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Background: There is growing evidence found that the role of hypoxia and immune
status in idiopathic pulmonary fibrosis (IPF). However, there are few studies about the role
of hypoxia and immune status in the lung milieu in the prognosis of IPF. This study aimed
to develop a hypoxia-immune-related prediction model for the prognosis of IPF.

Methods: Hypoxia and immune status were estimated with microarray data of a
discovery cohort from the GEO database using UMAP and ESTIMATE algorithms
respectively. The Cox regression model with the LASSO method was used for
identifying prognostic genes and developing hypoxia-immune-related genes. Cibersort
was used to evaluate the difference of 22 kinds of immune cell infiltration. Three
independent validation cohorts from GEO database were used for external validation.
Peripheral blood mononuclear cell (PBMC) and bronchoalveolar lavage fluid (BALF) were
collected to be tested by Quantitative reverse transcriptase-PCR (qRT-PCR) and flow
cytometry from 22 clinical samples, including 13 healthy controls, six patients with non-
fibrotic pneumonia and three patients with pulmonary fibrosis.

Results: Hypoxia and immune status were significantly associated with the prognosis of
IPF patients. High hypoxia and high immune status were identified as risk factors for overall
survival. CD8+ T cell, activated CD4+ memory T cell, NK cell, activated mast cell, M1 and
M0 macrophages were identified as key immune cells in hypoxia-immune-related
microenvironment. A prediction model for IPF prognosis was established based on the
hypoxia-immune-related one protective and nine risk DEGs. In the independent validation
cohorts, the prognostic prediction model performed the significant applicability in peripheral
whole blood, peripheral blood mononuclear cell, and lung tissue of IPF patients. The
preliminary clinical specimen validation suggested the reliability of most conclusions.
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Conclusions: The hypoxia-immune-based prediction model for the prognosis of IPF
provides a new idea for prognosis and treatment.
Keywords: idiopathic pulmonary fibrosis, microenvironment, hypoxia, immune, prognosis
INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive
interstitial lung disease. The prognosis of patients with IPF is
poor, with a median survival of 3 to 5 years (1). Several
prognostic staging systems for IPF have been established by
clinical and physiologic variables (2–5). Biomarkers in peripheral
blood are also evaluated as a tool for prognosis (6–8). A recent
study also revealed the role of genetic variability in the survival of
IPF (9). In addition, molecular markers of IPF patients could also
be identified by bronchoalveolar lavage (BAL) cells, and the
collection of BAL cells is non-invasive compared with lung
biopsy (10). However, very little is known whether molecular
events in the lung milieu are predictive of outcome in IPF.
Considering accurate diagnosis and personalized treatment,
there is still a critical need for a way to predict the progression
of IPF.

As a chronic lung disorder, the central processes in IPF are
inflammation and fibrosis (11). Immune dysregulation has been
considered as a promoting factor in the development of IPF,
including several biomarkers associated with the prognosis of
IPF (12). Inflammatory cytokines released by immune cells may
activate fibroblasts, connective tissue cell proliferation,
angiogenesis (11). Furthermore, hypoxia is common in the
process of fibrosis in many diseases (13, 14). Excessive collagen
synthesized by fibroblasts deteriorate oxygen supply and
accelerate the pathological process. Studies showed the
relationship between immune response and hypoxia and lung
function (15). However, the underlying mechanisms have not
been discussed.

With a series of genetic and bioinformatics analyses, we
associated immune status with hypoxia and explore its value
for the prognosis of patients with IPF. Here, we developed a
hypoxia-immune-related prediction model for the prognosis of
IPF, intended to provide novel ideas for accurate diagnosis and
treatment at the gene level. Better knowledge of the oxygen
balance control and the immune regulation involved is
important to advance the development of IPF.
MATERIALS AND METHODS

Patient Cohort and Data Preparation
The discovery cohort of the study contained 176 IPF patients
from the Gene Expression Omnibus (GEO, available at: https://
www.ncbi.nlm.nih.gov/geo/) database (GSE70866). The tissue
source of sequencing samples is the patients’ BAL cells. The
microarray data of GSE70866 was based on GPL14550 Platform
(Agilent-028004 SurePrint G3 Human GE 8x60K Microarray,
Agilent Technologies) and GPL17077 Platform (Agilent-039494
org 2
SurePrint G3 Human GE v2 8 × 60K Microarray, Agilent
Technologies), including 176 IPF patients’ BAL cells. Three
validation cohorts were used for external validations
(GSE93606, GSE28221, and GSE32537) to examine the
predictive effect of the prediction method. The microarray data
of GSE93606 was based on GPL11532 Platforms (Affymetrix
Human Gene 1.1 ST Array, Affymetrix, Santa Clara, CA, USA),
including 57 IPF patients’ peripheral whole blood. The
microarray data of GSE28221 was based on GPL5175
Platforms (Affymetrix Human Exon 1.0 ST Array, Affymetrix,
Santa Clara, CA, USA) and GPL6480 Platforms (Agilent-014850
Whole Human Genome Microarray 4x44K G4112F, Agilent
Technologies), including 120 IPF patients’ peripheral blood
mononuclear cell. The microarray data of GSE32537 based on
GPL6244 (Affymetrix Human Gene 1.0 ST Array, Affymetrix,
Santa Clara, CA, USA) included 119 lung tissues with IPF. The
batch effect was eliminated by sva package, which contains
functions for identifying and building surrogate variables for
high-dimensional data sets.

