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Chimeric antigen receptor (CAR) T cell therapy represents a breakthrough in
immunotherapy with the potential of ushering in a new era in cancer treatment.
Remarkable therapeutic response and complete remission of this innovative
management have been observed in patients with relapse/refractory acute lymphoblastic
leukemia. With CAR-T cell therapy becoming widely used both in multicenter clinical trials
and as a commercial treatment, therapeutic efficacy monitoring and management of
toxicities will be indispensable for ensuring safety and improving overall survival.
Biomarkers can act not only as effective indicators reflecting patients’ baseline
characteristics, CAR-T cell potency, and the immune microenvironment, but can also
assess side effects during treatment. In this review, we will elaborate on a series of
biomarkers associated with therapeutic response as well as treatment-related toxicities,
and present their current condition and latent value with respect to the clinical utility. The
combination of biomarker research and CAR-T cell therapy will contribute to establishing a
safer and more powerful monitoring system and prolonging the event-free survival
of patients.

Keywords: chimeric antigen receptor T cell, relapse/refractory acute lymphoblastic leukemia, biomarkers,
therapeutic response, adverse events
INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a hematological malignancy that originates from clonal
expansion of malignant B or T cell. The morbidity rates associated with ALL in the United States
and China were reported as 1.7/100,000 and 0.69/100,000, respectively (1). Conventional treatments
for patients with ALL include high-dose combined chemotherapy, targeted therapy, and allogeneic
hematopoietic stem cell transplantation (allo-HSCT). Despite these standardized and intensive
therapies, many patients still suffer from relapse, with the relapse rate counts for 15–20% in
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pediatric and 50% in adult B-ALL patients (2, 3). Refractory or
relapse (RR) ALL remains the major cause of cancer-related
mortality in children and adult patients. The 5-year survival rate
of RR-ALL pediatric patients was 21 ± 0.8% and lower than 7% in
adult patients (4). Allo-HSCT is the only therapy that offers the
possibility of achieving long-term survival in these patients.
However, nearly 90% of the RR-ALL patients missed the
opportunity of allo-HSCT due to their poor tolerance to
chemotherapy or failure to achieve complete remission before
allo-HSCT.

In recent years, the increasing advancements and
applications of cellular immunotherapy have enabled the use of
chimeric antigen receptor (CAR) T cell therapy, and it has
emerged as an efficacious method for the treatment of
hematological malignancies (5, 6). CD19 CAR-T cell therapy
for B-ALL achieved remarkable efficacy with a complete
remission of 70–90% (7–9); multiple clinical trials using CD19
CAR-T therapy in RR-ALL have been summarized in Table 1.
Nevertheless, clinical prognosis is heavily influenced by CAR-T
cell function, tumor microenvironment, severe toxicities,
primary resistance, and relapse. In addition, CAR-T cell
features, including T cell subsets and stages of differentiation
prior to engineering or in the final product, remain the major
factors associated with CAR-T cell function (30). Therefore, early
prediction, timely diagnosis, and effective intervention, together
with the development of innovative CAR-T cell products, play a
major role in managing these problems. In this review, we
generalize biomarkers associated with therapeutic response and
toxicities correlated with CAR-T cell therapy, which may be
beneficial for evaluating the expansion and persistence of CAR-T
cells, identifying adverse events, and predicting prognosis in RR-
ALL patients (Figure 1).
BIOMARKERS FOR THERAPEUTIC
RESPONSE IN CAR-T CELL THERAPY

Except for patients’ overall survival (OS) and event free survival
(EFS), the two main endpoints that efficacious for measuring
treatment effects, there are growing interests in building feasible
biomarkers in predicting short‐ and long‐term therapy
outcomes. Various researches displayed that patients’ baseline
characteristic, T cell function of CAR-T cell products and
minimal residual disease (MRD) post CAR-T cell therapy were
strongly associated with therapeutic response.

Biomarkers for Patients’ Baseline
Characteristics
Previous studies indicated that disease burden, high risk
cytogenetic and molecular biology phenotype are major factors
that may lead to poor response in RR-ALL patients after CAR-T
cell therapy (8, 31). Lactate dehydrogenase (LDH), a key enzyme
in the glycolytic pathway, is a negative prognostic biomarker in
cancers (32). Increased serum LDH concentrations reflect a high
tumor burden and proliferation in B cell malignancies and may
be associated with aggressive disease dynamics (20). Besides,
Frontiers in Immunology | www.frontiersin.org 2
some evidence confirmed that elevated LDH levels may be
related with an immunosuppressive tumor microenvironment,
which could inhibit CAR-T cell function and result in tumor
immune escape (27, 33). Hay and colleagues analyzed the factors
correlated with durable EFS in adult B-ALL patients and
suggested that a lower pre-lymphodepletion LDH and high
platelet count were independent factors associated with better
EFS. Their study also suggests that patients with higher pre-
lymphodepletion LDH and lower platelet count may require
systemic therapy before CAR-T cell infusion (20).

