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T cells play a critical role in coronavirus diseases. How they do so in COVID-19 may be

revealed by analyzing the epigenetic chromatin accessibility of cis- and trans-regulatory

elements and creating transcriptomic immune profiles. We performed single-cell assay

for transposase-accessible chromatin (scATAC) and single-cell RNA (scRNA) sequencing

(seq) on the peripheral blood mononuclear cells (PBMCs) of severely ill/critical patients

(SCPs) infected with COVID-19, moderate patients (MPs), and healthy volunteer controls

(HCs). About 76,570 and 107,862 single cells were used, respectively, for analyzing

the characteristics of chromatin accessibility and transcriptomic immune profiles by the

application of scATAC-seq (nine cases) and scRNA-seq (15 cases). The scATAC-seq

detected 28,535 different peaks in the three groups; among these peaks, 41.6 and

10.7% were located in the promoter and enhancer regions, respectively. Compared

to HCs, among the peak-located genes in the total T cells and its subsets, CD4+ T

and CD8+ T cells, from SCPs and MPs were enriched with inflammatory pathways,

such as mitogen-activated protein kinase (MAPK) signaling pathway and tumor necrosis

factor (TNF) signaling pathway. The motifs of TBX21 were less accessible in the

CD4+ T cells of SCPs compared with those in MPs. Furthermore, the scRNA-seq

showed that the proportion of T cells, especially the CD4+ T cells, was decreased

in SCPs and MPs compared with those in HCs. Transcriptomic results revealed

that histone-related genes, and inflammatory genes, such as NFKBIA, S100A9, and

PIK3R1, were highly expressed in the total T cells, CD4+ T and CD8+ T cells, both

in the cases of SCPs and MPs. In the CD4+ T cells, decreased T helper-1 (Th1)

cells were observed in SCPs and MPs. In the CD8+T cells, activation markers, such

as CD69 and HLA class II genes (HLA-DRA, HLA-DRB1, and HLA-DRB5), were

significantly upregulated in SCPs. An integrated analysis of the data from scATAC-seq

and scRNA-seq showed some consistency between the approaches. Cumulatively, we

have generated a landscape of chromatin epigenetic status and transcriptomic immune

profiles of T cells in patients with COVID-19. This has provided a deeper dissection of the
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characteristics of the T cells involved at a higher resolution than from previously obtained

data merely by the scRNA-seq analysis. Our data led us to suggest that the T-cell

inflammatory states accompanied with defective functions in the CD4+ T cells of SCPs

may be the key factors for determining the pathogenesis of and recovery from COVID-19.

Keywords: SARS-CoV-2, COVID-19, chromatin accessibility, transcriptome profiling, scATAC-seq, ScRNA-seq,

T cells

INTRODUCTION

The novel coronavirus, the SARS-CoV-2-caused coronavirus
disease (COVID-19), has spread globally (1–4). The clinical
symptoms of COVID-19 include fever, pneumonia, dry cough,
myalgia, fatigue, diarrhea, and conjunctivitis, while a proportion
of patients suffer from acute respiratory distress syndrome
(ARDS) and multiple organ failure (5–8). Although much
effort is being made by clinicians and scientists to explore
antiviral drugs and to produce vaccines, there is yet no clinically
approved prophylactic measure or specific cure for COVID-19
(9–12). The status of potential immune mechanisms underlying
the pathogenesis of and recovery from COVID-19 requires
further investigation.

The adaptive immune system plays an important role in
responding to the SARS-CoV-2 infection (13). Our previous
study found that CD3+ T cells were suppressed in patients
with COVID-19 and the loss of CD3+ T cells could be an
underlying mechanism for the progression of COVID-19 and
fatality (14). In addition, blood CD4+ and CD8+ T-cell counts
could provide a promising biomarker for the disease assessment
and monitoring of patients with COVID-19 (15). In single-
cell resolution, the immune cell profiling of peripheral blood
mononuclear cells (PBMCs) and bronchoalveolar immune cells
in patients with COVID-19 have been explored by the scRNA-
seq (13, 16–23). Zheng et al. (24) reported a single-cell landscape
of human circulating immune cell aging and single cell analysis of
immune cells in young and aged patients with COVID-19, at the
transcriptomic and protein levels. However, the characteristics
of chromatin accessibility, cis-regulatory elements, and trans-
factors that drive the epigenetic cell states, which are critical
for gene transcriptional regulation in the T cells of patients
with COVID-19, at moderate and severe or critical stages, are
still unclear. Chromium scATAC is a novel technology that can
be used to analyze the landscape of chromatin accessibility,
providing a deep insight into the cell types and the epigenetic
states at the single-cell level (25). Therefore, we combined a
single-cell ATAC (scATAC-seq) and RNA sequencing (scRNA-
seq) to comprehensively analyze the chromatin accessibility and
immune profiling in PBMCs obtained from COVID-19 cases of
SCPs and MPs compared with those from HCs.

MATERIALS AND METHODS

Patients
Ethical Statement
Ethical approval was obtained from the Research Ethics
Committee of Shanghai Publich Health Clinical Center. All

participants provided written informed consent for sample
collection and subsequent analyses.