All procedures of this study complied with the protocol. For
analyses of data from a public database, approval and informed
consent from the local ethics committee were not required.

Identification of Hypoxia Status
and Hypoxia-Related DEGs
To identify the hypoxia status, a non-linear dimensionality
reduction algorithm of Uniform Manifold Approximation and
Projection (UMAP) was applied, which could divide or condense
a group of patients into a series of distinct clusters, according to
the given hallmarks or signatures. The hallmark gene sets of
hypoxia include 200 genes and were downloaded from the
Molecular Signatures Database (MSigDB version 6.0). Based on
the clusters, two groups including “hypoxia low” and
“hypoxiahigh” were identified to identify the hypoxia status.
The limma algorithm was applied to identify differentially
expressed genes (DEGs) between the two groups (16). Genes
with a false discovery rate (FDR) adjusted p-value <0.0001 and
an absolute value of log2 (fold change) >1 were considered as
hypoxia-related DEGs.

Identification of Immune Status
and Immune-Related DEGs
To identify the immune status, the Estimation of Stromal and
Immune cells in MAlignant Tumours using Expression data
(ESTIMATE) algorithm was applied to identity the infiltration
degree of immune cells and predict the immune status (17). Based
on the immune status, patients were classified into two groups.
Maximally selected rank statistics was applied by using an R
package “survival”, and “survminer” to identify the optimal
cutting point to divide patients. Based on the optimal cutting
June 2021 | Volume 12 | Article 629854
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point, patients with high immune scores were attributed to
“immunehigh” group and “immunelow” group. The limma
algorithm was applied to identify DEGs between the two groups.
Genes with a FDR adjusted p-value <0.0001 and an absolute value
of log2 (fold change) >1 were considered as immune-related DEGs.

To further identify the abundance of 22 immune cells,
CIBERSORT is a deconvolution algorithm based on the gene
expression data to resolve immune cell composition (18). Those
with p <0.05 were included.

Identification of Hypoxia-Immune-Related
Prognostic DEGs
According to the above hypoxia and immune grouping, patients
were divided into three groups, i.e., hypoxiahigh/immunehigh,
hypoxialow/immunelow, and mix groups. The limma algorithm
was applied to identify DEGs between “hypoxiahigh/immunehigh

group and hypoxialow/immunelow group. Genes with a FDR
adjusted p-value <0.0001 and an absolute value of log2 (fold
change) >1 were considered as hypoxia-immune-related DEGs.
DEGs were then divided into protective and risk DEGs. The risk
DEGs contained all EDGs highly expressed in hypoxiahigh/
immunehigh group and the rest were protective DEGs. To
obtain hypoxia-immune-related prognostic DEGs, univariate
Cox analyses were further performed to screen all protective
and risk DEGs. Those with a p <0.001 were considered
as significant.

Prognosis Prediction Model of IPF Based
On Hypoxia-Immune-Related DEGs
The Least Absolute Shrinkage and Selection Operator (LASSO) is
a kind of linear regression using shrinkage, which is applied to
survival analysis with high-dimensional data (19). In this study,
the LASSO Cox regression model was applied to select the
optimal variables from all identified hypoxia-immune-related
prognostic DEGs in the discovery cohort. Three-fold cross-
validation and 1,000 iterations were conducted to reduce
the potential instability of the results. The optimal tuning
parameter l was identified via 1-SE (standard error) criterion.
Then we create the prognosis prediction model of IPF using the
selected prognostic gene signature. For each patient, the risk
score was the sum of the expression of the characteristic DEGs
and the corresponding coefficients derived from the multivariate
Cox regression model. According to the risk scores, the optimal
cutting point was identified using the maximally selected rank
method, and the prognosis prediction model of IPF was formed.

Functional and Pathway
Enrichment Analysis
Database for Annotation, Visualization and Integrated Discovery
was used for Gene Ontology (GO) enrichment analysis (20). The
risk DEGs of IPF patients were screened for functional
enrichment. GO analysis was used to evaluate the degree
of enrichment of the DEGs in biological processes, cellular
components, and molecular functions. Those with p-value <0.05
and count (the number of enriched genes) ≥3 were considered as
the cutoff criterion.
Frontiers in Immunology | www.frontiersin.org 3
Preliminary Validation of
Clinical Specimens
Peripheral blood mononuclear cell (PBMC) and bronchoalveolar
lavage fluid (BALF) were collected from 22 clinical samples,
including 13 healthy controls, six with non-fibrotic pneumonia
and three with pulmonary fibrosis. The clinical information such
as age, gender, alveolar-arterial oxygen gradient (A-aDO2), and
hospital day was shown in Supplementary Materials. The study
was reviewed and approved by the institutional review board
(Ethics Committee) of the 3rd Xiangya Hospital, Central South
University (No. 21028).

