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Subclinical doses of LPS (SD-LPS) are known to cause low-grade inflammatory activation

of monocytes, which could lead to inflammatory diseases including atherosclerosis and

metabolic syndrome. Sodium 4-phenylbutyrate is a potential therapeutic compound

which can reduce the inflammation caused by SD-LPS. To understand the gene

regulatory networks of these processes, we have generated scRNA-seq data from

mouse monocytes treated with these compounds and identified 11 novel cell clusters.

We have developed a machine learning method to integrate scRNA-seq, ATAC-seq,

and binding motifs to characterize gene regulatory networks underlying these cell

clusters. Using guided regularized random forest and feature selection, our method

achieved high performance and outperformed a traditional enrichment-based method

in selecting candidate regulatory genes. Our method is particularly efficient in selecting

a few candidate genes to explain observed expression pattern. In particular, among 531

candidate TFs, our method achieves an auROC of 0.961 with only 10 motifs. Finally,

we found two novel subpopulations of monocyte cells in response to SD-LPS and

we confirmed our analysis using independent flow cytometry experiments. Our results

suggest that our new machine learning method can select candidate regulatory genes

as potential targets for developing new therapeutics against low grade inflammation.

Keywords: monocyte, machine learning, inflammation, regulatory motifs, single cell analysis

INTRODUCTION

The innate immune system acts as the first and immediate line of defense targeting broad pathogens
through leukocytes such as neutrophils and monocytes. Lipopolysaccharide (LPS), also known as
bacterial endotoxin, is a key danger-signal causing various inflammatory responses from the host
(1, 2). A higher dose LPS often accompanying with acute bacterial infection can trigger a robust
yet transient inflammatory response, coordinating pathogen removal, and tissue homeostasis (3).
In contrast, subclinical doses of LPS commonly associated with chronic inflammation and mucosal
leakage can cause low-grade and chronic inflammation (1–4). Moreover, chronic inflammation
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contributes to diseases such as cancers, atherosclerosis, and other
metabolic syndromes (1, 2, 5, 6). However, the mechanism
of innate immune responses under chronic and low-grade
inflammation is poorly understood.

There have also been attempts to intervene with the
establishment of low-grade inflammation through the
application of compounds such as 4-PBA that is a fatty
acid molecule and known as a chemical chaperon in ER stress
and a histone deacetylase inhibitor (7–9). The important clinical
application of 4-PBA has been reported as a treatment for
children’s urea cycle disorders (8). Also, other therapeutic
potential and effects of 4-PBA have been investigated from
murinemodel for neurodegenerative diseases such as Alzheimer’s
disease (8). In particular, previous studies explored how 4-PBA
affects chronic inflammation induced by subclinical exotoxin in
macrophage and neutrophils, and reported that 4-PBA restores
anti-inflammatory responses in the innate immune system
(7, 9). These findings provide a novel insight about 4-PBA as
a promising therapeutic compound for chronic inflammatory
diseases. The goal of this study is to understand the underlying
mechanisms of innate immune responses toward low-grade
inflammation and to use this knowledge to contribute to the
understanding and treatment of chronic inflammatory disease.

Single cell RNA-seq (scRNA-seq) has been widely used
to profile gene expression in individual cells, and overcomes
limitations of bulk RNA-seq (10–13). The overall objective of this
study is to identify the different states and key regulators within
the inflammatory responses that are super-low dose-specific
in monocytes. Although a number of studies have analyzed
the response of monocyte to high dose LPS using single cell
RNA-seq technology (14, 15), there is no prior study using
scRNA-seq to characterize monocyte populations under super-
low dose LPS. Whether monocytes, a relatively homogenous
cell population, can be further categorized into sub-populations
under such low dose of external stimuli is still an open question.
In order to achieve this objective, we generated scRNA-seq
data from monocytes with super-low dose LPS (SLD-LPS, 100
pg/ml), 4-PBA and a mixture of super-low dose LPS and 4-
PBA treatments and employed the following strategies. First,
we performed single cell clustering analysis using dimensional
reduction and visualized cells into subpopulations (13, 14).
Second, we examined the gene expression profile of known
and potential marker genes associated with specific immune
responses in monocytes. Third, we applied single cell trajectory
inference to predict transitional cell populations (13, 14, 16, 17).
While it is only possible to trace transcriptional changes with
time series data in bulk RNA-seq, trajectory analyses in scRNA-
seq reconstruct pseudo-time axis and infer predicted transitions
of cell states (11, 13, 15–17). Finally, we identified potential gene
regulatory relationships between transcription factors and target
genes from scRNA-seq and ATAC-seq using a machine learning
method (13, 18).

From the analysis of our scRNA-seq data, we have discovered
that super-low dose LPS induced two subpopulations of low-
grade inflammatory monocytes which were not found with bulk
RNA-seq data.We have identified unique and novel marker genes
in these two states. We characterized functional annotations of

these genes that show distinct changes along pseudo-time that
reflected possible biological transition of cellular responses. Our
analyses also reveal that 4-PBA challenge largely masked the
effects of LPS. Using regulatory sequence analysis and machine
learning, we identified 10 motifs that are potential key regulators
of the dynamic immune responses to super low dose LPS
and 4-PBA. Among these motifs, we have found evidence that
STAT1/2 and IRFs are candidate regulatory genes involved in the
activation process. These discoveries of novel sub-populations
of monocytes, potential key regulators, and novel markers were
validated in protein levels by using flow cytometry.

MATERIALS AND METHODS

Sample Collection
Crude bone marrow cells were isolated from of 6–8 weeks
old male C57BL/6 mice, and cultured in RPMI 1,640
medium supplemented with 10% fetal bovine serum, 2mM
L-glutamine, 1% penicillin/streptomycin and with monocyte
colony stimulating factor (M-CSF, 10 ng ml−1) as we previously
described (5). Cultured monocytes were treated as described
and briefly listed as follows. (1) PBS: phosphate-buffered saline
as a control; (2) SLD-LPS: super-low dose lipopolysaccharide
(100 pg/ml); (3) 4-PBA (1mM): 4-phenylbutyrate known
as a potential therapeutic agent to reduce pro-inflammatory
responses; and (4) 4-PBA and LPS: a mixed treatment with
both SLD-LPS (100 pg/ml) and 4-PBA (1mM). We used E. Coli
0111:B4LPS strain which has been shown to be solely dependent
on TLR4 receptor (19, 20). Fresh LPS and 4-PBA were added to
the cell cultures every 2 days, and the cells were harvested on day
5 to simulate in vitro chronic low-grade inflammation.