Subjects and Clinical Sample Collection
Samples from 10 patients with COVID-19 and five health
volunteers used in this study were collected from the Shanghai
Public Health Clinical Center. All patients were confirmed to be
positive for SARS-CoV-2 using PCR with reverse transcription
from the swab of an upper respiratory tract (nose and throat)
tested at an accredited laboratory. The degree of severity was
identified as moderate, severe, or critical infection, according to
the recommendations from the WHO. Moderate patients were
defined as having fever, respiratory symptoms, and pneumonia
as evidenced by CT imaging. Severe infection was defined as
one of the following conditions in a patient confirmed to have
COVID-19: respiratory distress with a respiratory rate of >30
breaths per minute, blood oxygen saturation of <93%, or arterial
oxygen partial pressure/FiO2 < 300mmHg. Critical infection was
defined as a respiratory failure requiring mechanical ventilation
or shock or other organ failures requiring admission to an
intensive care unit. The demographic characteristics of these
study populations are provided in Supplementary Table 1. The
patients included were five SCPs and five MPs, and five HCs
were included as a control group. Detection of SARS-CoV-2 was
based on sputum, nasal swab viral PCR assays, clinical symptoms,
exposure history, and chest radiography.

The PBMCs were isolated from heparinized venous blood
of patients or healthy donors using a Ficoll–Hypaque
density solution according to the standard density gradient
centrifugation methods. For each sample, the cell viability
exceeded 80%. The experimental flow graph for this study is
shown in Supplementary Figure 1.

Processing of scATAC-Seq
Raw sequencing data were converted into the FASTQ format
using the cellranger-atac mkfastq (10× Genomics, V.1.2.0). The
GRCh38 reference genome was used for data alignment and the
cellranger-atac mkfastq was used for generating the FASTQs.
For mapping and chromatin accessibility, the cellranger-atac
count was used, and the cellranger-atac aggr was used for
aggregating the data. The R package harmony (Version: 1.0)
was used for removing the batch effects of scATAC (26).
All of the quality information of nine samples are shown in
the Supplementary Data Sheets 2–10. After filtering, a total of
32,643 cells (11,965/8,487/12,191 cells) for HCs, a total of 29,898
cells (12,776/9,984/7,138 cells) for MPs, and a total of 14,029 cells
(5,998/2,264/5,767) for SCPs were left for subsequent analysis.
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Filtering Cells, Calculating Differential
Peaks, and Mapping scATAC-Peaks Into
Genes
The Signac v0.2.4 was used to filter cells and peaks. The threshold
of proportion of readings falling on the peak is not <15%. The
lower proportion of cells usually represents low-quality cells or
technical errors, which should be deleted. The proportion of the
blacklist sequence provided by ENCODE, the filtering threshold,
is not higher than 5%. Those thresholds were referenced from
the official website of Signac. Nucleosome signal represents
the ratio of mononucleosomal/nucleosome-free regions, and
the threshold is not higher than 10%. The enrichment of
the transcription start site (TSS) is also an important quality
control indicator for evaluating Tn5 targeting in the ATAC-seq
experiments. A poor ATAC-seq experiment will usually have
a lower TSS enrichment score, and the threshold is set to 2%.
At the same time, it is necessary to satisfy that each cell must
contain one thousandth (0.1%) of the total number of peaks;
each peak must cover 2% of the total number of cells (27). The
Signac R-package was used for the scATAC-seq data analysis,
and the logistic regression model (LR) was applied for statistical
testing. In the differences between each group, the p-value was
≤0.05, and differences≥1.5 times were defined as the differential
peaks. Regarding scATAC-peaks mapping to genes, the 10×
official cellranger-ATAC standard of gene association annotation
was used. For the peak annotation, we used the definition of
enhancer from the website (http://uswest.ensembl.org/info/
genome/funcgen/regulatory_build.html); later, the bedtools
were applied for finding the intersection of the peaks and
the enhancer region. In addition, the definition of promoter,
exon, intron, and intergenic regions were referred from the file
(ftp://ftp.ensembl.org/pub/release-84/gtf/homo_sapiens/Homo
_sapiens.GRCh38.84.gtf.gz); later, the bedtools were applied for
finding the intersection of the peaks and the specific regions.

Dimensionality Reduction and Clustering
for scATAC-seq
The filtered gene-barcode matrix was normalized with the term
frequency-inverse document frequency (TF-IDF) normalization.
Dimensional reduction was performed by running singular
value decomposition (SVD) on the TF-IDF normalized matrix.
t-Distributed stochastic neighbor embedding (t-SNE) was
performed on the top 30 principal components for visualizing
the cells. Meanwhile, the SLM algorithm was performed for
clustering analysis.

Cell Clustering and Cell Type Identification
We performed scATAC-seq on PBMC from SCPs, MPs, and
HCs, taking three cases in each group. The clustering analysis
identified 12 distinct clusters composed of T (CD3G), NK
(NKG7), B (MS4A1), andmonocyte cells (IL-1B) by the signature
genes. We further increased the resolution so that T cells were
subclustered into CD8+ T cells (CD8A) and CD4+ T cells.

R.chromVAR
We measured the activity of TF using chromVAR (V1.8.0).
We used the cells by peaks and the Catalog of Inferred
Sequence Binding Preferences (CIS-BP) motif (from chromVAR
motifs “human_pwms_v1”) matches within those peaks from
motifmatchr. We then computed the GC-bias-corrected
deviation scores using the chromVAR “deviation Scores”
function.