Biomarkers for CAR-T Cell Function
CAR-T cell function are critical in maintaining an effective
therapeutic response and durable remission. As reported, a
differentiated T-cell phenotype, the expression of immune
checkpoints (programmed cell death protein-1, PD-1; T cell
immunoglobulin and mucin-domain containing-3, TIM-3;
lymphocyte activation gene-3, LAG-3) as well as immune
microenvironment can influence the anti-tumor activity,
proliferation, and persistence of CAR-T cells (33, 34).

Biomarkers for T Cell Differentiation Level
T cell subsets can be divided into three main groups according
to differentiation level, i.e., 1) stem cell memory T cells (Tscm),
2) central memory T cells (Tcm), and 3) effector memory T
cells (Tem). These distinct subsets can be distinguished
using polychromatic flow cytometry based on the presence
of different surface markers (differentiation markers such
as CD45RA, CD45RO, CD62L, CCR7, CD27, CD28, and
activation markers such as CD25, CD127, CD57, and CD137)
(35). Several studies have shown that less differentiated T cells
exhibit stronger potential for expansion, persistence, and tumor
eradication (18, 36, 37). Tscm retain greater stem cell-like
function than any other memory T cell subset. For the same
reason, CAR-T cells manufactured using less differentiated T cell
subsets with functional characteristics of stemness and naivety,
may exhibit improved expansion rates and extended persistence.
Marianna S. et al. evaluated the function of CD19 CAR-modified
CD8+ Tscm cells in a B-ALL mouse model and found that these
CAR-T cell products mediated a prolonged antitumor response
and increased survival compared to CD8+ T cells generated
CD19 CAR-T cells (38). Xu et al. suggested that the expansion
rate of CAR-T cells was positively correlated with the percentage
of CD8+CD45RA+CCR7+ Tscm cells in CAR-T cell products
(39). Furthermore, in vivo experiments indicated that the
proportion of Tscm in the final CAR-T cell product was a
positive marker for CAR-T cell expansion, whereas high
frequency of Tem as well as CD57+ cells in the final product
negatively impacted CAR-T cell expansion and anti-tumor
activity (40).

Biomarkers for Immune Checkpoints
The assessment of the expression levels of PD-1, LAG-3, TIM-3,
and their receptors indicated that high levels of these inhibitory
molecules were associated with T cell exhaustion and poor
response to CD19 CAR-T therapy (17). PD-1, a biomarker
expressed on activated T cells, natural killer cells, and B cells,
February 2021 | Volume 12 | Article 627764
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TABLE 1 | Clinical trials and outcomes of CD19 CAR-T cell therapy.

Outcomes N (%) NCT Ref.

: 1 (50%) NCT01044069 (10)

RD- CR: 5 (100%)
: 10 (63%) (11)

RD- CR: 32 (67%)
rade 3–4 CRS/CRES:
(28%)/22 (42%)

(8)

: 2 (100%)
: 1 (50%)

NCT01626495 (12)

: 27 (90%)
rade 3–4 CRS:8 (27%)
ES:13 (43%)

NCT01626495,
01622396

(13)

rade 4–5 CRS: 30 (59%) NCT02030847 (14)

rade 3–4 CRS: 18 (46%) NCT01626495 (15)

: 45 (60%) NCT02435849 (7)

ES: 23 (45%) NCT01626495 (16)

: 13 (62%)
rade 3–4 CRS: 6 (29%)
ES:6 (29%)

NCT01593656 (9)

: 12 (57%)
S: 16 (76%)

NCT02315612 (17)

RD-CR: 27 (90%)
rade 3–5 CRS/CRES: 7
3%)/15 (50%)

NCT01865617 (18)

rade 3–5 CRES: 28 (21%) NCT01865617 (19)

:45 (85%)
rade 3 CRS:
(19%)

NCT01865617 (20)

rade 3–5 CRS: 16 (12%) NCT01865617 (21)

RD-CR: 43 (93%)
rade 3–4 CRS/CRES:
(22%)/9 (20%)

NCT02028455 (22)

RD-CR: 3 (33%)
rade 3–4 CRS: 3 (33%)
ES:1 (11%)

NCT01864889 (23)

RD-CR: 6 (100%) NCT03185494 (24)

: 43 (84%) ChiCTR-IIh-
16008711

(25)

RD-CR: 20 (87%)
rade 3 CRS/CRES:
(39%)/2 (9%)

ChiCTR-ORN-
16008948

(26)

RD-CR: 12 (67%)
rade 3–5 CRS: 4 (22%)
ES: 1 (6%)

NCT02782351 (27)
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Institution Author No.
pts

Diagnosis Target Costimulatory
domain

Dose (cells/kg) Lymphodepletion

MSKCC Brentjens RJ 2 B-ALL CD19 CD28 4×107 Cy C

Brentjens RJ 5 B-ALL CD19 CD28 (1.5–3)×106 Cy M
Davila ML 16 B-ALL CD19 CD28 3×106 Cy C