Single-Cell Sequencing
The prepared cell samples were processed by 10X Genomics
Chromium Single Cell 3’ Reagent Kits (version 3 Chemistry) for
scRNA-seq, and sequenced by Illumina platform. In brief, 5 ×

105 cells of each sample were sorted and then centrifuged at 300 g
× 5min, 4◦C. The supernatant was aspirated, and cells were re-
suspended in 100 µl of ice cold 1× PBS containing 0.04% BSA.
The cells were then counted with trypan blue to make sure high
viability above 98%. Cell concentration was adjusted to exactly
700 cells/µl by ice cold 1× PBS containing 0.04% BSA, and
cells were kept on ice. Libraries were prepared using the 10X
Genomics Chromium Single Cell 3’ v3 Library and Gel Bead
Kit. Single-cell suspensions were loaded onto the Chromium
Controller to generate 1,000 single-cell gel beads in emulsion per
sample. The cDNA of each sample after amplification of 12 cycles
was quantified by Qubit and quality-checked by Bioanalyzer to
verify the size distribution of cDNA samples and determine
indexed PCR amplification of 15 cycles to yield a sufficient and
unbiased library for sequencing. After library quality control by
Tapestation, indexed library samples were quantified by KAPA
library quantification kit (Universal) and pooled with 15 ul
of 5 nM for each sample. Pooled library sample was sent to
Novogen for sequencing. Pair-end sequencing was performed on
Illumina R© HiSeq platform, with the read length of paired-end
150 bp at each end plus 8-bp i7 index. Cells collected from three
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individual mice were treated and then pooled together for library
preparation and sequencing, in order to achieve robustness and
to reduce batch variation.

Raw Single Cell RNA-Seq Data
Raw sequencing data were analyzed using the Cell Ranger
(version 3.0.2) with mouse reference genome and annotation
(Cell Ranger reference version 3.3.0, mm10, Ensembl 93) from
the 10X Genomics website (https://support.10xgenomics.com/
single-cell-gene-expression/software). The Cell Ranger pipeline
included mapping sequenced reads, and quantifying gene
expression. Approximately, 2,800 cells were obtained from
four samples.

Clustering Analysis
Single cell data from four treatments were analyzed by Seurat
(version 3.1.2) in R (13). Quality control, data normalization,
and scaling were performed using default pipeline of Seurat.
As a quality filtering step, cells with more than 20% of reads
from mitochondrial genes, and cells that have more than
6,500 or fewer than 200 unique genes were removed. The
individually samples were processed, and ∼2,200 cells from four
treatments were retained and merged. Data were normalized
and scaled before dimensionality reduction which is performed
by principal component analysis (PCA), and UMAP were used
for clustering the cells using a graph-based clustering approach
(13). We used UMAP for visualization, which is known to have
better performance than other methods and reflect distances
between cells in different clustering groups and within the same
clustering group.With the clustering result, marker genes that are
differentially expressed and that are expressed in at least 10% of
cells in a target cluster were obtained for each cluster by using the
non-parametric Wilcoxon rank sum test in R.

Trajectory Analysis of Single Cell RNA-Seq
A trajectory analysis was performed through dyno workflow
with dyno (version 0.1.1) and tidyverse (version 1.3.0) libraries
in R (16). Dyno library provides a framework to facilitate
decisions to select the best methods with available computing
capacity and prior resources of users (16). Gene expression
matrices, dimensionality reduction coordinates, clustering, and
cell information were extracted from the clustering results then
added during the inference process. A starting cell that can
be considered as a root cell was decided among randomly
selected cells, that belongs to a cluster with cells mainly from
PBS treatment. Dynbenchmark was used to determine a set of
methods with available resources, given prior information and
data size. A minimum spanning tree (MST) was selected as
a trajectory inference. In order to optimize the trajectory on
the clustering results, MST script in dynverse github (https://
github.com/dynverse/ti_mst/blob/master/run.R) was optimized
by using the UMAP coordinates as input of mclust in R (17)
to decide the best model for clustering and the number of
components based on the highest BIC value. Trajectory was
visualized on the UMAP coordinates. Predictive genes were
differentially expressed genes and changed expression at or along
a branch. The predictive were defined by a R package dynfeature,

and visualized as a heatmap along the trajectory using the R
package dynverse (16).

ATAC-Seq Analysis
Weobtained rawATAC-seq reads ofmonocytes fromGSE100738
(SRR5799491, SRR5799492, SRR5799494, SRR5799493,
SRR5799541, SRR5799542) (18). Based on reports from
FastQC (21), data sets are of high quality and trimming and
filtering are not necessary. Reads were mapped to the mouse
reference (mm10, Ensembl 89 GRCm38) using botwie2 (bowtie2
-k 4 -q -X 2,000 –local –mm –fr –no-unal) (22). Samtools
(samtools view -F 1,804 -f 2 -q 30 -h -b) (23) and picard (picard
MarkDuplicates with default options) (24) were used to select
properly mapped reads with high mapping quality. Filtered reads
were merged and peaks were called using HMMRATAC (java
-jar $HMMRATAC with default options) (25). Peak annotation
was performed with the open chromatin regions of peaks using
annotatePeaks.pl in HOMER (26). The open chromatin regions
that were annotated as the promoter-TSS type were used in our
analysis. Ensemble gene accessions were converted into gene
names to match names in scRNA-seq.

Selection of Positive and Negative Training
Sets
Genes for positive sets and negative sets for each cluster were
defined according to the average fold change and statistical
significance from scRNA-seq and annotation as target genes
on open chromatin regions from ATAC-seq analysis. Genes for
positive sets were first selected among up-regulated differentially
expressed genes (DEG) for individual clusters, respectively where
the minimum percentages of expressed cells of the genes were
10%, adjusted p-values of the genes were lower than 0.05, and the
average fold changes of the genes in cells were equal to or >1.5-
fold. The DEG that were annotated from the peak annotation
were then retained in positive sets for individual clusters.

Genes for negative sets were first selected among non-DEG for
individual clusters, respectively, where the minimum percentages
of expressed cells of genes were still 10%, but adjusted p-values
of the genes were higher than 0.1, and the abstract average
fold changes of genes were smaller than 1.5-fold. Then the
non-DEG were separated into two types of negative sets to
compare performances of methods depending on whether the
non-DEG were annotated on open chromatin regions or not by
peak annotation. The first type of negative sets (negative set 1)
included genes that were the non-DEGs and not annotated from
the peak annotation (non-OCR). The second type of negative
sets (negative set 2) included genes that were the non-DEGs
and annotated from the peak annotation (OCR). Two types of
negative sets were generated for each cluster for next step.

Motif Search and Definition of Positive and
Negative Gene Sets
Genomic sequences of the positive sets and negative set 2
were directly extracted from the coordinates of detected
open chromatin regions. Genomic sequences of the negative
set 1 were extracted from 1,000 bp upstream and to 220
bp downstream of transcriptional start sites (TSS) of genes
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in the negative set 1. When there were multiple TSS
for a gene, we chose a longest protein coding transcript.
Transcription factor binding site models of 531 mouse motifs
(HOCOMOCOv11_full_MOUSE_mono_meme_format.meme)
were obtained from HOCOMOCO v11 webpage (https://
hocomoco11.autosome.ru/downloads_v11) (27). FIMO (meme-
5.0.5 version) (28) with default parameters was used to scan the
extracted regulatory sequences of gene sets for individual clusters
with each of the HOCOMOCO mouse motifs. FIMO hits with q
> 0.05 were counted by gene and motif and converted as a motif
profile. Final positive gene sets, negative gene set 1, and negative
gene set 2 were determined among genes with motifs on their
regulatory sequences.