Quantitative reverse transcriptase-PCR (qRT-PCR) was used
to quantitative expression of key DEGs. Total RNA was extracted
from the tissues using TRIzol Reagent (Thermo Fisher
Scientific). PCR was performed using an Thermo Scientific
PikoReal PCR cycler. The cycle threshold (CT) data were
determined, and the mean CT was determined from triplicate
PCRs. Relative gene expression was calculated with the
equation 2–DCT.

Flow cytometry analysis was used to determine the proportion
of immune cells. The cell suspension was counted and mixed with
ACK Lysis Buffer (Thermo Fisher Scientific) to remove red blood
cells. Then 1 × 106 cells were resuspended in 100 µl staining buffer
and incubated with monoclonal antibodies in dark for 15 min at
4°C. Our flow cytometric staining strategy consisted of the
following fluorochrome-conjugated monoclonal antibodies:
anti-CD3-Alexa-Flour700 (Biolegend), anti-CD4-eFlour450
(eBioscience), anti-CD45RA-APC-eFluor 780 (eBioscience),
anti-CCR7-PerCP-eFluor 710 (eBioscience), anti-CD16-
eFluor506 (eBioscience), anti-CD56-PE (eBioscience), anti-
CD206- PE-Cyanine7 (eBioscience), anti-CD68-FITC
(eBioscience), anti-CD107a-eFluor660 (eBioscience). CD3 and
CD4 were used to identify T cells. CD3+CD4+CD45RA−CCR7−

cells were defined as activated CD4+ memory T cells. CD56 and
CD16 were used to identify NK cells. CD107a+ NK cells were
defined as activated NK cells. CD68+CD16−CD206− cells were
defined as M1-like macrophages and CD68+CD16−CD206+ cells
were defined as M0-like macrophages. After washing and
resuspending, samples were detected using BD FACSDiva
software and performed using BD FACSCanto II.

Statistical Analysis
All analyses were performed with R version 4.0.2 (www.r-project.
org/) and the corresponding packages. UMAP algorithm was
performed by using R package “umapr” for non-linear
dimensionality reduction. Immune score was performed by
using R package “estimate”. The Lasso Cox regression model
was performed by using R package “glmnet”. Data were analyzed
with standard statistical tests as appropriate. Multiple testing was
adjusted by the FDR method. Multivariate Cox regression
analysis was performed to identify optimal signatures. Flowjo
V 10.62 was used to analyzed flow cytometric data. Original data
from PCR and flow cytometry were presented as the mean ±
standard deviation (SD) and were compared using Student’s
t-test, Welch’s t-test or the Mann–Whitney U test, where
appropriate. GraphPad Prism 7.0 (GraphPad Software Inc., La
June 2021 | Volume 12 | Article 629854
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Jolla, CA, USA) was used to perform the statistical analyses.
Values of p <0.05 were considered statistically significant.

The general idea and methodologies used in this study were
drawn as a flow chart (Figure 1).
RESULTS

Hypoxia Status and Hypoxia-Related
DEGs in IPF
The discovery cohort contained 176 IPF patients from the GEO
databases. The batch effect was eliminated by sva package
(Figures 2A, B). Patient clinical information is shown in
Table 1. With the expression matrix constructed by 200 hypoxia
marker genes from MSigDB, the non-linear dimensionality
reduction algorithm UMAP was used to determine two clusters,
and each patient is assigned to the nearest clusters (Figure 2C).
Cluster 1 and Cluster 2 contained 95 and 81 patients respectively.
Expression profiles were compared between the two clusters, and
239 DEGs related to hypoxia were obtained. Enrichment analysis
showed overexpressed genes in Cluster 2 were enriched in “oxygen
transport (GO:0015671)” and “response to hypoxia (GO:0001666)”
(Figure 2D). This indicated that the level of hypoxia in Cluster2
was at high status. Thereby, the patients in Cluster1 and Cluster2
were determined as hypoxialow and hypoxiahigh groups. In
addition, overexpressed genes in Cluster2 were also enriched in
positive regulation of GTPase activity and cell adhesion. Patients’
clinical information of each cluster is shown in Table 2. The
Frontiers in Immunology | www.frontiersin.org 4
survival status of patients in different groups was further analyzed
(Figure 2E). There was a significant difference in survival between
two clusters (log rank test, p < 0.0001), and the prognosis of
patients with a high level of hypoxia is worse. Among 239 DEGs,
232 DEGs were overexpressed in the hypoxiahigh cluster, which
were regarded as hypoxia-associated risk DEGs. The other seven
genes overexpressed in the hypoxialow cluster, which are regarded
as hypoxia-associated protective DEGs. In a word, most of the
hypoxia-related DEGs are regarded as risk factors.

