochondrial ribosomal subunits and ETC
components, essential for proper mitochondrial function (82,
83). Failures in mitochondrial dynamics often result in the
accumulation of mutated mtDNA, as they lack a robust repair
mechanism (83, 84). This affects the cellular capacity in
producing energy and also set in motion inflammatory
processes (83, 84). mtDNA is not packed and has motifs
usually perceived as harmful by innate immunity receptors.
During mild stressful situations when apoptotic caspases are
not mobilized, loss of mitochondrial membrane action potential
(Dym) for example, facilitates both OMM and IMM
permeabilization and the induction of BAX/BAK pores,
enabling mtDNA release to the cytosol. Then, it can be sensed
by the cyclic GMP-AMP synthase (cGAS) receptor, activating its
adaptor protein STING (stimulator of interferon genes) (85).
Interestingly, this mtDNA-dependent Type I interferon (IFN-I)
induction is beneficial in the context of viral infection because it
primes the cell into an antiviral state (86). Still, the same issue
occurs when mtDNA is present extracellularly, as internalized
mtDNA signals through endosomal TLR-9, resulting in NF-kB
and IRFs activation, and further interferon transcription (87, 88).

Another important mDAMP are mtROS produced at high
levels by the mitochondria (89). Mitochondrial ROS (mtROS)
are mainly byproducts of the mitochondrial ETC. During
respiration, O2 that does not get reduced into H2O forms the
O−
2 radical specially by the activity of ETC complexes I and III,

which can be later converted in H2O2 mainly by enzymes that are
present in the organelle (90, 91). Other mitochondrial and
cellular events can also enhance the production of mtROS,
such as a decreased DYm, inhibi t ion of the ETC,
mitochondrial Ca2+ influx, oxygen concentration and even
mitochondrial morphology (90, 92). These molecules can act
both as signaling (93) or as damaging molecules, causing
mtDNA mutations, oxidation in fatty acids and amino acid
Frontiers in Immunology | www.frontiersin.org 5
residues, leading to deleterious disruption of the cellular redox
signaling (94–96). Specially in the brain, the damage caused by
ROS are linked to protein aggregation (93, 97).

In summary, although the mitochondria represent a vital
organelle, providing energy and regulating metabolic processes
of the cell, it also represents a “time-bomb” capable of inflicting
and propagating devastating damage to the organism. This
characteristic is especially significant on the CNS, where most
resident cells are extremely susceptible to mitochondrial
dysfunctions, as evidenced by the metabolic linked pathogeny
of the neurodegenerative diseases, that will be further described
in this review.
UnDAMPening Mitochondria in
Neurodegenerative Diseases
Mitochondria and Type I Interferon Responses
As mentioned, mDAMPs may signal through PRRs resulting in
type I interferon responses (75, 98). Although their importance is
mostly known during viral infections (99, 100), IFN-I responses
in the CNS have a dual effect. In fact, there are evidences showing
that IFN-I responses linked to mDAMPs in neurodegenerative
diseases may also have a neuroprotective role (101, 102). Type
IFN-I responses in the CNS have already been greatly reviewed
by Deczkowska and colleagues (103), in which they discuss this
complex signaling network duality. As an example, studies
demonstrating that T cells derived IFN-I and IFN-g are crucial
to the blood brain barrier (BBB) permeability, as well as to the
production of neurotrophic factors that aid the maintenance of
cognitive functions. Corroborating this, the lack of IFN-b in the
brain of knockout mice promotes progressive cognitive loss and
impaired motor function (104).

Recognized mainly by TLR-9 and STING (75, 105), mtDNA
has already been shown to be elevated in the serum of patients
with ischemic brain injury (106, 107). Type I IFNs signaling rely
on the interaction with Type I Interferon Receptors (IFNAR) and
subsequent intracellular cascades that culminates in the
phosphorylation of Jak-STATS and IRFs, and the transcription
of Interferon Stimulated Genes (ISGs) (100). IFNAR are present
in many cell types and, recently, transcriptome analysis in the
brain showed the expression of IFNAR1 and IFNAR2 in almost
every brain cell subset, including glial cells and neurons (108). In
the CNS, the major IFN-ab secreting sources are astrocytes and
microglia. However, during neuroinflammation, disruption of
BBB integrity facilitates the infiltration of IFN-I secreting cells, as
monocytes and neutrophils (103, 108–111). Moreover, it is
important to mention that the concept of CNS immune
privilege is being extensively revisited, as many cell types are
being described in the brain-circulation interfaces, as the choroid
plexus and the meninges (112, 113), as well as within a complex
network of lymphatic vessels (114).