Motif Enrichment Analysis and Feature
Selection
Motifs from positive gene sets and two negative gene sets
were used as features for individual clusters, respectively. Input
data sets of the enrichment analysis were FIMO hit counts of
individual motifs for genes in positive gene set, negative gene set
1, and negative gene set 2. Chi-squared test and random forest
were applied to themotif count data to performmotif enrichment
analysis and feature selection, respectively. For enrichment test,
Chi-squared test (CT) with Yates’ continuity correction was
performed. Motifs at least 5 hits were applied for the test as
following its requirement. P-values were calculated for individual
motifs, and top 10 motifs by CT were selected based on the -log10
p-value for each cluster, respectively.

As another method to select features, a machine learning
method called guided regularized random forest (GRRF) was
used (29). To perform the guided regularized random forest,
K-fold cross-validation on input data was conducted with K
= 5. The input records were split into five subsets. Genes
from negative gene sets and positive gene sets were sampled
by the stratified random sampling method using create Folds
function in R package Caret (30). One subset was assigned
as a testing data set (20%), then among four subsets one
subset was assigned as a validation data set (20%), and rest
of three subsets were merged and assigned as a training data
set (60%). Four combinations of training-validation data sets
were created for one testing data set, and all five subsets
were assigned as a testing data set once. To build a GRRF
model, an ordinary random forest model was first trained on
training data sets to obtain a list of max-normalized importance
scores. GRRF models with different lists of weighted average
coefficients were generated from different regularization gamma
values on training-validation data sets to optimize this hyper-
parameter. Accuracies across GRRF models with the different
coefficients were compared, and a GRRF model with the highest
accuracy on validation data was used to predict testing data sets.
Performances of trained random forest models on validation data
set were also evaluated by ACC (accuracy), MCC (Matthews
correlation coefficient), F1 score (the harmonicmean of precision
and recall). The best model of each iteration of training-
validation data set was determined based on the maximum
value of ACC × MCC × F1. Performances of prediction on

testing data sets by the best models from four iterations were
evaluated by auROC (the area under the receiver operating
characteristics) and auPRC (the area under the precision recall
curve). The best model of each cluster was decided based on
auROC value. Selected features and their importance score
(mean decrease in Gini Index) were obtained from the best
model on training-validation data sets, and top 10 motifs
by GRRF were selected based on the importance score for
each cluster.

Gene Set Enrichment Analysis or
Functional Annotation
Functional enrichment analysis of groups of genes were
performed by ShinyGO (version 0.61, Ensembl Biomart
96), an online gene-set enrichment tool searching
annotation from various pathway databases such as gene
ontology, KEGG pathway (31). Predictive genes from
trajectory analysis were annotated by enriched functional
categories from KEGG pathways with p-value cutoff
(FDR) < 0.05 from mouse metabolic pathways (314
genesets, R.82.0).

FACS Cytometry Experiment
Cells were stained with specific antibodies against CCR2 (MCP1),
CCR5, CX3CR1, and C5AR1 (CD88) according to protocols we
described previously (5). Labeled cells were analyzed by FACS
Canto II flow cytometer and data analyzed with FloJo Software as
we described previously (5). Data from three biological replicates
were plotted, and representative of two independent repeats.

RESULTS

Experimental Design and scRNA-Seq
Quality Control
To stimulate chronic subclinical inflammation in monocytes,
we isolated leukocytes from mouse bone marrow, cultured
with monocyte selection media, and applied four treatments
for 5 days (Figure 1A) following established protocol (5, 7,
32). Monocytes were persistently treated with super low dose
lipopolysaccharide (LPS), in order to stimulate the chronic
low-grade endotoxemia condition seen in patients (33–36).
In order to investigate potential therapeutic functions of
Sodium 4-phenylbutyrate (4PBA), we treated monocytes with
4PBA and LPS+4PBA, respectively. Phosphate-buffered saline
(PBS) was used as a control. Harvested monocytes were
prepared into single-cell libraries then sequenced using 10x
genomics and Illumina platforms. We analyzed single-cell
RNA-seq data using clustering analysis, trajectory analysis,
and transcription factor binding motif enrichment in open
chromatic regions to understand transitional states in monocytes
(Figure 1B).

From single cell RNA-seq, we obtained a total of 225
million raw reads and 2,772 cells from four samples with 81K
of mean read pairs per cell and 67% sequencing saturation
across samples (Supplementary Table 1). These parameters are
higher than typically recommended values (50K read pairs per
cell and 30–50% of sequencing saturation). In addition, mean
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FIGURE 1 | Single cell analysis of LPS and 4PBA treated monocytes. (A) Experimental design and data collection. (B) Data analysis pipeline. (C) Clustered cell

groups. Dimension reduction using UMAP shows the diversity of cell populations in response to treatments. A pie chart denotes portions of treatments in a cluster.

Sizes of the pie charts are correlated with the number of cells in each cluster. (D) Distribution of cells from each treatment or control samples. Total cells in a

background are in grey color and cells in a sample are in blue color.

reads per gene per cell is 24 for our data (mean sequencing
read pairs divided by the estimated number of cells and
the median genes per cell, see Supplementary Table 1). This

number is higher than many published datasets (37). These
results suggest that our data can detect transcripts with low
expression levels (38–40). We obtained gene expression profiles
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FIGURE 2 | Expression profiles of inflammatory marker genes in monocytes response to LPS challenges. (A) Gene expression levels of pro- and anti-inflammatory

marker genes and interferon-regulatory factor genes related to innate immune regulation in a dot plot. Sizes of dots are proportional to percentages of expressed cells

in each cluster. (B) Relative expression levels of selected gene from (A) in violin plots showing expression levels of genes by clusters (bottom).

where 95.7% of sequenced reads had valid barcodes and 93.3%
reads were successfully mapped to the reference genome. The
overall summary statistics of the sequencing results indicated
that sequencing depths were deep enough to identify cellular
transition in monocytes.