Immune Status and Immune-Related
DEGs in IPF
The immune score was calculated by ESTIMATE to identity the
infiltration degree of immune cells. The optimal cutting point
“2,959.22” was determined based on maximally selected rank
statistics (Figures 2F, G). Then the immunehigh group and
immunelow group were divided, containing 108 and 68 patients
respectively. Patients’ clinical information of each cluster is
shown in Table 3. Further survival analysis showed a
significant difference between two groups (log rank test, p <
0.05), and the survival of patients with a high level of immune
infiltration is worse (Figure 2I). Therefore, high immune
infiltration is also a risk factor for bad prognosis. This
conclusion is also supported by the highly enriched immune-
related pathways in the hypoxiahigh group with a poor prognosis.
Expression profiles were compared between the two groups, and
196 DEGs related to immune status were obtained (Figure 2H).
Among them, 191 genes were overexpressed in the immunehigh
FIGURE 1 | Flow chart of methodologies used in this study.
June 2021 | Volume 12 | Article 629854
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A B

D E

F G
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FIGURE 2 | (A, B) Eliminating the batch effect between different sequencing platforms. (A) The PCA plot before elimination of batch effect, and (B) is the PCA plot
after elimination. The distance of sample point clusters indicates that they come from different batches and sequencing platforms. While in B, after eliminating the
batch effect, the difference in distance between batches is reduced. (C) UMAP clustering plot based on marker gene set of hypoxia. (D) Biological process functional
enrichment analysis of differentially expressed genes between hypoxiahigh and hypoxialow groups. (E) Kaplan–Meier plot of overall survival in two clusters.
(F) Histogram based on maximally selected rank grouping. (G) The cut-off point with the maximum standard log-rank statistic was marked with a vertical dashed line.
(H) The differential gene expression profiles between hypoxiahigh and hypoxialow groups were visualized in heatmap. (I) Kaplan–Meier plot of overall survival between
immunehigh and immunelow groups.
Frontiers in Immunology | www.frontiersin.org June 2021 | Volume 12 | Article 6298545
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cluster, which were regarded as immune-associated risk DEGs.
The other five genes overexpressed in the immunelow cluster,
which are regarded as immune-associated protective DEGs.

Hypoxia–Immune-Related DEGs in IPF
According to the above hypoxia and immune grouping, we
further combined to form three groups: hypoxiahigh/
immunehigh, hypoxialow/immunelow, and mix groups. The
survival status of patients in different groups was further
analyzed (Figure 3A). There was a significant difference in
survival among three groups (log rank test, p < 0.0001).
Survival in mix group is at an intermediate level. As we
expected, a high level of hypoxia and immune activity is the
most dangerous factor while patients in group hypoxialow/
immunelow have the best prognosis.

The differential gene expression profiles between hypoxiahigh/
immunehigh and hypoxialow/immunelow groups were visualized in
Frontiers in Immunology | www.frontiersin.org 6
heatmap (Figure 3B). We further intersect the hypoxia-related
DEGs and the immune-related DEGs to identify the hypoxia–
immune-related DEGs in IPF. We obtained a total of 62 DEGs, of
which 61 were highly expressed in hypoxiahigh and immunehigh

groups, so they were defined as hypoxia-immune-related risk
DEGs (Figure 3C). Correspondingly, the remaining DEG is
defined as hypoxia-immune-related protective DEG (Figure 3D).
The GO enrichment analysis showed that “immune response”,
“inflammatory response”, and “positive regulation of ERK1/2
cascade” are main biological process (Figure 3E).

Prognosis Prediction Model of IPF Based
on Hypoxia-Immune-Related DEGs
To further determine the DEGs significantly related to the
prognosis, we used univariate Cox analysis for screening and
29 DEGs with p <0.001 were retained (Figure 4A). Among them,
one protective and 28 risk DEGs were included.
TABLE 1 | Basic information of IPF patients in discovery cohort.

Characteristics Whole cohort (176) Low risk (55) High risk (121)

Gender
Male 117 (0.665) 31 (0.564) 86 (0.711)
Female 59 (0.335) 24 (0.436) 35 (0.289)
Age
≥65 years 86 (0.489) 30 (0.545) 56 (0.463)
<65 years 90 (0.511) 25 (0.455) 65 (0.537)
UMAP clustering
Cluster1 95 (0.540) 47(0.855) 48 (0.397)
Cluster2 81 (0.460) 8 (0.145) 73 (0.603)
Hypoxia status
High 81 (0.460) 8 (0.145) 73 (0.603)
Low 95 (0.540) 47(0.855) 48 (0.397)
Immune status
High 108 (0.614) 21 (0.382) 87 (0.719)
Low 68 (0.386) 34 (0.618) 34 (0.281)
Risk group
High 121 (0.688) 0 121 (1.000)
Low 55 (0.312) 55 (1.000) 0
June 2021 | Volume 12
TABLE 2 | Basic information of IPF patients in different hypoxia-based clusters.