Aggregate Read Counts in 4-kb Windows
Centered on Each Identified Motif Instance
Fimo v5.1.1 was used to scan the peak sequence to match the
known motif (JASPAR2016_CORE). Then, the R package was
used to calculate the mean readings per million distributions on
each motif.

Co-accessibility
The GRCh38 was used as the reference database. We calculated
the co-accessibility between all the peaks for specific regions
by using the R package Cicero 14 and the connecting lines
were drawn.

The Heatmap of Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and
Genomes (KEGG) Enrichments for the Total
T Cells, CD4+, and CD8+T Cells
Each cell types (total T cells, CD4+, and CD8+ T cells) were
pooled, and peaks with an increase and decrease in accessibility
from each compared groups (HCs vs. MPs, MPs vs. SCPs, and
HCs vs. SCPs) were identified. The GO enrichment and the
KEGG pathways were analyzed by using identified peak-related
genes, and the significant GO terms and KEGG pathways were
identified. Then, the level of accessibility was visualized for each
hit peak (row) in the GO term and the KEGG pathway, and the
z-score normalization was performed across patients.

Capturing Library Construction and
Sequencing for scRNA
The single-cell suspensions of scRNA-seq samples were
converted to barcoded scRNA-seq libraries using the Chromium
Single Cell 3′ Library, Gel Bead and Multiplex Kit, and Chip
Kit (10× Genomics). The Chromium Single Cell 3′ v3 Reagent
(10× Genomics, 1000078) kit was used to prepare single-cell
RNA libraries according to the manufacturer’s instructions. The
FastQC software was used for quality check (21). The Cell Ranger
software (version 3.0.1) was used for the initial processing of
the sequencing data. The Seurat (Version 3.1.2) was applied for
removing the batch effects of scRNA-seq.

The scRNA-seq Data Alignment and
Sample Aggregating
We demultipled and barcoded the samples by using The
Cell Ranger Software Suite (cellranger-3.0.1) (https://support.
10xgenomics.com/). Cellranger-atac mkfastq was used for
demultiplexing, and the cellranger count was used for the

Frontiers in Immunology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 625881

http://uswest.ensembl.org/info/genome/funcgen/regulatory_build.html
http://uswest.ensembl.org/info/genome/funcgen/regulatory_build.html
ftp://ftp.ensembl.org/pub/release-84/gtf/homo_sapiens/Homo_sapiens.GRCh38.84.gtf.gz
https://support.10xgenomics.com/
https://support.10xgenomics.com/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Li et al. Single Cell Analysis of COVID-19

alignment, de-duplication, filtering, and generating feature-
barcode matrices. After getting gene counts from each sample,
we aggregate them together. Finally, the gene-barcode matrix
of all ten patients and five HCs were integrated with the
cellranger-atac aggr.

Seurat v3.1.2 (https://satijalab.org/) was used, and several
criteria were applied to each cell, that is, filtering the cells
with gene numbers <200, filtering the cells with the unique
molecular identifier (UMI) ratio of the MT genes that are
≥15%, filtering the UMI ratio of red blood cells (HBB,
HBA1, and HBA2) that are ≥10%, and removing the potential
double cells by scrublet. After filtering, a total of 39,233 cells
(8,264/8,932/7,297/10,375/4,365 cells) for HCs, a total of 34,702
cells (5,994/6,198/7,165/6,385/8,960 cells) for severe or critical
cases, and a total of 33,927 cells (7,071/7,531/2,997/8,105/8,223
cells) for moderate cases were left for subsequent analysis. The
UMI count matrix was converted to Seurat objects using the R
package Seurat v3.1.2.

Dimensionality Reduction and Clustering
for scRNA-seq
The filtered gene-barcode matrix was normalized with the
LogNormalize methods in Seurat and analyzed by the principal
component analysis (PCA) using the top 2, 000 most variable
genes. Then, t-SNE) was performed on the top 30 principal
components for visualizing the cells. Meanwhile, a graph-based
clustering was performed on the PCA-reduced data for clustering
analysis with Seurat v3.1.2.

Cell Clustering and Cell Type Identification
We performed scRNA-seq on PBMC from five patients with
severe/critical infection (severe/critical cases 1–5, SCPs), five
patients with moderate COVID-19 (moderate cases 1–5, MPs),
and five healthy controls (health volunteers 1–5, HCs). The
clustering analysis showed 38 distinct clusters composed of
myeloid cells (CD14, CD1C, and FCGR3A), T cells (CD3E),
natural killer (NK) cells (NCAM1), and B cells (MS4A1),
which were identified by signature genes. We re-clustered the
subclusters of the T cells to further dissect their heterogeneity.
According to the recently published classification criteria and
typical markers, the T cells were categorized into CD4+ T cells
(CD3E and CD4) and CD8+ T cells (CD3E and CD8). The CD4+

T cells were subdivided into four clusters, namely the naïve CD4+

T cells, which expressed high levels of CCR7, LEF1, and TCF7;
the central memory CD4+T cells, which expressed high levels
of CCR7 but more AQP3 and CD69 compared to naïve CD4+

T cells; the effector memory CD4+ T cells, which expressed
high levels of CCR6 and CXCR6; and the regulatory T (Treg)
cells, which expressed FOXP3. In addition, the CD4+ T cells
were subidentified into T helper-1 (Th1) (expressed tbx21), Th17
(expressed RORC), and Treg cells (highly expressed FOXP3). The
CD8+ T cells were subdivided into three clusters, namely the
naïve CD8+ T cells, which expressed high levels of CCR7 and
LEF1, similar to naïve CD4+ T cells; the effector memory CD8+

T cells, which expressed high levels of GZMK; and the cytotoxic
CD8+ T cells, which expressed high levels of GZMB. The TYMS+

MKI67+ cells were proliferating T cells. The top 30 DEG marker
genes of each cluster are shown by heatmaps.