We conducted quality control (QC) to filter cells based
on percent of mitochondrial genes and the number of genes
per cell (Supplementary Figure 1 and Supplementary Table 2).
Average number of genes per cell across samples was 3,300

before QC and 3,700 after QC. Cells with too many and
too few genes were removed to filter out outliers such as
multiplets and dead cells. Among four samples, cells in PBS
and 4PBA samples contained high percent of UMIs from
mitochondrial genes before QC (PBS: 14.8% and 4PBA: 16.1%)
but their percentage decreased after QC (PBS and 4PBA:
8.7%). Correlation value between the number of UMIs and
the percent of mitochondrial genes reduced from −0.45 to
−0.12 after QC, while correlation value between the number

Frontiers in Immunology | www.frontiersin.org 6 February 2021 | Volume 12 | Article 627036

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. ScRNA-seq of Inflammatory Monocytes

FIGURE 3 | Differential expression of chemokine receptors on bone marrow derived monocytes. (A) Representative flow cytometry data of the surface levels of CD88,

CX3CR1, CCR2, and CCR5 on monocytes primed with PBS or super low dose LPS (100 pg/ml) for 5 d. (B) Representative histograms (left panels) and quantification

of geometric mean fluorescence intensity (right panels) demonstrating CX3CR1, CCR2, and CCR5 expression on CD88high population. (C) Representative histograms

(left panels) and quantification of geometric mean fluorescence intensity (right panels) demonstrating CX3CR1, CCR2, and CCR5 expression on CD88low population.

n.s. not significant; **P < 0.01; ***P < 0.001. Student’s t-test.

of UMIs and the number of genes remained the same
(0.94). After the filtering procedure, a total of 14,035 genes
were detected and 2,189 high quality cells were used for
further analysis.

scRNA-Seq Identified Activated
Monocytes in Response to Subclinical
Low-Dose Endotoxin, Which Were
Suppressed by 4-PBA
We integrated the filtered individual expression profiles of
monocytes treated with four treatments into one data set, and
performed dimension reduction and clustering analysis. We
identified 11 clusters (C0–C10) from ∼2,200 monocyte cells
from four treatments (Figure 1C and Supplementary Table 3).
Interestingly, we observed that 11 clusters of monocytes from
scRNA-seq consist of both homogenous and heterogeneous sub-
populations in response to treatments. Among 11 clusters, three
clusters are relatively homogenous clusters, which are dominated
by cells originating from one sample. Other eight clusters are
composed of cells from multiple samples. For example, almost
all cells (95%) in cluster C0 are from the PBS treated sample,
and cells in cluster C4 and C5 are mostly from the LPS treated
sample (90 and 85%, respectively). Other clusters are consisted
of cells from two or more treatments. For example, cells from
cluster C2, C3, C7, and C8 are mainly cells treated by either
4PBA or LPS+4PBA. Cluster C1 has the second largest number

of cells among all clusters, and these cells are mainly from three
treatments (4PBA, LPS+4PBA, and LPS) with each contributes to
more than 20% cells in cluster C1. Cluster C6 also has cells from
three treatments (LPS, LPS+4PBA, PBS).

Distinct cell clusters with differentially expressed genes
following the four different treatment regimens were shown in
Figure 1D. Majority of PBS cells are found in cluster C0 (72%).
Majority of LPS cells are separated into two clusters C4 (32%)
and C5 (28%). UMAP plots of PBS and LPS treated samples
have distinct distributions, respectively compared with other
treatments with the exception of C6. In contrast, cells from
LPS+4PBA and 4PBA are spread out into several clusters with
more diverse expression patterns. The cells under these two
treatments show substantial overlap in the dimension reduction
plot, suggesting that majority of the effects of LPS are masked
by 4PBA treatments, supporting a potential role of 4PBA in
overriding the effect of LPS.

In summary, we found that C0 mainly includes cells from
the control sample (PBS treatment). C4 and C5 are mainly LPS
treated cells. The major populations in C2, C3, C7, and C8 are
4PBA and LPS+4PBA treated cells, which suggests that 4PBA
masks the effect of LPS treatment in these clusters. C1 is a
unique sub-population including cells from all three types of
treatments but almost no cells from control samples. C6 and C9
are two smaller sub-populations where >90% of genes in C6 are
expressed lower than in other clusters, and 95% of genes in C9 are
expressed higher than in other clusters. C10 is a small cluster with
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FIGURE 4 | Trajectory analysis of scRNA-seq data. (A) Inferred trajectory of cellular transitions along 17 milestones (A–Q) on the clustering map. There are five

trajectory branches: milestones A-to-F; F-to-I; I-to-L; I-to-P; and F-to-Q. A legend on the right denotes 11 clusters (C0–C10) with different color codes. (B) Inferred

trajectory on the sample map with control and treatments. A legend on the right denotes four samples (PBS, LPS, LPS+4PBA, 4PBA) with different color codes. (C)

Inferred trajectory on a pseudo time map. A starting cell was defined from a cell treated with PBS and in C0. (D) Gene expression profile and enriched functional

annotation of 936 predictive genes that change expression level along trajectory branches. The predictive genes were clustered and visualized in a heatmap. The

heatmap was split into 7 classes with functional terms on the right side. Cells from 11 clusters are sorted along the trajectory and 17 milestones are marked on the

bottom of the heatmap.

only 41 cells. In contrast to the C0 cluster, where most control

cells were located, cells in response to LPS, 4PBA, or LPS+4PBA

are found in 10 clusters that are more heterogenous than the

control samples in the dimension reduction plot, indicating

that monocytes have heterogenous responses to LPS, 4PBA,

or LPS+4PBA.

scRNA-Seq Identified Two Distinct
Clusters of Low-Grade Inflammatory
Monocytes Primed by Subclinical Low
Dose Endotoxin
To better understand the functions of each cluster, we analyzed
expression of known genes in each cluster using a dotplot. In
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FIGURE 5 | Comparison of motifs enrichment analysis and feature selection by random forest (RF) and Chi-squared test (CT). (A) Pipeline of motif analysis composed

of four steps including preparation of input data sets based on positive and negative gene sets and performing Chi-squared test and random forest. (B) Motif selection

(Continued)

Frontiers in Immunology | www.frontiersin.org 9 February 2021 | Volume 12 | Article 627036

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Lee et al. ScRNA-seq of Inflammatory Monocytes

FIGURE 5 | results of cluster C0, C4, and C5 by RF and CT. Total 84 selected motifs were visualized in tile plots. (C) Expression profile of transcription factor genes

corresponding to the selected motifs in cluster C0, C4, and C5. Some motifs have different names for their genes: KAISO—Zbtb33; TF2L1—Tfcp2l1;

THA11—Thap11; TYY’—Yy1; ZBT17—Zbtb17. (D) Prediction performance of cluster C0, C4, and C5 with top N motifs in auROCs by RF and CT. (E) Prediction

performance of cluster C0, C4, and C5 with top N motifs in auROC values from 5-fold cross-validation by RF and CT. Green arrowheads indicate the number of

accumulated motifs where average median and mean auROC values are equal to or higher than 0.9. Names of top 10 motifs were listed on the bottom of the box

plot, and one or two motifs with the highest auROC improvement were highlighted in red color.

a dot plot (Figure 2A), the average expression level of each
gene in each cell cluster is represented by dot color, while
the percentage of cells that each gene is expressed within each
cluster is represented by the size of the dot. With single cell
precision, our data confirms a well-reported phenomenon of
monocyte priming by persistent challenge of super-low dose LPS,
in contrast to the tolerance phenotype observed in monocytes
challenged with higher dose LPS (6, 41). Our single cell analysis
also confirmed previous reports showing limited expression of
acute inflammatory cytokines such as Tnfα (42), indicating
a low-grade inflammatory state induced by subclinical low
dose LPS. Furthermore, we observed two distinct clusters of
activated monocytes (cluster C4 and C5) following the persistent
challenge with subclinical low dose LPS, which we termed as
ML1 (cluster C4) and ML2 (cluster C5) that manifest unique
biological features of activation. Consistent with previous reports
with whole cell studies (32, 43), we observed that subclinical
low dose LPS preferentially programmed monocytes into low-
grade inflammatory states with elevated expression levels of
chemokines (e.g., Ccl6, Ccl9, Cxcl16, etc.), chemokine receptors
(e.g., Ccr2, Ccr5, Cx3cr1), scavenger receptors and adhesion
molecules (e.g., Msr1, Fcgr1, Icam1), and co-activators (e.g., Aif1
and Cd40) (Figure 2 and Supplementary Figure 2, see ML1 and
ML2 clusters).