Park JH 53 B-ALL CD19 CD28 N/A FC/Cy M
G
1

UPenn Grupp SA 2 B-ALL CD19 4-1BB 1.4×106,1.2×107 N/A C
R

Maude SL 30 B-ALL CD19 4-1BB (0.76-20.6)×106 N/A C
G
C

Teachey DT 51 B-ALL CD19 4-1BB 1×107, 5×108 N/A G

Fitzgerald JC 39 B-ALL CD19 4-1BB N/A N/A G

Maude SL 75 B-ALL CD19 4-1BB (0.2–5.4)×106 FC C

Gofshteyn JS 51 B-ALL CD19 4-1BB N/A N/A C

NCI Lee DW 21 B-ALL
NHL

CD19 CD28 1×106, 3×106 FC C
G
C

Fry TJ 21 B-ALL CD19CD22 4-1BB ≥1 × 106/Kg FC C
C

FHCRC Turtle CJ 30 B-ALL CD19 4-1BB 2×105, 2×106, 2×107 FC, Cy, CE M
G
(2

Gust J 133 B-ALL
NHL CLL

CD19 4-1BB 2×105, 2×106, 2×107 FC G

Hay KA 53 ALL CD19 4-1BB 2×105, 2×106 FC C
≥

1
Hay KA 133 B-ALL NHL

CLL
CD19 4-1BB 2×105, 2×106, 2×107 FC G

SCRI Gardner RA 45 B-ALL CD19 CD28 (0.5–10.0)×106 Flu/Cy M
G
1

Chinese PLA General
Hospital

Dai HR 9 B-ALL CD19 4-1BB N/A N/A M
G
C

DAi HR 6 B-ALL CD19/CD22 4-1BB (1.7–3.0)×106 FC M

Daopei Hospital
China

Pan J 51 B-ALL CD19 4-1BB (0.05–14.0)×105 FC C

The First Affiliated
Hospital, Zhejiang
University

Wei GQ 23 B-ALL CD19 4-1BB N/A FC M
≥

9
The Affiliated Hospital of
Xuzhou Medical University

Cao J 18 ALL hCD19 4-1BB 1×106 FC M
G
C

R
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R
R

R

R

R

R
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can inhibits T cell expansion, cytokine release, and cytotoxicity,
thereby resulting in the immune escape of tumor cells (41–43).
LAG-3 and TIM-3 are two next-generation immune checkpoint
proteins expressed on different immune cell types and play a
similar role in negatively regulating T cell activity (44, 45).
Finney et al. compared T cell intrinsic factors between
functional and dysfunctional responders and found that both
group had similar frequencies of PD-1+ CD4+ CAR-T cells and
PD-1+ CD8+ CAR-T cells, whereas the dysfunctional response
group had a significantly higher percentage of LAG-3+ T cells
and TIM-3+ T cells than the functional response group. In terms
of apheresis products, higher frequencies of PD-1+LAG-3+ CD8+

T cells and PD-1+ CD4+ T cells were found in dysfunctional
response group. Meanwhile, the results also indicated that high
expression of LAG-3 combined with low secretion of TNF-a
were associated with early therapeutic failure, and low frequency
of TNF-a+/TIM-3- CD8+ T cells in CD19 CAR-T cell products
may be a risk factor for short persistence of CAR-T cells and
early relapse (46). Fraietta and colleagues compared biochemical
parameters in patients who achieved complete remission (CR),
partial remission (PR), and non-response (NR) after CD19 CAR-
T cell therapy. They demonstrated that patients with CR had
significantly lower percentages of PD-1+ CD8+ CAR-T cells pre-
infusion than those in PR and NR patients (37). This
phenomenon was also confirmed in large B cell lymphoma or
chronic lymphoblastic leukemia patients treated with anti-CD19
CAR-T cells (37, 47).

Biomarkers for Immune Microenvironment
Accordingly, a suppressive immune microenvironment may
negatively influence the T cell function and correlate with a
poor survival. Activation of both myeloid and lymphoid lineages
may be an indicator of a less suppressed immune environment,
which was favorable for the expansion and persistence of CAR-T
cells. Enblad et al. treated fifteen B-ALL or B-cell lymphoma
patients with CD19 CAR-T cells and found that patients with
low monocytic myeloid-derived suppressor cell counts (CD14
+CD33+HLA-DR cells) achieved better response. Moreover,
patients exhibited higher levels of myeloid activation markers
(IL-12, DC-Lamp) as well as lymphocyte effector markers (Fas
ligand, TRAIL) had longer overall survival (48).