Differential Analysis for Cell Types
Findmarker in Seurat v3.1.2 was used to perform differential
analysis and the bimod likelihood ratio statistical test was used.

Regulatory Network Inference
The single-cell regulatory network was constructed with the
single-cell regulatory network inference and clustering (SCENIC)
(28). Specifically, GRNBoost2 (https://github.com/tmoerman/
arboreto) in pySCENIC was applied to infer gene regulatory
networks from the expression data. A heatmap from the
regulator’s group was generated with the R package AUCell.

Gene Functional Annotation
For differentially expressed genes (DEGs), GO was analyzed by
using topGO (http://www.bioconductor.org/packages/release/
bioc/html/topGO.html) and the website (http://www.genome.
jp/kegg-bin/show_organism?menu_type=pathway_maps&org=
hsa) was used for analyzing the KEGG pathway.

Raw Data Deposition
The raw data reported in this paper have been submitted in the
China National GeneBank DataBase (https://db.cngb.org/) and
the submission number is CNP0001507.

Integration Analysis of scRNA and scATAC
Data
MAESTRO (Release V1.3.0) was used for the integration analysis
of scRNA and scATAC data, and the methods were referenced
from the published paper (29).

RESULTS

Epigenetic Landscapes of Single-Cell
Chromatin Accessibility of T Cells From
Patients With COVID-19
In an epigenetic analysis based on scATAC-seq, we analyzed
the PBMC from SCPs, MPs, and HCs, taking three cases
from each group. The clustering analysis identified 12 distinct
clusters composed of T (CD3G), NK (NKG7), B (MS4A1),
and monocyte cells (IL1B) by those signature genes (30)
(Figure 1A). We further increased the resolution so that T
cells were subclustered into CD8+ T cells and CD4+ T cells
(Figure 1A and Supplementary Figures 2A,B). We checked the
distribution of genomic features for different peaks from all cell
types, the total T cells, and its subsets, CD4+ T and CD8+

T cells, among the three groups of SCPs, MPs, and HCs. Five
genomic distribution features, including enhancer, promoter,
exon, intron, and intergenic elements, were investigated. We
detected 28,535 different peaks across all cells, of which 41.6
and 10.7% were located in the promoter and enhancer regions,
respectively (Supplementary Figure 3A). We also calculated
the percentage of those different peaks in total T cells and
its subsets, CD4+ T cells and CD8+ T cells, and found
that the different peaks were mainly located in the region
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of intron, and also in the promoter and enhancer regions
(Figure 1B and Supplementary Figures 3A–D). In CD4+ T cells,
the proportions of accessible cis-regulatory elements (ATAC-seq
peaks are located either in the enhancer or in the promoter
region) were decreased from 32.63% (HCs vs. MPs, 25.93%
in the enhancer region and 6.7% in the promoter region)
to 29.96% (HCs vs. SCPs, 20.16% in the enhancer region
and 9.8% in the promoter region). In the CD8+ T cells, the
proportion was increased from 30.51% (HCs vs. MPs, 20.75%
in the enhancer region and 9.76% in the promoter region)
to 31.58% (HCs vs. SCPs, 18.42% in the enhancer region,
and 13.16% in the promoter region). After comparing MPs
with SCPs in CD4+ T cells, the downregulated peaks were
located mainly in the regions of promoter and exon, and the
upregulated peaks were located in the enhancer, intron, and
intergenic regions (Figure 1B). The different peaks located in
the promoter regions of CD4+ T cells were increased from
6.7% (HCs vs. MPs) to 9.8% (HCs vs. SCPs). In total, we
identified 14,921 cis-regulatory elements across all cell types, and
a heatmap of cis-regulatory elements indicates the accessibility
in cell types from the three different groups (Figure 1C).
Genome tracks facilitated a comparison of aggregate single-cell
accessibility profiles of individual genomic loci. For example,
the accessibility profiles of CCL3, which is involved in the
chemotaxis of inflammatory cells, and of RUNX3, which is
involved in the positive regulation of cellular process, and the
response to stimulus and regulation of the biological process
were compared among total T cells and its subsets, CD4+ T
and CD8+ T cells, in SCPs, MPs, and HCs (Figure 1D and
Supplementary Figures 4A–J).