ML1 cells preferentially express C5ar1, encoding the
complement receptor protein CD88; multiple interferon
activated genes (e.g., ifit2, ifit3 etc.); Msr1 encoding scavenger
receptor R1 (SR-A1); as well as Ccr5 encoding a key chemokine
receptor involved in the recruitment of innate monocytes
to inflamed tissues (44). On the other hand, the ML2 have
preferential expression of Ccr2 (Figure 2B), another key
chemokine receptor involved in the recruitment of inflammatory
monocytes; Cx3cr1, a signature chemokine receptor identified
on classically activated monocytes from both murine and human
peripheral blood cells (44, 45). However, the levels of C5ar1 were
relatively low on ML2 cells. Our data were also consistent with
previous studies showing that human intermediate monocytes
tend to express higher levels of CCR5, while the classical
monocytes tend to have higher levels of CCR2 (6). Although
both sets may be involved in the pathogenesis of inflammatory
diseases such as atherosclerosis, the differential expression
of distinct inflammatory gene sets revealed from our study
suggests their unique contributions. The ML1 cells resemble the
intermediate inflammatory monocytes coordinating immune-
enhancing inflammatory responses identified from human
patients with auto-immune diseases such as rheumatoid arthritis
(RA) as well as atherosclerosis (46–48). ML2 cells may represent
classically activated inflammatory monocytes being recruited to
inflammatory sites such as atherosclerotic plaques (49–51).

Given the previous findings that low-grade inflammatory
monocytes have elevated transcription factors such as IRF5 (6,
32), we examined the levels of interferon-regulatory factor family
transcription factors (e.g., Irf1, Irf2, Irf3, Irf5, Irf7, Irf8, and
Irf9) among the sub-populations, represented by the dot plot
as shown (Figure 2A). Indeed, we found that the expression
of pro-inflammatory Irfs such as Irf1, Irf5, Irf7, and Irf9 were
all elevated in ML1 and ML2 cells as compared to PBS control
cluster C0. On the other hand, the levels of Irf3 and Irf8 were
largely not impacted by LPS challenge as compared to PBS
control. Interestingly, our cluster analysis revealed that the ML1
cells had higher levels of Irf1 and Irf7 (Figure 2B) as compared
to the ML2 cells. In contrast, ML2 cells had relatively higher
levels of Irf5 (Figure 2B) as compared to ML1 cells, suggesting
potentially distinct activation mechanisms among these two
distinct clusters. Together, our data reveal two distinct sub-
population of low-grade inflammatory monocytes with distinct
inflammatory features programmed by subclinical low-dose LPS,
potentially governed by unique Irf transcription factors.

4-PBA Potently Reprograms an
Anti-Inflammatory Monocyte Phenotype
and Masks the Effects of Subclinical Low
Dose LPS
4-phenylbutyric acid (4-PBA) is a potent chemical compound
capable of relieving cellular stress, and has been shown to
exhibit beneficial anti-inflammatory effects both in vitro and in
vivo (52–54). To test its efficacy in reprogramming monocytes,
we cultured murine monocytes with 4-PBA for 5 days as we
previously described (9). As shown in Figure 2, 4-PBA treatment
selectively programmed three clusters of anti-inflammatory cells
(cluster C1, C2, and C3), with reduced expression of C5ar1,
Msr1, Ccl6, Ccl9, Cxcl16, Ccr5, Icam1, and Cd40 as compared
to PBS treated cluster C0 or LPS treated clusters C4 and
C5 (Figure 2A). In contrast, 4-PBA drastically induced the
expression of selected anti-inflammatory mediators such as
Plac8 in clusters C1, C2, and C3. 4-PBA treated cells also had
reduced levels of transcription factors Irf1 and Irf5, consistent
with a reduced inflammatory state (Figure 2A). Our results also
revealed some intriguing phenomena in terms of the expression
of catalase (gene name cat), which was reduced by both 4-PBA
and subclinical low dose LPS. Surveying the populations detected
with both 4-PBA and LPS challenge, we found that 4-PBA largely
masked the effects of LPS as shown in clusters C8 and C9.
Our data revealed that indeed 4-PBA preferentially suppressed
the polarization of both subsets of low-grade inflammatory
monocytes, consistent with its anti-inflammatory effects with
animal models (53, 55, 56).
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We further confirmed the induction of key representative
protein molecules through flow analyses (Figure 3). Consistent
with our single cell sequencing analysis, monocytes challenged
with subclinical low dose LPS are separated through flow
analysis into at least two sub-population based on CD88 (C5ar1)
expression. Persistent challenge with subclinical low dose LPS
also induced the surface expression of CCR2, CCR5, and
CX3CR1. Interestingly, although the induction of CCR2, CCR5,
and CX3CR1 occurred on the CD88 high population, CCR5
was primarily induced on the CD88 high, but not the CD88
low population (Figure 3C). These results in protein expression
levels are consistent with gene expression level in the scRNA-
seq data. Although the absolute number of cells in the two
subpopulations is different from the results in scRNA-seq, such
difference might be explained by the differences in transcription
levels and protein levels.

Potential Ontogeny of the Low-Grade
Inflammatory Monocyte Clusters With
Trajectory Analysis
Given the clear advantage of single cell analysis in defining the
heterogeneity of cells, one may infer the ontogeny of activated
cell populations with the pseudo-time trajectory analysis. To
understand the transition of cells between different states, we
performed trajectory analysis on the scRNA-seq data. The cluster
C0 served as the natural origin of the trajectory, because it is
PBS-treated control. A starting cell was randomly selected from
the PBS sample as the root of pseudo time in PBS dominant
cluster C0. To choose the most appropriate clustering method,
we used Dynbenchmark, which compared and recommended
trajectory methods based on computing capacity and prior
information such as the choice of the starting cell (16). After
testing several methods suggested by Dynbenchmark, we have
selected minimum spanning tree (MST) method to infer a
pseudo-time trajectory because the trajectory best fit the observed
subpopulations. The MST method used mclust (17) to find
the clustering groups and to generate MST based on distances
between centers of groups as weights. Usingmclust, 17 subgroups
were clustered as the best fit to our data and centers of these
subgroups were determined as milestones. Based on distances
of path branches where is a path between two milestones, the
minimum weights were decided and MST was calculated on the
UMAP coordinates.