In addition, cytokines and chemokines secreted by
polyfunctional T cells, including IFN-g, MIP-1, IL-8, granzyme
B, IL-17A, and IL-5, can mitigate immunosuppression caused by
the tumor microenvironment and improve the clinical response
in CD19 CAR-T cell therapy (49). Serum IL-15, MCP-1, and IL-7
levels can increase after conditioning chemotherapy, which is
associated with CAR-T cell expansion potential in vivo and
positive outcomes in patients treated with CD19 CAR-T cells
(50). IL-12 is secreted by T cells, NK cells, dendritic cells, and
macrophages. It increases the concentration of multiple
inflammatory cytokines (such as IL-6, IL-8, IL-15, IL-18, IFN-
g, TNF-a, and GM-CSF) and enhances the cytotoxic functions of
T cells and NK cells (51, 52). Kueberuwa et al. developed second-
generation anti-murine CD19 IL-12-expressing CAR-T cells and
introduced them into a mouse model with B cell malignancy.
Nearly 25% of the mice achieved tumor eradication and long-
T

A
B
LE

1
|
C
on

tin
ue

d

In
st
it
ut
io
n

A
ut
ho

r
N
o
.

p
ts

D
ia
g
no

si
s

T
ar
g
et

C
o
st
im

ul
at
o
ry

d
o
m
ai
n

D
o
se

(c
el
ls
/k
g
)

Ly
m
p
ho

d
ep

le
ti
o
n

O
ut
co

m
es

N
(%

)
N
C
T

R
ef
.

S
ou

th
w
es
t
H
os

pi
ta
l,
Th

ird
M
ilit
ar
y
M
ed

ic
al
U
ni
ve
rs
ity

H
en

g
G

10
A
LL

hC
D
19

4-
1B

B
2.
3×

10
5
-4
.1
7×

10
7

FC
C
R
:1
0
(1
00

%
)

G
ra
de

3–
4
C
R
S
:4

(4
0%

)
C
R
ES

:4
(4
0%

)

N
C
T0

23
49

69
8

(2
8)

To
ng

ji
H
os

pi
ta
l,
H
ua

zh
on

g
U
ni
ve
rs
ity

of
S
ci
en

ce
an

d
Te

ch
no

lo
gy

W
an

g
N

89
B
-A
LL

N
H
L

C
D
19

C
D
22

co
ck

ta
il

C
D
28

an
d
4-
1B

B
C
A
R
19

:(
2.
6
±
1.
5)
×
10

6

C
A
R
22

:(
2.
7
±
1.
2)
×
10

6
FC

C
R
:6

8
(7
6%

)
G
ra
de

3–
5
C
R
S
:1

9
(2
1%

)
G
ra
de

3-
5
C
R
ES

:1
(1
%
)

C
hi
C
TR

-O
P
N
-

16
00

85
26

(2
9)

O
ut
co

m
es

an
d
in
ci
de

nc
e
of

ad
ve
rs
e
ev
en

ts
of

in
fl
ue

nt
ia
lc
lin
ic
al
tr
ia
ls
in
C
D
19

C
A
R
-T

ce
ll
th
er
ap

y
w
er
e
sh

ow
n
in
T
ab

le
1.

A
LL

,a
cu

te
ly
m
ph

ob
la
st
ic
le
uk
em

ia
;C

y,
cy
cl
op

ho
sp

ha
m
id
e;

Fl
u,

fl
ud

ar
ab

in
e;

FC
,c

yc
lo
ph

os
ph

am
id
e
an

d
fl
ud

ar
ab

in
e;

C
R
,c

om
pl
et
e
re
m
is
si
on

;R
R
,r
el
ap

se
ra
te
;C

R
S
,c

yt
ok

in
e
re
le
as
e
sy
nd

ro
m
e;

C
R
ES

,C
A
R
-r
el
at
ed

en
ce

ph
al
op

at
hy

sy
nd

ro
m
e;

M
R
D
,m

in
im
al
re
si
du

al
di
se
as
e;

M
R
D
-
C
R
,M

R
D
-n
eg

at
iv
e
C
R
.

February 2021 | Volume 12 | Article 627764

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hong et al. Biomarkers for CAR-T Cell Therapy
term survival (53). IL-18—a cytokine similar to IL-12—mediates
IFN-g expression and regulates immune responses by activating
monocytes and lymphocytes (54, 55). It can promote the
antitumor activity of CAR-T cells by supporting the
proliferation of CD8+ T cells (56) and reducing the number of
immunosuppressive cells (57). Hu et al. developed an IL-18-
expressing CD19 CAR-T cell product that exhibited enhanced
proliferation and anti-tumor ability in a mouse model (56).

Biomarkers for Long-Term Survival
CD19 CAR-T cell therapy has achieved remarkable therapeutic
efficacy in RR B-ALL. Unfortunately, several individuals still
failed to achieve CR or primarily resistance to CAR-T cell
therapy, and relapse can occur in nearly 50% of B-ALL
patients within 12 months after CAR-T cell infusion. Long-
term survival of patients with ALL after CAR-T cell therapy is a
Frontiers in Immunology | www.frontiersin.org 5
primary outcome that reflects the overall prognosis and efficacy
of CAR-T cell products. Previous studies indicated that CAR-T
cell copy numbers, B cell aplasia (BCA), and MRD can serve as
predictive biomarkers for long-term relapse-free survival after
CAR-T cell infusion.