The cis-regulatory interaction networks of specific regions
for the total T cells and its subsets, CD4+ T, and CD8+ T
cells, among the three groups were constructed from this data.
The results showed that some loci (e.g., CCL3) in T cells had
similar interactive networks with other genes among the three
groups. However, some genes (e.g., RUNX3 in CD4+ T cells)
were less interactive in SCPs compared to MPs (Figure 1E
and Supplementary Figures 5A–L). The chromatin accessibility
profiles of the selected motifs were also analyzed. Different
motifs differed in accessibility in the total T cells and its
subsets, CD4+ T and CD8+ T cells, varied among the three
groups. Compared to MPs, the motifs of TBX21, NFKB1, TP53,
STAT1, MAFK, and RUNX3 were less accessible in the CD4+

T and CD8+ T cells of SCPs, but much less in the CD4+

T cells. Since T-bet (encoded by TBX21 gene) plays a key
role in Th1 commitment, the altered accessibility status of
TBX21 in the CD4+ T cells indicated a possible decreased Th1
function in SCPs compared to that in MPs (Figure 1F and
Supplementary Figures 6A–D).

We analyzed the different peaks and their associated genes
for the total T cells and its subsets, CD4+ T cells and CD8+

T cells, comparing HCs vs. MPs, MPs vs. SCPs, and HCs
vs. SCPs. Then, the GO analysis and KEGG pathways were
used to further investigate the relevance of the differential
peak-related genes. For total T cells, the GO analysis revealed
that the genes involved in the immune system processes, cell

activation, the immune response, regulation of the responses
to stimuli, regulation of signal transduction, T cell activation,
etc. were upregulated in SCPs compared to those in HCs. The
regulation of the immune system process, regulation of the
response to stimulus, and regulation of signaling, etc. were
downregulated in SCPs compared to those in HCs. In the
group of MPs, the genes related to the MAPK cascade and
to a positive regulation of MAPK cascade [echoing a previous
report (13)] were peak-enriched compared with those in HCs.
The KEGG analysis comparing SCPs with HCs revealed that
the peak-enriched genes were clustered in pathways, such as the
MAPK signaling pathway, TNF signaling pathway, NF-kappa B
signaling pathway, and PI3K-Akt signaling pathway (Figure 1G
and Supplementary Figures 7A–C). The GO analysis of CD4+ T
cells done by comparing SCPs to HCs revealed that the immune
system processes, cell activation, regulation of the response to
stimulus, regulation of intracellular signal transduction, etc. were
peak-enriched with SCPs. The regulation of the immune system
process, positive regulation of the immune system process,
and the regulation of signaling, etc. were downregulated in
SCPs compared to that of HCs. The genes related to cell
communication, regulation of transport, positive regulation of
signaling, and cell surface receptor signaling pathways, etc.
were peak-enriched in MPs compared to those in HCs. The
KEGG analysis revealed that the peak-enriched genes gathered
in SCPs compared with HCs in the following pathways, such
as Th1 and Th2 cell differentiation, Th17 cell differentiation, T
cell receptor signaling pathway, MAPK signaling pathway, and
TNF signaling pathway. Although the peak-enriched genes in
the groups of MPs vs. HCs are gathered in the same pathway
as that in the group of SCPs vs. HCs, the genes involved
in these pathways were much fewer than in the group of
HCs vs. SCPs. Only three genes (DLL3, MAPK11, JAK3) were
involved in the Th1 and Th2 cell differentiation and four
genes (TNFRSF1A, MAPK11, CEBPB, and MAP3K14) were
related to the TNF-signaling pathway in the groups of HCs vs.
MPs (Figure 1G and Supplementary Figures 7D–F). In CD8+

T cells, the GO analysis revealed that the genes related to the
immune system processes, cell activation, immune response,
regulation of the response to stimulus, regulation of cell death,
etc. were upregulated in SCPs compared to those in HCs,
whereas regulation of the immune system processes, positive
regulation of the immune system process and regulation of
signaling, etc. were downregulated in SCPs compared to those
in HCs. The genes related to cell communication, regulation of
the cellular process, positive regulation of response to stimulus,
etc. were peak-enriched in CD8+ T cells from MPs compared
with those from HCs. The KEGG analysis revealed that the
peak-enriched genes gathered in the T-cell receptor signaling
pathway, the MAPK signaling pathway, and the TNF signaling
pathway in CD8+ T cells from SCPs compared with those from
HCs (Supplementary Figures 7G–K). In short, the scATAC-seq
analysis were indicated an activated and inflammatory state of
T cells (especially, CD8+ T cells) during COVID-19, associated
with a possibility of the decreased function of CD4+ T cells (i.e.,
Th1) in the cases of SCPs.
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FIGURE 1 | Single-cell landscape of T cells in patients with COVID-19 by scATAC-seq. (A) The t-distributed stochastic neighbor embedding (t-SNE plot shows a

comparison of the clustering distribution of B, T, monocyte, and natural killer (NK) cells in the peripherial blood mononuclear cells (PBMC) of patients with COVID-19

through a single-cell assay for transposase-accessible chromatin (ATAC). The T cells were reclustered into CD4+T cells and CD8+ T cells with t-SNE projection of

canonical markers, including MS4A1 for B cells, CD3G for T cells, IL-1B for monocytes, and NKG7 for NK cells, CD8+T cell marker (CD8A), and CD4+ T cell marker

(CD4). (B) Distribution of different peaks in total T and CD4+ T cells from severely ill/critical patients (SCPs) vs. healthy volunteer controls (HCs) and moderate patients