We inferred a trajectory with 17 milestones (A to Q) that
reflect the progression of immune responses in monocytes in
response to LPS and 4PBA challenges (Figure 4). The main
transition of cellular states on the trajectory is from a naïve
state (PBS treatment, cluster C0) to pro-inflammatory state
(LPS treatment, cluster C4 and C5) and to anti-inflammatory
state (4PBA treatment, cluster C3, C2, C1) (Figures 4A,B). We
broke the trajectory into five branches based on the biological
information and expression coherency. First branch of interest
is the trajectory from A to F. This branch represents the response
of monocytes to LPS treatment (Figure 4B) and accounts for 1/3
of pseudo-time scale in the UMAP plot (Figure 4C). From the
milestone F, two branches were derived; the trajectory from F

to Q and the trajectory F to I. Second branch of interest is the
F-to-I branch, which represents the transition from LPS treated
state (pro-inflammatory) into 4PBA+LPS treated state (anti-
inflammatory). Two branches were spread out from this F-to-I
branch, including I-to-P branch and I-to-L branch. The I-to-P
branch represents the transition into cluster C8 and C6, and the
I-to-L branch represents the transition into a large cluster C1 and
then a minor cluster C9.

To understand the changes in the gene expression patterns
and the gene functions along these branches, we identified genes
highly expressed in each branch, visualized their expression
levels, and performed functional enrichment analysis of
these genes in KEGG pathway terms. We divided highly
expressed genes into seven classes based on expression patterns
(Figure 4D). Note that these classes of genes are essentially
clusters of genes and are different from cell clusters. Genes
in class 1 are highly expressed in the beginning of A-to-F
branch where cells in cluster C0 are sorted in the beginning
of the branch, and the gene expression of class 1 is gradually
decreased along A-to-F branch which marks progression of
the pro-inflammatory responses. Genes in class 1 are enriched
with function in lysosome and phagosome, which are relevant
to key monocyte functions such as phagocytosis (57, 58).
In contrast, class 4 includes genes involved in ribosome
and RNA transport. The levels of these genes in class 4
were low in the beginning of A-to-F branch which includes
pro-inflammatory cells, then gradually increased through
F-to-I branch and coincided with the reduced expression of
pro-inflammatory genes in class 1 and class 2. This trend
continues through I-to-L branch, and decreases through
I-to-P branch. Class 5 includes genes from spliceosome
and proteasome as well as oxidative phosphorylation. The
distribution patterns of class 5 were similar as compared to
class 4, but the activation of these genes was more concentrated
on milestone I and cells in cluster C2 toward the end of F-
to-I branch and continued toward I-to-L branch. Increased
oxidative phosphorylation in monocytes is associated with
the anti-inflammatory polarization. This is consistent with
the fact that these cell clusters within the F-to-I branch as
well as I-to-L branch are 4-PBA responsive clusters exhibiting
anti-inflammatory phenotypes and reduced expression of
pro-inflammatory genes.

Class 6 and class 7 include genes activated on two opposite
branches (I-to-L and I-to-P branches), respectively, which
suggest two distinctly polarized states in cells challenged with
4-PBA together with LPS. While the I-to-L branch correlated
with anti-inflammatory features as well as enhanced expression
of genes involved in oxidative phosphorylation, the I-to-P branch
preferentially expressed genes involved in glucose metabolism
such as the PPP pathway as well as genes involved in lipid
digestion and absorption. Our data suggest that the effects
of LPS and 4-PBA may be competitive in shaping the final
outcome of monocyte fates, with the effects of 4-PBA mostly
taking the upper hand among the I-to-L branch while the
effects of LPS taking a slight dominance in the I-to-P branch.
Further functional confirmation will be needed to examine the
detailed mechanisms.
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Machine Learning Predicts
Cluster-Specific Motifs With Better
Performances Than Enrichment Analysis
To further elucidate the regulatory mechanisms of scRNA-
seq results, we used a machine learning method to identify
and to prioritize potential key transcription factors using
binding motifs and mouse monocyte ATAC-seq data and
scRNA-seq. In particular, we have adapted a guided, regularized
random forest method using feature selection to prioritize
motifs that are enriched in the proximal regulatory regions
and on open chromatin regions of genes in each cluster.
As compared our previous method using logistic regression
with L1 regularization (59), random forest method allows
us to explore different approach to combine features in
the feature selection process. The results from machine
learning method was compared with the results from
conventional Chi-squared test to determine which method
has a better performance based on auROC and auPRC curves
(Figure 5A).

For motif enrichment analysis, we performed Chi-squared
test to identify enriched motifs and random forest to select
important motifs using feature selection (Figure 5A and
Supplementary Figure 3). As input data, positive gene sets
and negative gene sets were defined for individual cluster,
respectively according to gene expression levels and chromatin
accessibility of transcription factors binding sites of the target
genes (Supplementary Figure 2 and Supplementary Table 4).
Genes in positive sets were differentially expressed genes (DEG)
with open chromatin regions (OCR) that were annotated as
promoter-TSS regions by HOMER (26). For negative gene sets,
we tested two approaches, including negative gene set 1 and
negative gene set 2. Genes in both negative gene sets were non-
DEGs, but genes in negative gene set 1 do not have promoter-TSS
open chromatin regions (non-OCR) and genes in negative gene
set 2 have OCR. Number of genes in positive and negative sets
were shown in Supplementary Table 4. With genes in positive
and negative gene sets for individual clusters, we next searched
known motifs on the promoter-TSS regions of genes in positive
and negative gene sets for individual clusters. We counted motif
hits per gene in the OCR regions and generated hit count profiles
as input data of further analysis. Since genes in negative set 1 do
not have OCRs, we searchedmotifs in 1,200 bp sequences up- and
down-stream of TSS for these genes. We used 1,200 bp because
this is the average length of annotated open chromatin regions in
promoter-TSS regions. We performed motif enrichment analysis
with motifs in positive and negative gene sets by using Chi-
squared test and random forest (Figure 5A). We compared
performances ofmotif enrichment analysis between to input gene
sets with negative gene set 1 and negative gene set 2 in each
cluster with auROC curves (Supplementary Figure 4). Average
mean AUC values across 11 cluster of gene set 1 is 0.986 and
those of gene set 2 is 0.691 (Supplementary Figure 4A). For CT,
average –log10 p-value of gene set 1 is 21.4 and those of gene
set 2 is 1.9 (Supplementary Figure 4B). Since negative gene set
1 showed better results from both RF and Ct, we used gene set 1
for further analysis.