Characteristics Whole cohort (176) hypoxialow (95) hypoxiahigh (81)

Gender
Male 117 (0.665) 58 (0.610) 59 (0.728)
Female 59 (0.335) 37 (0.390) 22 (0.272)
Age
≥65 years 86 (0.489) 48 (0.505) 38 (0.470)
<65 years 90 (0.511) 47 (0.495) 43 (0.530)
TABLE 3 | Basic information of IPF patients in different immune-based clusters.

Characteristics Whole cohort (176) immunelow (68) immunehigh (108)

Gender
Male 117 (0.665) 44 (0.647) 72 (0.667)
Female 59 (0.335) 24 (0.353) 36 (0.333)
Age
≥65 years 86 (0.489) 38 (0.559) 48 (0.445)
<65 years 90 (0.511) 30 (0.441) 60 (0.555)
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Using lasso regression method, nine optimal variables were
obtained from the above 29 hypoxia-immune-prognostic-related
DEGs (Figures 4B, C). Then we use the expression levels of nine
characteristic DEGs and the corresponding coefficients derived
from the multivariate Cox regression model to estimate the risk
score for each patient: risk score = −0.13307 × expression of
NALCN + 0.09893 × expression of IL1R2 + 0.06226 × expression
Frontiers in Immunology | www.frontiersin.org 7
of S100A12 + 0.06890 × expression of PROK2 + 0.04883 ×
expression of CCL8 + 0.05654 × expression of RAB15 + 0.10671
× expression of MARCKSL1 + 0.09986 × expression of TPCN1 +
0.05696 × expression of HS3ST3B1.

By calculating the risk score of each patient, we divided the
patients into two groups through the maximally selected rank
method: high-risk group and low-risk group (Figure 4D). The
A B

D

E

C

FIGURE 3 | (A) Kaplan–Meier plot of overall survival between hypoxiahigh/immunehigh, hypoxialow/immunelow, and mix groups. (B) Heatmap shows the differential
gene expression profiles between hypoxiahigh/immunehigh and hypoxialow/immunelow groups (C,D) Venn diagrams show the hypoxia-immune related risk DEGs (61)
and protective DEG (1). € GO enrichment analysis of risk DEGs.
June 2021 | Volume 12 | Article 629854
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nine optimal DEG expression profiles between high-risk and
low-risk groups were visualized in heatmap (Figure 4E). Survival
analysis showed that there was a significant difference between
Frontiers in Immunology | www.frontiersin.org 8
the two groups (log rank test, p < 0.0001). Compared with the
low-risk group, the prognosis of the high-risk group is
significantly worse (Figures 4F–H).
A
B

D
E

F

G

H

C

FIGURE 4 | (A) Forest plot of 29 DEGs with P <0.001 by univariate Cox regression. (B) LASSO coefficient profiles of 29 screened DEGs. (C) Three-fold cross-
validation of lasso analysis. Error bars represented the SE. The dotted vertical lines showed the optimal values. (D) The cut-off point with the maximum standard log-
rank statistic was marked with a vertical dashed lines. (E) The expression profiles of DEGs involved in multivariate Cox regression model. (F) The distribution of
patients with increased risk score in two groups. (G) Scatter plot showed the survival of patients with increased risk score. (H) Kaplan–Meier plot of overall survival
between high-risk and low-risk groups.
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Hypoxia-Immune Related Immunocyte
Infiltration Pattern
In addition, CIBERSORT was used to estimate the infiltration of
22 kinds of immune cells in the samples. Correlation analysis
showed a general association in different immune cells
(Figure 5A). Among them, the infiltration of six specific
immune cells was significantly different in hypoxiahigh/
immunehigh and hypoxialow/immunelow group, that is, CD8+ T
cell, activated CD4+ memory T cell, activated natural killer (NK)
cell, activated mast cell, M0 macrophage, M1 macrophage
(Figure 5B). Further correlation analysis showed the
relationship between six specific immune cells and risk score.
Among them, most infiltration degree is positively correlated
with risk DEGs expression and risk score, but the infiltration of
M0 cells was negatively correlated with the risk DEGs expression
and risk score (Figure 5C). Among them, M0 macrophages and
NK cells had the most significant correlation with key DEGs and
risk score.
Frontiers in Immunology | www.frontiersin.org 9
Validation of the Prognostic Prediction
Model in External Independent Cohorts
The ROC curve showed that the AUCs within 1–5 years were all
greater than 0.75 in discovery cohort (Figure 6A). This suggested
the evaluation model had a good predictive value for the prognosis
of IPF patients. We also developed a nomogram for 1–5 years
overall survival prediction based on Cox model (Figure 6B).