(MPs) vs. HCs. The upregulated and downregulated differential peaks in CD4+ T cells from MPs vs. SCPs are shown on the right. Five genomic features were studied,

including enhancer, promoter, exon, intron, and intergenic elements. (C) Heatmaps of z-scores of 14,921 cis-regulatory elements in CD4+, CD8+, monocytes, B, and

NK cells by scATAC-seq; representative genes are labeled. (D) Single-cell ATAC-seq genome tracks for the CCL3 loci in total T cells and RUNX3 loci in CD4+ T cells

among HCs, MPs, and SCPs. (E) The reconstruction of genome-wide cis-regulatory interaction networks for representative regions across specific genes for total T

and CD4+ T cells among three groups. (F) Aggregate read counts in 4-kb windows centered on identified motif instance is shown for CD4+ and CD8+ T cells in HCs,

MPs, and SCPs. Blue indicates CD8+ T cells and red indicates CD4+ T cells. (G) The heatmaps of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichments for the total T and CD4+ T cells in the group of HCs vs. MPs and MPs vs. SCPs revealed by scATAC-seq.
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Transcriptomic Immune Profiles of T Cells
From Patients With COVID-19
In addition to the epigenetic analysis based on scATAC-
seq, we also applied ascRNA-seq to profile the immune
transcriptomics of T cells in patients with COVID-19. We
performed the scRNA-seq (3

′

transcriptome gene expression)
on PBMC from SCPs, MPs, and HCs taking five cases from
each group, in which three cases were also applied to the
scATAC-seq study described above. Our scRNA-seq showed
a decreased proportion of T and NK cells and an increased
proportion of myeloid cells in SCPs and MPs compared with
those fromHCs (Figure 2A and Supplementary Figures 8A–D).
The enhanced resolution showed that the subsets of T cells
and the reduction of CD4+T cells could account for the
major decrease in the T-cell proportions in SCPs (Figure 2A
and Supplementary Figures 8E–H). Those data were consistent
with the previous reports of COVID-19-related lymphopenia,
especially in the severe and critical cases (14, 15). In the subsets of
CD4+ T cells, the Th1 cells and the Treg cells were decreased in
SCPs (Figure 2A). In the subsets of CD8+ T cells, the proportion
of naive CD8+ T cells was decreased in MPs and SCPs, and
the proliferating CD8+ T cells have an increasing trend in MPs
and SCPs compared to HCs. SCPs showed a slightly higher
proportion in effector/memory CD8+ T cells compared with
those in HCs (Figure 2A).

We analyzed DEG in the total T cells and in its subsets,
CD4+ T cells and CD8+ T cells, by comparing the groups of
HCs vs. MPs, MPs vs. SCPs, and HCs. vs. SCPs. Heatmaps and
volcano plots show theDEGs profiles among each group of T cells
(Figures 2B,C and Supplementary Figure 9A). Upregulated or
downregulated genes in terms of the GO analysis and KEGG
pathways were analyzed. For total T cells, the GO analysis
revealed that the genes associated to the innate immune response,
defense response to virus, type-I interferon signaling pathway,
and response to type-I interferon were upregulated in MPs
compared with HCs. There were only 30 upregulated genes
comparing MPs and SCPs, and the genes were mainly associated
with cell activation and the immune system process. The
genes involved in the immune system processes, regulation
of cell death, cell activation, immune response, etc. were
upregulated in SCPs compared to HCs, echoing the previous
report (31). Histone-related genes (HIST1H1D, HIST1H4C,
HIST1H1E, HIST1H1C) and inflammatory genes (NFKBIA,
TNFAIP3, PIK3R1, S100A9, etc.) were upregulated both in
SCPs and MPs compared with HCs. We further found that
those inflammatory genes (NFKBIA, TNFAIP3, PIK3R1, S100A9,
S100A8, etc.) were gradually enhanced from HCs to MPs and
finally to SCPs in the total T cells. Among the total T cells
from SCPs, the T-cell activation marker, CD69, and HLA
class II genes (HLA-DRA, HLA-DRB1, and HLA-DRB5) were
upregulated. The KEGG analysis revealed that the upregulated
genes were mainly enriched with the IL-17 signaling pathway
and in the TNF signaling pathway, both in SCPs vs. HCs and
MPs vs. HCs (Supplementary Figures 10A–C). To uncover the
transcriptional signatures in CD4+ T cells, the DEGs of all groups
are displayed as heatmaps and volcano plots (Figures 2B,C and
Supplementary Figure 9B). The genes associated with innate

immune responses, RNA metabolic processes, immune system
processes, etc. were upregulated in MPs compared with those
in HCs. We also found that the histone-related genes and
inflammatory genes that were mentioned earlier in the context
of total T cells were upregulated both in SCPs and MPs. In
addition, as in the total T cells, those inflammatory genes
(NFKBIA, TNFAIP3, PIK3R1, S100A9, etc.) were also gradually
enhanced from HCs to MPs and finally to SCPs among CD4+