Transgene copies of CAR-DNA is an intuitional indication of
CAR-T cell persistence and relate to the duration of therapeutic
response after CAR-T cell infusion. Mueller et al. analyzed 79
patients with RR B-ALL infused with CD19 CAR-T cell products
and evaluated CAR-T cell persistence based on CD19 CAR gene
transgene copies. They demonstrated that patients who achieved
CR experienced longer CAR-T cell persistence than non-
response ones. The median duration of the two groups were
102 days and 27.8 days, respectively (58). Meanwhile, CD19
CAR-T cells can target all CD19-positive B cells and causes BCA
offlexible duration. Hence, BCA usually act as a marker of in vivo
A B C

FIGURE 1 | Biomarkers in terms of (A) efficiency prediction for CAR-T cells, (B) toxicity warning profile during treatment process, and (C) long-trem survival
monitoring post-infusion. (A) T cell subsets and immune checkpoints expressed in T cells before CAR-T cell manufacturing are main factors influencing the efficiency
of CAR-T cell products; (B) CRS and ICANS are two major adverse events during CAR-T cell therapy. The activation of T cells, CAR-T cells, dendritic cells,
macrophages, and endothelial cells initiated these process. Inflammatory cytokines levels (including IFN-g, TNF-a, IL-1, IL-6, IL-8, and IL-10) predicts the occurrence
and severity of toxicity. (C) MRD monitoring, CAR-T cell expansion and persistence, are potential biomarkers of long-term survival.
February 2021 | Volume 12 | Article 627764
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CAR activity, is associated with prolonged remission after CAR-
T cell treatment (59). Finney et al. treated 43 pediatric and adult
RR-ALL patients with CD19 CAR-T cell therapy and
demonstrated that the ongoing persistence of functional CD19
CAR-T cells or BCA for more than 6 months was a major
determinant of durable remission, which was positively
correlated with CD19 antigen burden at the time of infusion
(46). Moreover, MRD monitoring is conventional and
informative in B-ALL patients; MRD-negative CR after
induction therapy, consolidation therapy, CAR-T cell therapy,
and prior to allogeneic hematopoietic stem cell transplantation,
significantly forebode better outcomes. Compared with flow
cytometry, high-throughput sequencing (HTS) of IgH and
TRG genes has higher sensitivity, which helped establish an
optimized MRD threshold and identify patients with poor
prognosis (58). Hay et al. studied 53 patients with RR B-ALL
followed by CD19 CAR-T cell therapy and suggested that the
absence of leukemia clone of IGH by HTS 3 weeks after CAR-T
cell infusion in patients with MRD-negative CR is associated
with improved EFS and OS (20).

Globally, these findings revealed that patients’ baseline
disease status, T cell differentiation degrees, expression levels of
PD-1, LAG-3 and TIM-3, immunological microenvironment
combined with the CAR copy numbers and MRD monitoring
were significant predictor factors associated with the clinical
response to CAR-T cell therapy. Biomarkers related to short-
term survival can potentially guide patient selection and
optimization of CAR-T cell production before clinical
application, additionally, biomarkers with long-term survival
are essential for disease surveillance, directing immediate
management and preventing relapse after CAR-T cell therapy.
BIOMARKERS FOR TOXICITIES IN
CAR-T CELL THERAPY

Cytokine release syndrome (CRS), immune effector cell-
associated neurotoxicity syndrome (ICANS), coagulation
disorder, secondary Hemophagocytic Lymphohistiocytosis
(sHLH), hematologic toxicities, and infection are the side
effects associated with CAR-T cell therapy, with CRS and
ICANS being the most common. The incidence of CRS and
ICANS in RR-ALL patients treated with tisagenlecleucel has been
reported to be 77 and 40%, respectively (7, 60), with severe CRS
and ICANS reached 47 and 15%, respectively. The median time
of CRS onset was 2–3 days after CAR-T cell infusion (range: 1–
22 days) (61, 62). High tumor burden, increased infusing dose,
extent of lymphodepletion regimen, pre-existing endothelial
damage, and resistant thrombocytopenia of B-ALL are
important risk factors for the development and progression of
CRS and ICANS (21, 63). The management of CRS and ICANS
relies on its severity, which is mainly assessed using Common
Terminology Criteria for Adverse Events (CTCAE) criteria and
CAR-T cell therapy associated toxicity (CARTOX) criteria.
Various studies have identified several biomarkers that can
predict the development of adverse events after CAR-T cell
Frontiers in Immunology | www.frontiersin.org 6
therapy; thus, patients at risk can be closely monitored and
receive timely prophylactic treatment (14, 19).

Biomarkers for Cytokine
Release Syndrome
CRS is a major complication of CAR-T cell therapy, and is
characterized by systemic inflammation. CRS symptoms vary
according to severity, ranging from mild disease with slight fever,
fatigue, anorexia, nausea, vomiting, and headache, to severe
disease with early onset high fever, hypotension, shock,
disseminated intravascular coagulation, and even multiple
organ dysfunction (60, 64). The management of CRS is mainly
based on its severity grading, which is determined based on
general symptoms, vital signs, and organ dysfunction. However,
the variability of clinical symptoms and different self-perceptions
among patients do not make them ideal candidates for precise
CRS grading; therefore, specific biomarkers are needed for the
monitoring and treatment of CRS.