We further verify the above prediction method in external
data sets” GSE93606”, “GSE28221”, and “GSE32537”. Patient
clinical information is shown in Table 4. In each independent
validation cohort, we divided the IPF patients into high-risk and
low-risk groups based on the risk score. In GSE28221 and
GSE93606 IPF cohorts, survival comparison showed that low-
risk group had significantly better prognosis outcomes than
high-risk group (Figures 6C, D). In addition, we focused on
the clinicopathologic features of IPF in GSE32537 cohort. The
patients in low-risk group generally had higher forced vital
capacity (FVC) and carbon monoxide diffusing capacity
A

B

C

FIGURE 5 | (A) Heatmap showed the correlation coefficient between different immune cells. (B) The box plot showed the significant difference of immune cells’
infiltration between two groups. (C) Heatmap showed the correlation coefficient between immune cells and DEGs involved in Cox model (*** means P < 0.01,
** means P < 0.05, and * means P < 0.1).
June 2021 | Volume 12 | Article 629854
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(DLCO) (P < 0.05), which meant better lung function
(Figures 6E, F). While the patients in high-risk group had
higher St. George’s total score (P < 0.05), which suggested
worse lung function and quality of life (Figure 6G).

In a word, these results suggest that our prognostic prediction
model is also of great significance based on peripheral whole
blood, peripheral blood mononuclear cell, and lung tissue.
Frontiers in Immunology | www.frontiersin.org 10
Preliminary Validation of
Clinical Specimens
The results of qRT-PCR in PBMC suggested that DEGs of CCL8,
IL1R2, NALCN, S100A12, and PROK2 were significantly
different between the patients and healthy controls
(Figure 7A). Among the patients, CCL8, IL1R2, and PROK2
were significantly up-expressed in fibrotic samples than non-
A

B

D

E F G

C

FIGURE 6 | (A) ROC curve evaluated the predictive value of the model for the prognosis of patients in discovery cohort within 1–5 years. (B) The nomogram for 1–5
years overall survival based on Cox model. (C) Kaplan–Meier plot of overall survival between high-risk and low-risk groups in GSE28221 validation cohort.
(D) Kaplan–Meier plot of overall survival between high-risk and low-risk groups in GSE93606 validation cohort. (E–G) The box plot showed the difference of FVC,
DLCO, and George’s score between low-risk group and high-risk groups in GSE32537 validation cohort.
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fibrotic samples (Figure 7B). The PBMC results of flow
cytometry showed that the proportion of NK cells was
increased significantly in the patients than healthy controls
(Figure 7C), and among the patients’ BALF, the proportion of
NK cells was also increased significantly in fibrotic samples than
in non-fibrotic ones (Figure 7D). The proportion of activated
NK cells in BALF samples was significantly higher than those in
PBMC samples, and it had the following characteristics: the
increasing trend of peripheral blood to pulmonary bronchus
(Figure 7E). The proportion of NK or activated NK cells’
infiltration in BALF was positively correlated with patients A-
aDO2 and hospital day, suggesting that high NK infiltration is a
risk factor for poor prognosis (Figures 7F, G). In addition, the
flow cytometry showed that the increasing CD4+ T cells in
peripheral blood might promote the macrophage infiltration in
pulmonary bronchus and promoted their polarization to M1-like
phenotype (Figure 7H). The proportion of CD4+ T, activated
CD4+ memory T cells, and M1-like macrophages infiltration in
BALF or PBMC was positively correlated with patients’ A-aDO2
(Figures 7I–K). Figure 7L showed the relationship between the
results of BALF and PBMC. The detailed data of sample
information and experimental results of BALF/PBMC were
shown in the Supplementary Materials.
DISCUSSION

Since the prognosis of patients with IPF is poor, the importance
of building a prognostic staging system for personalized
treatment is self-evident. The prognostic staging system could
divide the patients into several groups according to the given
markers. In this study, we used the transcriptional profiles of the
bronchoalveolar lavage fluid (BALF) to analyze the relationship
between the level of biomarkers and the prognosis of patients.
Frontiers in Immunology | www.frontiersin.org 11
We found that both hypoxia and immune status were related to
the survival and even respiratory function of patients with IPF.
Furthermore, we established a new prognostic classifier
including nine-gene signature for patients with IPF. It is
effective in the prognosis of patients with IPF in the discovery
cohort and three independent validation cohorts. These findings
provide a new insight to the relationship between biomarkers in
the lung milieu and the prognosis and stratification of patients
with IPF.