T cells. The KEGG analysis revealed that the upregulated genes
were enriched with the IL-17 signaling and TNF signaling
pathways in the CD4+ T cells collected from both SCPs and
MPs vs. HCs (Supplementary Figures 10D–F). Regarding the
TBX21 expression level in CD4+ T cells, MPs (mean counts =
0.03799) showed similar level as HCs (mean counts = 0.03576).
However, the TBX21 expression decreased in SCPs (mean counts
= 0.02542) compared to HCs (mean counts = 0.03576). The
IFNG and the TBX21 downstream target gene showed repression
both in MPs (mean counts = 0.02124) and SCPs (mean counts
= 0.03415) compared to HCs (mean counts = 0.04259). To
illustrate the transcriptional signatures of CD8+ T cells, the
DEGs of the groups are shown by heatmaps and volcano plots
(Figures 2B,C and Supplementary Figures 9C–E). In CD8+ T
cells of MPs, the genes related to innate immune responses,
responses to viruses, etc. were upregulated in comparison to HCs.
Comparing the overlapping of upregulated genes of CD8+ T
cells with HCs vs. SCPs and HCs vs. MPs, we found histone-
related genes, such as HIST1H1D, HIST1H4C, HIST1H1E and
HIST1H1C, inflammatory genes, such as NFKBIA, PIK3R1,
MAP3K8, S100A8, and S100A9, and chemotactic genes, such
as CCL3 and CCL4 in both SCPs and MPs groups. The
KEGG analysis revealed that the upregulated genes were
enriched with the following pathways, such as the pathways of
apoptosis, TNF signaling pathway, and NF-kappa B signaling
(Supplementary Figures 10G–I), in SCPs and MPs, compared
with HCs. In brief, the scRNA-seq followed by the immune
transcriptomic analysis indicated an activation state (through
CD69 and HLA class II genes), chemotaxis (e.g., CCL3 and
CCL4), an inflammatory state (e.g., NFKBIA, PIK3R1, S100A9,
etc.) in T cells, especially in CD8+T cells, in COVID-19 cases.
Additionally, CD4+ T cells showed signs of decreased quantity
and function (e.g., anti-viral Th1 and inflammation-suppressive
Treg cells) in the cases of SCPs.

Integrated Analysis of the scATAC-seq and
scRNA-seq
We suggest that our data indicated some pathway consistencies
between scATAC-seq data and scRNA-seq data, though they
came from different levels of the transcription process. Indeed,
both scATAC-seq and scRNA-seq KEGG analyses revealed
the TNF signaling pathway to be involved in COVID-19;
the scATAC-seq data showing lower TBX21 locus accessibility
were consistent with the scRNA-seq data, showing decrease
in Th1 cells of SCPs compared to the MCPs and HCs. From
the integrated analysis ofscATAC-seq and scRNA-seq data, the
UMAP plots showed that B cells, monocytes, and NK/T cells
were clustered in both scATAC-seq and scRNA-seq and in
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FIGURE 2 | Single-cell transcriptomic immune profiling of T cells in patients with COVID-19 by single cell RNA sequencing (scRNA-seq). (A) The t-SNE plot shows a

comparison of the clustering distribution of PBMCs, the clustering of T cells, and the clustering of T helper-1 (Th1), Th17, and regulatory T (Treg) cells. The boxplots

show the proportions of major cell types and subtypes of CD4+ and CD8+ T cells among HCs, MPs, and SCPs (using two-sided Student’s t-test for pairwise

comparisons). (B) The heatmaps show the top differentially expressed genes (DEGs) in the group of HCs vs. MPs and MPs vs. SCPs among the total T and CD4+ T

cells. (C) Volcano plots show a fold change in the group of HCs vs. MPs and MPs vs. SCPs among the total T and CD4+ T cells. Findmarker in Seurat v3.1.2 was

used to perform differential analysis and a bimod likelihood ratio statistical test was used. Significantly, differential expression genes were defined by both p-value

(≤0.05) and fold change (≥1.5).
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FIGURE 3 | Integrated analysis of scATAC-seq and scRNA-seq. (A) The integrated analysis of scATAC-seq and scRNA-seq data shows scATAC (left), scRNA

(middle), and merged scATAC and scRNA by the UMAP plot using MAESTRO. (B) Venn diagram of all overlapping differential genes for scATAC-seq and scRNA-seq

in total T cells and CD4+ T cells from the group of HCs vs. MPs and MPs vs. SCPs. The heatmaps of all the overlapping differential genes in the total T cells and

CD4+ T cells from the group of HCs vs. MPs and MPs vs. SCPs.

Frontiers in Immunology | www.frontiersin.org 9 February 2021 | Volume 12 | Article 625881

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Li et al. Single Cell Analysis of COVID-19

correlation of scATAC and scRNA to some degree (Figure 3A).
The Venn diagrams and heatmaps show all the overlapping
differential genes between scATAC and scRNA in T cells and
its subsets, CD4+ and CD8+T cells, from the group of HCs
vs. MPs, MPs vs. SCPs, and SCPs vs. HCs (Figure 3B and
Supplementary Figures 11A–E). The altered expression of T-
cell activation marker (CD69) and inflammatory genes (S100A9,
S100A8, PIK3R1, NFKBIA, and TNFAIP3) were also detected
in T cells by the integrated analysis of the two sequencing
systems. Among the total T and CD4+ T cells, the scRNA data
analysis showed that the expression of CD69 were gradually
increased from HCs to MPs and finally to SCPs. The scATAC
data showed that the peaks related to gene CD69 were located
in the promoter and distal regions. Compared with HCs, the
chromatin accessibility in the promoter region of CD69 was
decreased in MPs and slightly lower in SCPs. Among the genes
in the TNF signaling pathway (NFKBIA, TNFAIP3, JUNB,
MAP3K8), the expression of those genes were increased in MPs
and SCPs compared to HCs. The scATAC analysis showed that
the chromatin accessibility in the promoter region of JUNB
was gradually decreased from HCs to MPs and finally to SCPs.
The chromatin accessibility in the promoter region of the genes
(NFKBIA, TNFAIP3, and MAP3K8) was similar among the
group of HCs, MPs, and SCPs (Supplementary Tables 3–13).