CAR-T cells initially activate the effector cells and recipient
immune system; CRS commonly develops in response to the
binding of CAR-T cell receptors with specific antigens, which
subsequently stimulate bystander immune cells and non-
immune cells. Recent studies suggest that the crosstalk between
the activation of the mononuclear/macrophage system and
endothelial cells—which trigger an intense inflammatory
cytokine storm—is primarily responsible for the development
of CRS (11, 64, 65). Cytokine profiles related to CRS comprise
not only effector cytokines including interferon (IFN)-g, IL-2,
IL-6, and granulocyte-macrophage colony stimulating factor
(GM-CSF) but also of cytokines secreted by monocytes and/or
macrophages —IL-1, IL-6, IL-8, IL-10, IL-12, tumor necrosis
factor (TNF)-a, IFN-g, monocyte chemotactic protein (MCP)-1,
and macrophage inflammatory protein (MIP) 1a (66, 67). High
levels of MCP-1 (≥1,343.5 pg/ml) with fever ≥ 38.9°C within 36 h
of CAR-T administration are recognized as predictors of severe
CRS and ICANS with the best sensitivity and specificity (21).

IL-6, IL-10, and IFN-g are the strongest contributors to CRS
development. IL-6 is a core cytokine in CRS pathophysiology,
which enhances T cell proliferation and B cell differentiation as
well as the production of ferritin and CRP (67, 68). IL-6 triggers
the cytokine storm by binding to membrane-bound IL-6
receptors, which can form a complex with gp130 and initiate
intracellular signaling in cells with/without membrane-bound
IL-6 receptors (69, 70). IL-6 levels peaked when T cells reached
maximal proliferation, and tocilizumab—an IL-6 receptor
blocker—can relieve the symptoms of patients with life-
threatening CRS (71–73). IFN-g—secreted by activated T cells
and tumor cells—plays a key role in mobilizing CRS after CAR-T
cell infusion. The levels of IFN-g and sgp130 increase early (3
days after infusion) in patients with severe CRS (14). IFN-g also
stimulates other immune cells, especially macrophages, which
secrete proinflammatory cytokines, such as IL-6, IL-8, IL-12, IL-
15, and TNF-a (74, 75), and the interaction between IFN-g and
macrophages aggravates CRS (64). In addition, recent studies
have suggested that vascular endothelial activation is a risk factor
associated with severe CRS. Hay et al. performed a study on 133
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patients with RR CD19+ B cell malignancies who underwent
CD19 CAR-T cell therapy, and demonstrated that serum VWF
and Ang-2 concentrations were higher in patients with grade ≥4
CRS (21).

Except for these inflammatory cytokines, the levels of some
serum biochemical parameters, such as C-reactive protein (CRP),
ferritin, LDH, aminotransferase (AST), alanine aminotransferase
(ALT), blood urea nitrogen (BUN), and creatinine, are elevated in
patients with CRS and ICANS; however, these sometimes fail to
predict the severity of the two toxicities (76–78). Teachey et al.
demonstrated that patients with grade 4–5 CRS had higher peak
levels of CRP and ferritin than those with grade 0–3 CRS, but CRP
and ferritin did not improve CRS prediction in the first three days
post CAR-T cell infusion (14). Davila et al. proposed CRP level
≥20 mg/dl as an indicator of severe CRS in the case of
technological limitations with cytokine measurements (11). Our
center also reported that the levels of CRP, serum ferritin, and
D-dimer are associated with severe CRS, and their reduced
levels indicate a promising response to tocilizumab or
corticosteroids (79).