We scanned 531 mouse motifs and we detected 84 motifs
that are enriched in one or more clusters (Figure 5B and
Supplementary Figure 5). Among these motifs, 59 motifs were
detected using Chi-squared test (CT), whereas RF identified 82
motifs. In order to prioritize potential key regulators in low-LPS
inflammation in monocytes, we perform features selection by
selected top 10 motifs by importance scores from RF and by p-
value from CT (Supplementary Table 5). We identified top 10
motifs for each of the 11 clusters and because there are motifs
that are in the top 10 list for more than one clusters, we obtained
33 unique motifs in total, with 30 motifs from RF and 16 motifs
from CT. There are 13 motifs were identified as top 10 motifs
for both RF and CT methods, and 3 motifs and 16 motifs were
unique in CT and in RF, respectively.

Moreover, the distribution of top 10 motifs across 11
cluster is distinct between RF and CT (Figure 5B and
Supplementary Figure 5). We found that top 10 motifs from
CT are mostly the same across different clusters, whereas
top 10 motifs from RF are very different in each cluster
(Supplementary Figure 5A). For example, both CT and RF
identified five IRFs (IRF1/2/3/4/8) as important motifs. However,
using CT, IRF1/4/8 were identified as top 10 motifs across 8 or
more clusters. In contrast, using RF, no IRF were considered
as top 10 across more than 6 clusters. In particular, IRF1 was
identified as important motifs in all 11 clusters by CT, but these
clusters have very different biological functions. In contrast, RF
defines IRF1 as a common top motif in cluster C0, C1, C2,
and C3, but not in C4 or C5. Cluster C0–C3 all have naïve
or anti-inflammatory characteristics, where as C4 and C5 are
inflammatory clusters. These results suggest that RF selected
motifs that are more cluster-specific than CT.

To investigate relationship between top 10 motifs in RF
and CT, we looked into the patterns of the motif sequences
(Supplementary Table 6). We grouped top 10 motifs by
transcription factor family, and there are 33 unique motifs
found in at least one in 11 clusters from both CT and RF.
These 33 unique motifs belong to 10 TF families. We found
that RF usually has more motifs for each TF family than
CT. For example, as three-zinc finger Krüppel-related factors,
RF selected 8 motifs (KLF15.0.A, KLF3.0.A, SP1.0.A, SP1.1.A,
SP3.0.B, SP4.0.B, SP4.1.B, SP5.0.C) and CT selected 3 motifs
(SP1.0.A, SP2.0.B, SP5.0.C). This result suggest that RF is more
sensitive and can pick up small difference between highly similar
motifs from the same gene family.

We also analyzed the gene expression levels of transcription

factors of 84 motifs to understand gene regulation by TFs

together with motif enrichment analysis results (Figure 5C and

Supplementary Figure 5B). Since some TFs have two motifs,

there were 75 genes and 84 motifs. Among these 75 genes, only

64 genes were detected in scRNA-seq data. The fold change of

expression of these 64 genes are not as high as compared to other

marker genes (Figure 2A). Also, expression levels of TFs do not

show clear association with motif enrichment results when we

compared individual cluster along the pseudo-time. Some TFs,

for example, IRF4 and SPIB are not highly expressed, but their
motifs were selected as top candidate motifs by both RF and CT.
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In other situations, for example, IRF8 and SPI1, highly expressed
genes do have motifs that are also selected. Finally, genes such
as STAT1 and STAT2 are both highly expressed, but their motifs
were only selected by RF but not CT. This result suggests that
transcription levels and protein levels may not be correlated
for some TFs but for others, there is correlations between the
expression level and motif enrichment.

To test the performance of top 10 motifs for RF and CT, we
generated ROC curves for these motifs and analyzed how ROC
curves changes for each method. First, both CT and RF show
excellent auROC values with top 10 motifs. Average AUC across
11 clusters with all 84 motifs from RF was 0.986. Using only
top 10 motifs from RF, we obtained an AUC of 0.979 and using
top 10 motifs from CT, we obtained an AUC of 0.961. These
performances indicated that only with top 10 motifs from both
methods can effectively classify positive and negative gene sets.

Since both approaches provide high auROC values with
top 10 motifs, we then evaluate degree of separability with
top 10 motifs by comparing performance of motif selection
of each method by predicting testing data with top N motifs
(N = 1–10) by including motifs one by one (Figures 5D,E
and Supplementary Figures 6, 7). We trained random forest
models with top 10 selected motifs from CT and RF, respectively.
When we applied the models to testing data, we used top N
motif to evaluate the prediction performance. By increasing
the number of motifs, ROC curves approached to the top-left
corner, indicating the perfect classification shape with higher
true positive rate and lower false positive rate (Figure 5D and
Supplementary Figure 6). When we compared ROC curves
between RF and CT, ROC curves with RF motifs reached the
better classification results with fewer motifs consistently. The
same result was found for auPRC (Supplementary Figure 6).

For example, in auROC graphs of cluster C0, ROC curves
of using up to five motifs by CT were near the diagonal line
(Figure 5D), with average auROC below 0.8 at 5 motifs. In
contrast, the ROC of top 1 motif by RF was near the diagonal
line and showed an average auROC of 0.6. When the second-
best motif was added, the average auROC is already higher than
0.9 (Figure 5E and Supplementary Figure 7A). As mentioned
before, average AUC values cross 11 clusters with top 10 motifs
by both methods were high and close to one. However, motifs
selected by RF using importance score approach high AUC
values with fewer motifs. For example, in cluster C0, seven
motifs selected by CT method were needed to reach AUC
= 0.9, but only three motifs from RF were required for the
same performance. This difference is observed in other clusters
consistently (Figure 5E). In summary, these results indicate that
motifs provided by RF show better performances with fewer
number of motifs.

To understand these differences between RF and CT, we
checked the number of target genes of top 10 motifs in positive
gene sets by RF and CT (Supplementary Figure 7B). The total
number of target genes that could be potentially regulated by
transcription factors (TF) of top 10 motifs were similar between
RF and CT methods. However, as we included top motifs one
by one, the accumulated number of target genes with RF motifs
increased faster. For example, two or three motifs by RF covered

more than 70% target genes in positive gene sets, while CT
needed 5 motifs in average. This suggests that RF provides higher
importance scores to motifs that are highly connected to target
genes. Based on these prediction performances as well as the
gain of target genes, we conclude that selected feature by RF
method are more specific for each cluster with higher degree of
separability than feature selection by CT method.

DISCUSSION

Monocytes are innate immune cells that play crucial and
diverse roles during the modulation of host inflammatory
environment. A better understanding with regard to
the monocyte activation dynamics is needed in order
to guide the future effective treatments of both acute
and chronic inflammatory disorders. Previous study with
monocytes/macrophages by bulk RNA-seq data allows the
identification of key differentially expressed mediators for
further analysis based on their average expression levels
from the whole cell population (7). However, the bulk
RNA-seq approach will not be able to properly differentiate
diverging sub-populations of monocytes differentially activated
toward multiple trajectories. In this project, we performed
single-cell RNA-seq analyses of monocytes that allows us to
quantify gene expression levels for individual monocytes,
overcoming the limitation associated with the conventional
bulk RNA-seq.