It is also known that autocrine action of IFN-I induces
significant shifts of the cellular metabolism, as augmented fatty
acid oxidation and OXPHOS (65, 115, 116). These shifts are
particularly important to astrocytes, as they rely on a tight
controlled metabolite production to energetically supply nearby
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neurons, mainly by the lactate shuttle. For example, unbalanced
glycolysis lowers the expression of glutathione, facilitating
oxidative damage (65). Zhang et. al. 2019 recently reported
that lactate, a key metabolite of the glycolytic pathway,
interacts with the Mitochondrial Antiviral-Signaling protein
(MAVS), preventing its oligomerization and maintaining
Hexokinase 2 activity (HK2) (117). Although this was
described using a model of viral infection, MAVS is
increasingly showing to interact with many important enzymes
beyond its role as an adaptor for cytosolic PRRs RIG-I and
MDA-5. Importantly, the signaling trough MDA-5/MAVS has
shown to be one of the main recognition pathways of cytosolic
mtDNA, as evidenced during BAK/BAX mitochondrial
disruption and failures of mtDNA turnover, being responsible
for the major mtDNA induced IFN-I response (118, 119). Also,
recent reports evidenced that phospholipase A2 binds to MAVS
causing a disruption in the HK2 activity and increasing NF-kB
phosphorylation, a novel pathway described in the experimental
autoimmune encephalomyelitis (EAE) model (120). This not
only give us important cues on how mtDAMPs and dysregulated
type I IFN responses could accentuate neurodegenerative
diseases, but also brings us new therapeutic avenues.

Mitochondria as Borrowers: Sphingolipid
Metabolism and Demyelination Processes
As discussed earlier, the metabolism of sphingolipids is an
important player in neuroinflammation, as they critically
participate in myelin maintenance (121, 122). For example, the
compromised action potential of neurons, that is caused by
intracellular changes or by the progressive loss of myelin due
to metabolic failure of oligodendrocytes (123), clearly evidences
the importance of a proper mitochondrial functioning (124).

The myelination process is tightly regulated both during
neurodevelopment and tissue repair, when oligodendrocytes
keep contributing for myelin remodeling (125–127) and
remyelination (128). It requires great amount of energy, leading
to high oxygen and ATP consumption, evidenced by high
mitochondrial content within oligodendrocyte’s interface with
myelin sheets (129). Thus, oligodendrocytes support the long-
termmyelination by maintaining high glycolytic rates. Conversely,
mtDNA mutations in mitochondrial complex IV (mCOX-IV)
subunits correlate with more extensive demyelination (129, 130).
This phenomenon, along with increased iron deposits in
oligodendrocytes, lowers the expression of anti-oxidative
enzymes, rendering this cell population exceptionally susceptible
to oxidative damage (125, 131), facilitating disease progression.

These characteristics are most evident in diseases as MS and
AD, where the inflammatory milieu may drastically affect
oligodendrocytes. Cytokines as IL-1, TNF-a and IFN-g, may
cause important mitochondrial distress. In fact, IFN-I impair
glycolysis in oligodendrocytes, which is crucial for maintaining
axonal integrity through myelin remodeling (132–134).

Furthermore, myelin production itself can be targeted during
CNS pathologies. The sphingomyelinase/ceramide pathways
play important roles in oligodendrocyte death by promoting
the release of ceramide. Ceramide is the precursor of
Frontiers in Immunology | www.frontiersin.org 6
sphingomyelin lipids, the main component of myelin (135).
This molecule, like other sphingolipids, has important
bioactive functions, as promoting apoptosis and cell cycle
arrest (11, 135). Increasing evidences has shown that ceramide
can act directly on mitochondria (122) and also activate the
NLRP3 inflammasome (136). In rat liver, it has been
demonstrated that ceramide can be found in intimate contact
with the IMM and OMM, thus leading to loss of Dym and
activating intrinsic apoptotic pathways and mitochondrial
dynamics disbalance (137). This has also been discussed during
CNS inflammation, as inflammasome activation by ceramide
leads to hyperphosphorylation of leptin receptor (Obr) and thus
abrogating signaling pathway, as observed during obesity and
metabolic syndrome (135, 138).

A STING in the Brain
Although the loss of Dym is mostly studied during
mitochondrial distress, novel data evidence that this event is
also crucial for activating cytokine signaling cascades. For
instance, the consequent Dym mediated release of mtDNA can
trigger cGAS activation (102, 139–141). Recent structural
analysis revealed insights on how cGAS senses different
dsDNA residues and, interestingly, it has a higher preference
for mtDNA (142).