Several articles reported the role of immune and hypoxia
microenvironment in lung diseases (15). On one hand, immune
dysregulation and inflammation are regarded as the basis of
chronic lung diseases, including IPF (11). Bioinformatics analysis
of RNA network and immune infiltration showed that immune
cells were associated with the severity of IPF (21). Both innate and
adaptive immunity were activated in fibrogenesis (22). On the
other hand, hypoxia is common in lung disease. Hypoxia-inducible
factor-1a (HIF-1a) is a key regulating factor in cell response to
hypoxia, which has been found to participate in many lung diseases
(23–25). In hypoxia, the activation of HIF-1a mediates glycolysis
modification, angiogenesis, and other adaptive mechanism (26, 27).
Hypoxia promoted the epithelia–mesenchymal transition (EMT)
of alveolar epithelial cells (AECs) in IPF, and transforming growth
factor b (TGF-b) also promoted EMT with increased lactic acid
produced by metabolic modification (24, 28). Also, HIF-1a was
found to be active in fibroblasts from IPF patients and induced
myofibroblast differentiation with the existence of TGF-b (24, 26,
29, 30). It is worth mentioning that hypoxia facilitated proliferation
and the secretion of proinflammatory cytokines in mast cells, and
thus influenced fibrogenesis (31). In IPF, alveolar macrophages
showed a perturbation of mitochondria homeostasis, including
increased mitochondria reactive oxygen species (mtROS), in which
HIF-1a may have participated (32). These findings were in
accordance with the results. The result of infiltration of different
TABLE 4 | Basic information of IPF patients in validation cohort.

Characteristics Whole cohort (296) Low risk (182) High risk (114)

GSE93606 Whole cohort (57) Low risk (30) High risk (27)
Gender
Male 38 (0.667) 18 (0.600) 20 (0.741)
Female 19 (0.333) 12 (0.400) 7 (0.259)
Age
≥65 years 35 (0.614) 18 (0.600) 17 (0.630)
<65 years 22 (0.386) 12 (0.400) 10 (0.370)
GSE32537 Whole cohort (119) Low risk (59) High risk (60)
Gender
Male 42 (0.353) 25 (0.424) 17 (0.283)
Female 77 (0.647) 34 (0.576) 43 (0.717)
Age
≥65 years 53 (0.445) 31 (0.525) 22 (0.367)
<65 years 66 (0.555) 28 (0.475) 38 (0.633)
GSE28221 Whole cohort (120) Low risk (93) High risk (27)
Gender
Male 92 (0.767) 71 (0.763) 21 (0.778)
Female 28 (0.233) 22 (0.237) 6 (0.222)
Age
≥65 years 76 (0.633) 55 (0.591) 21 (0.778)
<65 years 44 (0.367) 38 (0.409) 6 (0.222)
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types of immune cells showed that both innate immunity and
adaptive immunity were activated in hypoxiahigh/immunehigh

group, presenting poorer prognosis. In a word, hypoxia, as the
inducement of immune activation, mediates chronic airway
inflammation and leads to fibrosis. Then, cell and organ
dysfunction caused by fibrosis aggravates the formation of
hypoxic inflammatory microenvironment, which forms a
feedback loop.

The result of CIBERSORT showed that the infiltration of M0
macrophage in hypoxialow/immunelow group was higher than
hypoxiahigh/immunehigh group. As inactive and naive
macrophages, the low proportion of M0 macrophages in the
low-risk group suggested a lower level of inflammatory activation
(33). At the same time, the infiltration of CD8+ T cell, activated
CD4+ memory T cell, activated NK cell, activated mast cell, and
Frontiers in Immunology | www.frontiersin.org 12
M1 macrophage in hypoxiahigh/immunehigh group was higher
than that in hypoxialow/immunelow group, presenting a higher
level of inflammation. As was discussed above, the role of CD4+
T cell, mast cell, and M1 macrophage in fibrosis was widely
reported. It is worth noting that M0macrophage and NK cell had
the most significant correlation with key hypoxia-immune DEGs
and risk score. However, the role of CD8+ T cell, NK cell, and
M0 macrophage in fibrosis has not been fully verified. These may
provide a new idea to understand the characteristic immune cells
in fibrotic infiltration.

Also, we found that hypoxia-immune DEGs were mainly risk
DEGs, taking part in the integral component of membrane and
immune response, and the protective DEG was a gene encoding
voltage-independent, non-selective cation channel. The roles of
these predictive signature genes have been reported previously in
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FIGURE 7 | (A, B) The plots showed the results of qRT-PCR. Plot A showed the difference of DEGs expression in PBMC between healthy controls (HC) and patients.
Plot B showed the difference of DEGs expression in PBMC between non-fibrotic pneumonia group (Non-Fib) and pulmonary fibrosis group (Fibrosis). (C–E) CD56 and
CD16 were used to identify NK cells in flow cytometry. CD56+CD16+CD107a+ cells were defined as activated NK cells. Plot C showed the difference of NK% in PBMC
between healthy controls (HC) and patients. Plot D showed the difference of NK% in BALF between usual interstitial pneumonitis (UIP, from Non-Fib group) and
pulmonary fibrosis group (Fibrosis). (F–K) Pearson analysis showed the correlation between cell proportion and clinical features. (L) Pearson analysis showed the
correlation between the results of BALF and PBMC. *, **, ***, **** respectively represent P values of t-test < 0.05, < 0.01, < 0.001, < 0.0001.
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lung diseases. Interleukin-1 receptor 2 (IL-1R2) is an anti-
inflammatory cytokine. The increase level of IL-1R2 has been
reported to be associated with poor prognosis in lung cancer (34,
35), and the increase level of IL-1 was associated with the
development of chronic obstructive pulmonary disease (COPD)
(36, 37). Another risk gene S100A12 is a novel inflammatory
disease biomarker in acute respiratory distress syndrome (ARDS)
(38), interstitial lung disease (ILD) (39), and COPD (40).
Moreover, C-C Motif Chemokine Ligand 8 (CCL8) is a kind of
monocyte chemoattractant, regulating group 2 ILCs in lung
inflammation (41). These results were in accordance with the
results in this article that the overexpression of IL-1R2, S100A12,
and ILC2s may be predictive for poor diagnosis of IPF patients.
NALCN gene encodes a voltage-independent, non-selective cation
channel. Other signature genes are rarely reported in lung diseases.
In this study, combing hypoxia and immune status, we identified
these signature genes to provide new insights into the prognosis
of IPF.