Biomarkers for Immune Effector-Cell-
Associated Neurotoxicity Syndrome
ICANS is another primary adverse event during CAR-T cell
therapy, characterized by clinical manifestations, such as
encephalopathy, aphasia, delirium, seizures, and tremor (80),
which generally occur 1 to 28 days after CAR-T cell infusion. In
some cases, ICANS can be concurrent with CRS. The incidence
of ICANS was associated with high pretreatment disease burden,
CAR-T cell expansion rate, and higher levels of pro-
inflammatory cytokines. Ordinarily, mild to moderate ICANS
is self-limited and can be controlled with close observation and
supportive treatment. ICANS complicated with CRS usually
presents a short duration and lower severity (41, 81). Severe
ICANS can occur during the symptomatic improvement stage of
CRS, with a high risk for acute cerebral edema, which may
progress to delirium within a few hours and can even be fatal (19,
82, 83). Treatment strategies for ICANS include supportive care,
or aggressive care with mechanical ventilation, high-dose
corticosteroids, anti-epileptics, and medications for cerebral
edema (84). The mechanism underlying the development of
ICANS remains unclear, and it is now believed that the
massive release of inflammatory cytokines and alterations in
blood brain barrier permeability play a key role in the
development of ICANS. Serum cytokine levels, including those
of IL-6, IL-10, IFN-g, TNF-a, and angiopoietin-2 (Ang-2)
continuously increased in ICANS. Several studies have
suggested that patients with severe ICANS may exhibit a
higher concentration of IL-8, IL-10, and MCP-1 in their
cerebrospinal fluid (80, 85, 86). High concentrations of
numerous inflammatory cytokines can exert a direct effect on
vascular endothelial cells, leading to increased epithelial
permeability and dysfunction. Otherwise, CAR-T cells and
inflammatory cells infiltration in the central nervous system
together with activation of astrocytes and microglia may be the
potential mechanisms responsible for ICANS (87).
Frontiers in Immunology | www.frontiersin.org 7
Retrospective studies suggested that lymphodepletion regime,
serum accumulation of cytokines (IL-6, MCP-1) within 24 h after
CAR-T cell infusion combined with CD8+ T cell peak expansion
predict the occurrence of severe ICANS (19, 88). High levels of
IL-15 induced by intensive lymphodepletion, contribute to the
maintenance of CD8+ memory T cell, which may enhance CAR-
T cell proliferation as well as anti-tumor activity in vivo and
result in advanced ICANS (19, 39). Santomasso et al.
summarized data from 53 B-ALL patients after CD19 CAR-T
cell therapy. They recommended using concentrations of IL-15,
IL-10, and epidermal growth factor (EGF) in three days before
CAR-T cell therapy to stratify patients into groups with different
risk of severe ICANS. Patients with high levels of IL-15, IL-10,
and low EGF comprising the high-risk group (80). These results
reflected that severe ICANS may be correlated with more
functional T cells, in terms of cytokine release after CAR-T
cells stimulated by a large amount of tumor cells. Recent studies
have shown that preexisting endothelial activation and severe
thrombocytopenia (platelet <5–6 × 109) are associated with
severe CRS and ICANS, and these two factors may be
connected to each other. Hay et al. posited that endothelial
activation tends to occur in patients with low platelet count,
which supports the fact that angiopoietin (Ang)-1 secreted by
platelets contributes to the stability of endothelial cells (21, 80,
85). Conversely, von Willebrand factor (VWF) and Ang-2—two
biomarkers secreted by Weibel-Palade bodies—play key roles in
initiating coagulation and capillary leak, respectively (19, 89–91).
Moreover, high Ang2:Ang1 ratio and vWF concentrations were
found in patients with grade ≥4 ICANS (80, 85, 92). Therefore,
endothelial activation biomarkers, including vWF, Ang-2, and
endothelial-stabilizing biomarkers, such as Ang-1, and should be
monitored before and after CAR-T cell infusion to monitor the
incidence of CRS and ICANS.

In addition to these serum biomarkers, cytokines in CSF
may reflect the immunological and biochemical dysfunction
associated with ICANS. The activation of macrophages,
microglia, astrocytes, and endothelial cells induces systemic
inflammation and production of large amounts of quinolinic
acid (QA), which results in increased levels of MCP1, IP10, IL-6,
IL-8, IFN-g, and INFa2 (80, 93). In addition, a high density of
IFN-g results in human brain microvascular pericyte stress, IFN-
g combined with TNF-a stimulates the secretion of IL-6 and
VEGF from pericytes, an event that further promotes endothelial
activation (19).

Biomarkers for Coagulation Disorder
Coagulation disorder is a less frequent side effect following CAR-
T cell therapy, with disseminated intravascular coagulation
(DIC) being the most severe and life-threatening, and
requiring close monitoring, early diagnosis, and timely
treatment (18, 94). Numbers of previous chemotherapy, high
tumor burden, and a low baseline platelet count may be risk
factors for coagulation disorders. Coagulopathy biomarkers
including increased D-dimer, fibrinogen degradation products
(FDP), decreased fibrinogen, prolonged prothrombin time (PT),
activated partial thromboplastin time (APTT), and thrombin
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time (TT) were indicators of coagulation disorders. Ying et al.
found in their recent study that the incidence and severity of
coagulation disorders were positively correlated with CRS grade,
and persistent CRS may delay the recovery of coagulation. They
also concluded that elevated IL-6, CRP, and ferritin levels were
associated with increased PT, APTT, PT-INR, and TT to some
extent (95). Due to the limited research on coagulation disorders
after CAR-T cell treatments, detailed clinical and mechanistic
studies should be conducted to further understand and manage
this toxicity, which will help to control non-relapse mortality.

Biomarkers for Secondary
Hemophagocytic Lymphohistiocytosis
sHLH is a life-threatening hyperinflammatory syndrome induced by
hyperactivated macrophages and lymphocytes, the exaggerated
release of proinflammatory cytokines, as well as lymphohistiocytic
tissue infiltration (96). sHLHoccurs inpatientswith severe infections,
malignancy or autoimmune diseases, characterized by prolonged
hyperpyrexia, hepatosplenomegaly, pancytopenia together with
hemophagocytosis in liver, spleen, and lymphoid tissue (97, 98).
During the processes of CAR-T cell treatment, sHLH may occur
secondary to severe CRS, with a incidence rate of 1–3.5% (99).
However, it is difficult to dissect these two syndrome because of
their similar clinical presentations and overlapping diagnosis criteria.
Thus,biomarkers specific in sHLHareneeded for the identificationof
HLH in patients with CRS after CAR-T cell therapy.