DISCUSSION

The immune response elicited by virus infection is one of
the main ways against the pathogenesis of diseases. Innate
and acquired immune responses are essential for an effective
viral clearance. The T cells exert diverse functions in defense
and antibody response against intracellular and extracellular
pathogens (32). The CD4+ T cells play the role in secreting
cytokines and helping B cells for producing specific neutralizing
antibodies, such as CD8+ T cells, which are capable of
eliminating infected cells (33). Our group previously (14)
reported that the CD3+T cells were the major cell types that were
suppressed in patients with COVID-19, and the reduced CD4+

and CD8+ T cell counts were predictive of disease progression.
Agerer et al. (34) revealed that SARS-CoV-2 escapes CD8 T-cell
surveillance via mutations in MHC-I restricted epitopes. In our
present study, we observed decreased T-cell counts and increased
counts of myeloid cells in the peripheral blood collected from
patients with COVID-19. Thus, in the current study, we carried
out scATAC-seq and scRNA-seq using PBMCs and emphatically
depicted the chromatin landscape and transcriptomic immune
profiling of patients with COVID-19 in T cells, CD4+T cells, and
CD8+ T cells.

There have been several reports of single cell transcriptomic
sequencing from the previous studies on COVID-19. Liao
et al. (19) used the scRNA-seq and scTCR-seq to determine
the bronchoalveolar lavage fluid (BALF) cell transcriptional
signature. Recently, Wilk et al. (22) used the Seq-Well platform
scRNA-seq to analyze the PBMCs from patients with COVID-
19 and HCs and found signatures of IFN-I-driven inflammation,
HLA class II downregulation, and a developing neutrophil

population in patients with COVID-19. Lee et al. (18) detected
the upregulation of pro-inflammatory cytokine genes in the
PBMCs of patients with COVID-19 using the 10× Genomics
scRNA-seq, and in severe COVID-19 cases, a type I IFN response
coexisted with the TNF/IL-1β-driven inflammation (18). Zhang
et al. (35) reported that most cell types from SARS-COV-2-
infected patients showed a strong interferon-α response and an
overall acute inflammatory response. Zhu et al. (31) reported
that in patients with COVID-19, XAF1-, TNF-, and FAS-induced
T-cell apoptosis were observed, and STAT1 and IRF3 signaling
pathways were activated. In addition, Lucas et al. (36) analyzed
an immune-response profile associated with severe COVID-
19 outcome and early immune signatures that correlated with
divergent disease trajectories). Ni et al. (37) reported that

patients with COVID-19 who experienced severe symptoms
had associated defective cellular immunity. Xiong et al. (23)
characterized the SARS-COV-2-specific cytotoxic T cells by
single-cell immune profiling and indicated that SARS-COV-2
infection can induce virus-reactive cytotoxic T cells. Li et al. (20)

reported a single cell RNA and an immune repertoire profiling

in patients with COVID-19 and revealed a novel neutralizing
antibody. Zheng et al. (24) compared immune cell types in

peripheral blood collected from young and old subjects and
patients with COVID-19 and provided a comprehensive atlas of
human circulating immune cell aging.

In this study, we presumed that the epigenetic status of T cells

is functionally relevant to the pathogenesis stage of COVID-19,
which is supported by our data obtained from the scATAC-seq

and scRNA-seq. To our knowledge, this is the first epigenetic
landscape analysis for T cells of COVID-19 cases in single-cell

resolution. Besides the discoveries of reported transcriptomic
immune profiles of T cells in patients with COVID-19, our

scRNA-seq data showed that histone-related genes were highly
expressed in the total T cells, CD4+ T, and CD8+ T cells, both
in SCPs cases. In addition, decreased Th1 cells were observed
in SCPs and MPs in the CD4+ T cells. Activation marker
(CD69) and HLA class II genes (HLA-DRA, HLA-DRB1, and
HLA-DRB5) were upregulated in SCPs of the CD8+T cells.
The scATAC-seq data of the peak-enriched genes indicated that
an inflammatory state of T cells combined with a possible
deficiency in quantity and the function of CD4+ T cells may
play a key role to orchestrate the CD8+ T-cell-mediated anti-viral
effects. The scRNA-seq data corroborated the results of scATAC-
seq. Our results together present a landscape of chromatin
epigenetic status and transcriptomic immune profiles of T cells
in patients with COVID-19. The landscape indicates that a T-
cell inflammatory state and a deficiency of CD4+ T cells in SCPs
may contribute to the mechanisms underlying the pathogenesis
of and recovery from COVID-19. This, in turn, sheds light on the
possibility of T-cell immunotherapy for COVID-19.
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