Discovered in the last decade (143), the cGAS-STING
pathway has an important role during intracellular infections,
being only recently valued under different contexts. CGAS
catalyzes the production of cGAMP (cyclic GTP-AMP) in the
presence of cytosolic dsDNA, serving as a second messenger for
the activation of the STING adaptor protein. This promotes the
phosphorylation of the Tank Binding Kinase 1 (TBK1) protein
and further IRF3 nuclear translocation and IFN I transcription
(144). Of note, the STING induction of type I IFN responses is a
process that occurs only when the cell are not mobilizing
apoptotic caspases (85). Thus, it evidences the importance of
the cGAS-STING-IRF3 axis during neuropathology, as traumatic
brain injury and hypoxia (145–147).

cGAS/STING also initiates NLRP3 responses by the elevation
of K+ influx post lysosomal rupture (148). The NLRP3 induced
IL-1b is an important acute phase cytokine that is critical to the
pathophysiology of CNS diseases, as AD, PD, MS and even
seizure disorders (72, 149–151). Recent research have shown that
altered Dym is dependent on IL-1R activation for further NF-kB,
IRF3 and IFN-I expression (150). This novel pathway induces
the release of mtDNA and further cytosolic detection by cGAS,
but it is important to note that this discovery was made in
monocytes and transformed lung cells (150). However, evidences
indicate the presence of this axis in the CNS, as STING also
modulates microglial reactivity during EAE (98, 152, 153).
Moreover, the antiviral drug Ganciclovir promotes beneficial
STING dependent type I IFN response in EAE model,
dampening the harmful activity of activated microglia (154).
Interestingly, mice knocked-out for mitophagy genes, as Parkin
and PINK, that leads to inflammation and neuronal death in PD,
had more prominent loss of dopaminergic neurons, which was
reverted in the absence of STING. This provides an important
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link between STING and PD pathogenesis, evidencing the need
for more studies on the biology cGAS-STING during
neurodegenerative and neuroinflammatory diseases (155).

Greasing Brain Engines: Cardiolipin
Damage to the mitochondrial membrane accounts for the release
of mDAMPs. Accordingly, cardiolipin holds great responsibility
for the structural stability of the ETC and the functional
mitochondrial shape (156, 157). Cardiolipin is mostly
associated with heart diseases, mainly due to its high content
and impact in this organ (130). On the other hand, its impact
over the CNS is an issue that has recently gained attention.
Mutations in genes involved in cardiolipin biogenesis, e.g. the
trans-acylase tafazzin (TAZ), have shown to affect cognitive
functions in TAZ knock-out mice, expanding their classical
role in X-linked myopathies (12, 158). This lipid is found in
the body in different isoforms and, despite the dominance of the
tetra linoleoyl cardiolipin isoform in the periphery, studies
showed that in the CNS, there is a huge number of cardiolipin
isoforms, distributed among different brain regions and cellular
subtypes (159). Differences in cardiolipin composition and
isoforms correlate to mitochondrial position inside the cell. For
instance, as total cardiolipin increases, the closer they are to the
synapses (160), which seem to correlate with the capacity of
cardiolipin to influence ATP production (161).

Unsaturated lipids as cardiolipin are affected by mtROS and
have their function compromised during oxidative stress (162).
Proportional to the extension of cardiolipin peroxidation, there
is a massive reduction of mitochondrial production of ATP due
to Dym loss and impairment of ETC complexes I, III, IV and V.
Conversely, impaired ATP production by CNS cells is a common
factor in aging and degenerative diseases (84). Studies in PD
evidenced that cardiolipin interacts with a-synuclein by
modifying its structure and exerting a protective role, by
preventing its aggregation. Regarding this issue, divergent
results demonstrated that this interaction can also affect
cardiolipin functioning, resulting in increased pathology (163,
164). Moreover, a-synuclein binding to cardiolipin impairs the
detection of cytosolic cytochrome c and thus inhibiting apoptotic
cell death by dampening cellular oxidative stress (165).

The presence of cardiolipin in the OMM induces the
recognition and further engulfment of dysfunctional
mitochondria by LC3 mediated autophagy. Under conditions
when the number of dysfunctional mitochondria exceeds the
autophagy capacity, cardiolipin recruits BAX to form pores that
release cytochrome c to the cytoplasm and triggering apoptosis.
Thus, apart from the ETC complexes, cardiolipin also anchors
important kinases that participate in the translocation of lipidic
content through the mitochondrial membrane. When this
mechanisms are impaired, it leads to a deleterious
accumulation of dysfunctional mitochondria (156, 166).