Patients with sHLH following CAR-T cell therapy showed an
overexpression of serum cytokines produced by the aberrant
activated immune system, including IFN-g, TNF-a, IL-1, IL-4,
IL-6, IL-8, IL-10, and IL-18, among which, the level of IFN-g and
IL-6 can be extremely high (100). Neelapu et al. proposed a
reasonable solution in diagnosing sHLH in patients with severe
CRS during CAR-T cell therapy, they recommended the peak
serum ferritin measurement of >10,000 µg/L as a necessary criteria,
and patients complicated with any two of the follow findings can be
made the diagnosis: 1) grade > 3 increase in serum transaminases
or bilirubin; 2) grade >3 oliguria or grade > 3 increase in serum
creatinine; 3) grade > 3 pulmonary edema or histological evidence
of hemophagocytosis in bone marrow or organs (84, 99). In
conclusion, the substantially increased IFN-g, IL-6 and ferritin
combined with serum transaminases, bilirubin, creatinine, or
soluble CD25 can be predictable biomarkers for sHLH associated
with CAR-T cell therapy, and anti-IL-6 or humanized anti-IFNg
mAb may be feasible management for this disease (101).

Biomarkers for Hematologic Toxicities
and Infection
Hematologic toxicity has been reported after CD19 CAR-T cell
therapy, which attributed mostly to the lymphodepleting
chemotherapy regimen or CRS. The occurrence of
neutropenia, anemia, and thrombocytopenia counted for 94,
51, and 80%, respectively (102). Fried S. et al. declared that
perturbations in stromal cell-derived factor (SDF)-1 levels may
correlate with late neutropenia (102). SDF-1 is a chemokine
essential for regulating hematopoietic stem cell migration and
survival, B-cell development and neutrophil migration
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(103, 104). Dunleavy K. et al. hypothesized that SDF-1
concentrations may decrease during rapid B-cell expansion,
which resulted in reduced neutrophil migrating from the bone
marrow to peripheral blood (103). Besides, a recent study
profiled several cytokines correlated with the recovery of
hematologic toxicities. Jain T. et al. compared the cytokines’
concentration between patients with and without complete count
recovery 1 month after CAR-T cell therapy, they found that the
former group had significantly higher peak levels of macrophage-
derived chemokine (MDC). In addition, the fibroblast growth
factor-2 (FGF-2), transforming growth factor-a (TGF-a),
vascular endothelial growth factor (VEGF) as well as
chemokines [macrophage inflammatory protein-1a (MIP-1a),
and MIP-1b] also showed increased concentration in complete
count recovery patients (105). Summarily, some chemokines and
cytokines play a role in adjusting the marrow microenvironment
and hematopoiesis, which may contribute to the recovery of
hematopoietic progenitor cells.

Infection after CAR-T cell therapy is usually caused by
persistent pancytopenia, abnormal immunity, severe CRS, and
prior cytotoxic therapy (106–108). Infection presents as fever and
elevated inflammation, which mirrors CRS. Severe infection is a
high-risk factor associated with non-relapse mortality (109).
Therefore, it is critical to identify biomarkers that can diagnose
severe infection with high sensitivity and specificity. As described
above, IL-6 was effective in predicting sCRS. Hui et al. showed that
9 of 11 patients with grade 4–5 infection exhibited a second IL-6
peak after the first CAR-related IL-6 peak, so they recommended
“double peaks of IL-6” as a specific sign of severe infection. In
addition, IL-8, IFN-g, and IL-1b are predictive markers that
further support the diagnosis of severe infection (110).
Moreover, Diorio C. et al. presented a feasible predictive model
combined with IFN-g and IL1b, so as to differentiate between the
analogous clinical entities of sepsis and CRS, the results displayed
that an obviously elevated IFN-g (>83 pg/ml) or a mildly elevated
IFN-g (<83 pg/ml) in combination with a low IL1b(<8 pg/ml)
heralded the presence of CRS. Conversely, patients with IFN-g<83
pg/ml and IL1b<8 pg/ml may complicated with sepsis (111).
Current researches on infection and hematologic toxicity after
CAR-T cell therapy are limited, further studies interpreting the
underlying mechanisms and pathobiology will better the
management of potential associated toxicities.
CONCLUSION

CAR-T cell therapy has attained encouraging achievements in
patients with RR ALL. A better understanding of biomarkers
corresponding with selecting suitable patients, manufacturing
CAR-T cell products, monitoring severe side effects, and
predicting therapeutic response will play a valuable role in
personally optimizing CAR-T cell therapy. Identification of new
biomarkers could help in improving the quality of CAR-T cell
products and establish a thorough understanding of the
mechanisms associated with cytotoxicity and treatment response.
With the progress in immunotherapy and systems biology
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technologies, biomarkers identified using genomics, proteomics,
metabolomics, and transcriptomics will permit not only further
comprehension of tumorheterogeneity but also the discovery of the
cytotoxicity pathway. In summary, a suitable combination of
biomarkers in CAR-T cell therapy will contribute to treatment
management, durable responses, and durable overall survival.
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