Our single cell analysis revealed two distinct populations of
activated monocytes (C4 and C5) when persistently challenged
with subclinical super-low dose LPS, which we named as
ML1 and ML2. Consistent with the previous studies with
the conventional approaches, we confirmed that indeed the
persistent challenge with SLD-LPS preferentially induced the
low-grade activation of monocytes as reflected in the increased
transcription factor signatures of IRF1, 5, and 7 (6, 32, 60, 61)
in the LPS responsive clusters of C4 and C5. Both IRF1 and
IRF5 were shown by conventional biochemical approaches as
the key transcription factors involved in the polarization of
inflammatory monocytes (62, 63). Furthermore, LPS-activated
monocyte clusters (C4, C5) also express elevated levels of
chemokines such as Ccl2, Ccl6, Ccl9, and Cxcl16, adhesion
molecule Icam1, and phagocytic receptor Fcgr1 (Figure 2).
Our single cell analyses also revealed unique features of two
distinct clusters activated by SLD-LPS. ML1 cells in cluster
4 preferentially expressed C5ar1, Ccr5 and resembled the
intermediate inflammatory monocytes observed in both human
and mice systems (6, 58). In contrast, ML2 cells in cluster 5
preferentially expressed Ccr2, Cx3cr1, and Il18, resembling
the classical Ly6Chi inflammatory monocytes observed
previously (58, 64). ML1 monocytes might be preferentially
associated with propagating low-grade inflammatory processes,
while ML2 monocytes might be implicated in coordinating
additional pathophysiological events such as patrolling,
adherence, phagocytosis through limited proliferation. Given
the powerful approach of single cell sequencing analysis that
provides additional details of cellular activation states, similar
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approaches can be applied in the future to define additional
states of monocyte programming during the pathogenesis
of wide arrays of inflammatory diseases such as chronic
atherosclerosis and acute sepsis. For example, different subsets
of low-grade inflammatory monocytes might be differentially
involved in the initiation of low-grade inflammation and the
accumulation of foamy macrophages. On the other hand,
prolonged challenges with higher dose LPS may lead to
dysfunctional innate leukocytes with an exhausted phenotype
characterized by pathogenic inflammation and immuno-
suppression associated with elevated sepsis (65). Future single
cell sequencing analysis will be helpful in defining additional
sub-populations of monocytes adopting distinct phenotypic
states representing both chronic atherosclerosis and acute
sepsis, dependent upon the duration and intensity of external
danger signals.

In contrast, 4-PBA treated cell clusters (C1, 2) had reduced
expression of these inflammatory genes, consistent with the anti-
inflammatory effects of 4-PBA reported previously (7, 66). When
challenged together, the effects of 4-PBA can largely over-shadow
the polarizing effects of super-low dose LPS. However, perhaps
due to the competing nature of 4-PBA and super-low dose
LPS, cells co-treated with LPS and 4-PBA also give rise to two
distinct populations with unique trajectories. It is interesting to
note that one of the populations derived from LPS plus 4-PBA
treatment expressed genes enriched with metabolic PPP (pentose
phosphate pathway), while the other branch exhibited genes
involved in oxidative phosphorylation (Figure 4). Our findings
are consistent with emerging studies revealing a close connection
between metabolic alterations with monocyte polarization (67).
Both the PPP and oxidative phosphorylation processes have
been implicated in maintaining monocyte homeostasis, with
PPP pathway generating NADPH involved in anti-oxidative
processes and the oxidative phosphorylation pathway leading to
enhanced ATP generation (67, 68). Future mechanistic studies
are needed to further define the homeostatic effects of 4-
PBA in preferentially re-programing monocytes in vitro and
in vivo.

Gene expression profile at the single-cell level can be used to
infer cellular changes on the pseudo-time course from samples
with one time point. In particular, this study treated monocytes
with four treatments for 5 days to induce the low-grade and
non-resolving inflammation in vitro. Based on results from
trajectory analysis, we predicted cellular states of monocytes in
response to inflection by LPS and anti-inflammatory treatment
by 4PBA from naïve status by PBS. We have tested several
trajectory finding algorithms and surprisingly, the best methods
established by published benchmarking experiment performed
poorly in our data set. The predicted trajectories either
do not accurately follow the observed changes in the cell
population or, in some cases, fall outside of the observed cell
populations. We have found that the key step to determine a
visually optimal trajectory is to fine tune the number of mile
stone cells and number of clusters in the data. Determining
number of clusters has been a major challenge in the field of
unsupervised clustering analysis. More robust approaches would

be needed to automate the process of trajectory analysis in
the future.

To identify regulatory genes that modulate cellular states
and underlying mechanisms of responses, we integrated scRNA-
seq results with bulk ATAC-seq data from monocytes. Relying
on scRNA-seq alone is limited to determine regulators that
modulate the expression, since transcriptome data is designed
to capture transcripts of responsive genes not transcription
factors or regulatory RNAs that are already present in cells or
not detected by the technology. Using the published ATAC-
seq data from the cell type, monocyte, supplemented the
missing information of participating transcription factors with
the accessible chromatin regions where transcription factors
can bind to in monocytes. By integrating two types of data
sets, we predicted potential transcription factors that regulate
differentially expressed genes in each group of cells. From
530 motifs in HOCOMOCO mouse DB, our RF method
selected 10 motifs for each cluster and achieved high, average
auROC of 0.96, suggesting that these motifs and their
associated TFs can be key regulators controlling gene expression
of monocytes.

We choose random forest method because it has been
demonstrated to have good performances for gene expression
data analysis in several papers (59, 69, 70). We also tested another
methods using Lasso and Elastic-Net Regularized Generalized
Linear Models (71) in our preliminary analysis. However, the
performance is not comparable to the random forest method
and this model is not included in our final result. Additionally,
we found that random forest approach can always achieve
similar performance with fewer motifs selected as compared to
motif enrichment-based approach. This highlights the usefulness
of machine learning methods in detecting motif combination
through optimization across multiple motifs in contrast to
enrichment test where one motif is considered at a time
(72). The top 3 motifs selected by random forest can achieve
a high auROC of 0.90 for some clusters, which provides a
substantial reduction of the search space from 530 motifs to
only 3 motifs, which is highly useful for determining candidate
regulators from RNA-seq data. Finally, RF identified genes
such as STAT1 to be key regulatory genes related to newly
discovered ML1 and ML2 sub-populations of monocytes but
not in the homeostasis population of monocytes. This result is
not obtained by enrichment test. With the known function of
STAT1 in polarizing inflammatory monocytes (73), our results
suggest that the RFmethod implemented in this analysis provides
biologically relevant prediction than traditional approaches.
Additional experimental validations will be needed in future
works to validate the predicted motif enrichment by perturbing
the TFs with such binding sites.
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