Give Me Fuel, Give Me Fire: Inflammasome
Activation and Neuroinflammation
In addition to the induction of type I IFN response, mDAMPs also
modulate the activation of inflammasomes. Canonical
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inflammasome activation leads to the proteolytic cleavage of pro-
caspase-1 to caspase-1 and the subsequent pro-IL-1b/IL-18 and
gasdermin 1 for further extracellular release (167). Both cytokines
strongly activate pro-inflammatory responses, and they have an
unquestionable importance during neuroinflammation, for
instance, promoting the disruption of the blood-brain-barrier
(BBB) and ROS production.

NLRP3 inflammasome is activated by a wide range of
molecules, including mtROS, cardiolipin and mtDNA (148,
167). Importantly, for NLRP3 complete activation, an initial
priming step is required to increase the expression of
inflammasome effector molecules, as the NLRP3 itself, caspase-
1 and pro-IL-1b. This is mediated by the activation of TLR-4,
NOD receptor 2 (NOD2) and cytokines as TNF-a and IL-1b
itself. This leads to NF-kB phosphorylation and nuclear
translocation to promote NLRP3-related gene transcription
(167–169). However, how inflammasome senses and interacts
with stressors and the details of its activation remains not
fully understood.

Interestingly, inflammasome activation is closely related to ER
and mitochondria communication in many ways, and
mitochondrial Ca2+ imbalance may also result in inflammasome
activation (170). This may occur either by directly promoting
NLRP3 complex formation or by mitochondrial Ca2+ overload
and further mitochondrial dysfunction. Corroborating this,
blocking ER IP3R, a major regulator of ER-to-cytoplasm Ca2
+exchange, effectively attenuates NLRP3 activation (171, 172).
Accordingly, mitochondria calcium homeostasis is closely
related to ER Ca2+ metabolism since the MAMs plays a key role
in material transfer and signaling between both organelles (16).

Inactivated forms of NLRP3 are localized in the ER
membrane, although under certain stimuli, NLRP3 is
redistributed across the MAMs (173). Under stress conditions,
cardiolipin is exposed on the OMM and serves as a bridge
between NLRP3 and MAMs (78). The localization of NLRP3
over the MAMs induces clusters of mitochondria around the
Golgi apparatus and the release of NLRP3 to the cytosol for
inflammasome mature form assembling (173). The
mitochondrial location of NLRP3 is also affected by the
interaction between MFN2 and MAVS during viral infections,
which recruits the inflammasome to the MAMs. However,
MAVS are not essential for NLRP3 activation under other
stimuli (16). Mitophagy is also an important player during
inflammasome activation since the removal of impaired
mitochondria reduces ROS production. The continuous
production of ROS occurs during oxidative phosphorylation
and several studies have demonstrated that inhibitors of
complex I, II and III develop an important role in mtROS
production reflecting in decreased inflammasome activation
(174, 175).

Interestingly, mtROS and Ca2+ have a synergic role for pore
formation within mitochondria membranes. Mitochondrial
permeability transition (MPT) pores allow the release of
mtDNA. Interestingly, oxidized mtDNA in the cytoplasm
triggers IL-1b secretion by preferentially activating NLRP3 but
not AIM-2 (176). Additionally, IL-1b production was
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significantly enhanced with oxidized versus normal DNA (176).
Importantly, the induction of NLRP3 also induces mtDNA
release in the cytosol, thus creating a positive loop in the
induction of inflammasome pathway (14, 176).

CNS disorders may occur due to NLRP3 dysfunctions and its
close link with mitochondrial health (177). In EAE for example,
increased levels of IL-1b and NLRP3 were related to disease
progression. Additionally, microglia deletion of A20, an immune
suppressive protein correlated with increased NLRP3 activation
and IL-1b/IL18 secretion (178). Conversely, the role of IFN-b, a
well-established treatment for MS, was demonstrated to be
dependent on NLRP3 activation during EAE (179).

The correlation of inflammasomes and AD pathophysiology
is also debated, since increased levels of IL-1b were reported in
the Ab neighboring microglia cells. Halle et al. (180) observed
that Ab phagocytosed by microglia triggers caspase-1 and
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subsequent release of IL-1b, in vitro. Corroborating this, in
vivo studies shown that loss of NLRP3 is associated with
reduced Ab deposition, cytokine production and lead to
ameliorated spatial memory deficits in AD mouse model. As
Ab, a-synuclein also induces NLRP3 activation in mouse
microglial cell line. In vivo, the administration of caspase-1
inhibitor decreases the activation of NLRP3 and induces an
increase in the number of dopaminergic neurons, consequently
relating a better PD prognosis (177). Interestingly, caspase-1 is
also able to cleave a-synuclein, and NLRP3 inhibition abrogates
synuclein aggregation, ameliorating cell damage in murine PD
model (181).

Penghu and collaborators showed that mtROS induced
NLRP3 activation in hippocampal microglia (182). Sarkar et al.
(182) evidenced that the inhibition of mitochondrial complex I
by rotenone increased ROS production, leading to augmented
FIGURE 1 | Mitochondrial alterations in protective and detrimental processes within CNS. Alterations in mitochondrial dynamics may induce either harmful or helpful
immune responses affecting in CNS homeostasis. (A) Amyloid-b and a-synuclein induces TLR-2 and TLR-4 activation, respectively, promoting the interaction
between outer mitochondria membrane (OMM) and endoplasmic reticulum (ER) membrane to synergically increase Ca2+ uptake and NFAT activation. (B) Type I IFN
production is induced by mtDNA activation of cGAS-STING during sustained mitochondrial damage promoting neurodegeneration. (C) STING may also induce
activation of NLRP3. (D) The NLRP3 may also be induced by mtROS thus coordinating IL-1b secretion by microglia and astrocytes promoting neuronal loss.
(E) Amyloid-b aggregates induce NLRP3 inflammasome activation and IL-1b secretion by microglia. (F) mtROS induces cardiolipin peroxidation that deregulates ATP
production, as observed during aging. (G) In neurons, BAX interacts with DRP1 inducing mitochondrial fragmentation. This is critical for BAX-dependent pore
formation and neuronal survival. (H) Failure in mitophagy culminates in damaged mitochondria accumulation which contributes for Parkinson’s disease (PD) progress.
(I) Mitophagy may be induced by IFN-g and LPS upregulation of DRP1 and LC3, an autophagy-related protein. This is essential to restore tubular mitochondrial
networks after inflammatory stimulation in astrocytes. (J) Microglial cells under mitophagy have elevated levels of intracellular Ab aggregates, suggesting increased
phagocytic activity, and thus clearing the harmful Ab deposits. (K) PINK1 regulation of mitophagy is essential for CNS homeostasis establishment and induction of IL-
10 and reduction of TNF-a secretion. (L) Instead of mitophagy the release of damage mitochondria may also minimize overall cell injury. Conversely, healthy
mitochondria may also be donated from astrocytes to damaged neighboring neurons increasing its viability and maintaining its metabolism. (M) Cardiolipin can
interact with a-synuclein preventing its aggregation by modifying its structure and impairing the release of cytosolic cytochrome c and thus inhibiting apoptosis and
dampening cellular oxidative stress. Illustration prepared by the authors using www.biorender.com.
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cleavage of caspase-1 and NLRP3 expression in microglia cells.
Conversely, they also evidenced that this pathway culminates in a
more prominent dopaminergic neuronal loss (183).
CONCLUDING REMARKS

Although first believed to be solely the power houses of the cell, it
is now accepted that mitochondria have an active role in many
cellular processes, especially during inflammation. In Figure 1
we summarize some of these relevant aspects concerning the
correlation between mitochondria and brain disease. Although
many of these diseases have their pathology linked to either mild
or robust inflammatory responses, recent findings have
unraveled that many of these mechanisms correlate with
mitochondrial unbalanced function. Either because
neuroinflammation can drastically impact cellular metabolism
and further mitochondrial biology, for instance promoting
mROS secretion or impairing ETC function, or because
mitochondrial disfunction leads to the release of pro-
inflammatory factors, as mtDNA. In this sense, innate
immunity receptors as NLRP3 and MAVS greatly evidences
the role of mitochondria as both effectors and sensors of
neuroinflammation, respectively. Interestingly, structural
changes in mitochondrial shape, size and turnover inside the
cell, has also shown great relevance. For instance, OPA and MFN
proteins defects, responsible for mitochondrial fusion are
observed in Charcot-Marie-Tooth disease and optic atrophy.
Mitochondria may also correlate with homeostasis and
resolution of neuroinflammation. During mitophagy, for
Frontiers in Immunology | www.frontiersin.org 9
instance, there is the induction of IL-10 secretion and
inflammation control, as observed in PD models. More
interesting, inflammation activated astrocytes may actively
transfer mitochondria to nearby neurons as an effort to avoid
or reduce tissue damage, whereas damaged mitochondria are
also released in order to avoid excessive ROS production, as
described during stroke. In summary, the role of mitochondria
during neuroinflammation and neurodegeneration has started to
be better understood, not only unraveling important biological
processes but also indicating that mitochondria-related
immunometabolic pathways may serve as promising
therapeutic targets for CNS diseases. This is corroborated by
the fact that are currently 160 studies registered in
www.clinicaltrials.gov found for the terms mitochondria
and brain.
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