In particular, in the independent external validations of this
study, the prognostic prediction model was performed in
peripheral whole blood, peripheral blood mononuclear cell,
and lung tissue of IPF patients, and the outcomes were
significant. The preliminary clinical specimen validation
suggested the reliability of most conclusions, but there are still
limitations, such as insufficient sample size. And because of the
individual differences and other confounding factors, the results
based on the existing database must have some deviation from
the reality. Although these results provided more possibilities
and a wider application of this predictive model in clinical
setting, a well-designed and multi-center study is needed for
further exploration.

CONCLUSIONS

The immune and hypoxia status in alveolar molecular
environment is associated with the prognosis of patients with
IPF. The prognostic model based on several signature genes
raised a new way to predict the progression and prognosis of IPF.
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Martı ́nez HA, Cisneros J, Toscano-Marquez F, et al. Dysregulated
Expression of Hypoxia-Inducible Factors Augments Myofibroblasts
Differentiation in Idiopathic Pulmonary Fibrosis. Respir Res (2019) 20
(1):130. doi: 10.1186/s12931-019-1100-4

31. Wang X, Lin L, Chai X, Wu Y, Li Y, Liu X. Hypoxic Mast Cells Accelerate the
Proliferation, Collagen Accumulation and Phenotypic Alteration of Human Lung
Fibroblasts. Int J Mol Med (2020) 45(1):175–85. doi: 10.3892/ijmm.2019.4400

32. Tsitoura E, Vasarmidi E, Bibaki E, Trachalaki A, Koutoulaki C,
Papastratigakis G, et al. Accumulation of Damaged Mitochondria in
Alveolar Macrophages With Reduced OXPHOS Related Gene Expression
in IPF. Respir Res (2019) 20(1):264. doi: 10.1186/s12931-019-1196-6

33. Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage Polarization
and Meta-Inflammation. Trans Res J Lab Clin Med (2018) 191:29–44.
doi: 10.1016/j.trsl.2017.10.004

34. Wang C, Zhang C, Xu J, Li Y, Wang J, Liu H, et al. Association Between IL-1R2
Polymorphisms and Lung Cancer Risk in the Chinese Han Population: A Case-
Control Study. Mol Genet Genom Med (2019) 7(5):e644. doi: 10.1002/mgg3.644

35. Zhang M, Zhu K, Pu H, Wang Z, Zhao H, Zhang J, et al. An Immune-Related
Signature Predicts Survival in Patients With Lung Adenocarcinoma. Front
Oncol (2019) 9:1314. doi: 10.3389/fonc.2019.01314

36. Yi G, Liang M, Li M, Fang X, Liu J, Lai Y, et al. A Large Lung Gene Expression
Study Identifying IL1B as a Novel Player in Airway Inflammation in COPD
Airway Epithelial Cells. Inflammation Res (2018) 67(6):539–51. doi: 10.1007/
s00011-018-1145-8

37. Baines KJ, Fu JJ, McDonald VM, Gibson PG. Airway Gene Expression of IL-1
PathwayMediators Predicts Exacerbation Risk in Obstructive Airway Disease. Int J
Chronic Obstructive Pulmonary Dis (2017) 12:541–50. doi: 10.2147/copd.S119443

38. Zhang Z, Han N, Shen Y. S100A12 Promotes Inflammation and Cell Apoptosis in
Sepsis-Induced ARDS Via Activation of NLRP3 Inflammasome Signaling. Mol
Immunol (2020) 122:38–48. doi: 10.1016/j.molimm.2020.03.022

39. Lou Y, Zheng Y, Fan B, Zhang L, Zhu F, Wang X, et al. Serum S100A12 Levels
are Correlated With Clinical Severity in Patients With Dermatomyositis-
Associated Interstitial Lung Disease. J Int Med Res (2019) 48(4). doi: 10.1177/
0300060519887841. 300060519887841.

40. Dai J, Huang YJ, He X, Zhao M, Wang X, Liu ZS, et al. Acetylation Blocks
Cgas Activity and Inhibits Self-DNA-Induced Autoimmunity. Cell (2019) 176
(6):1447–60. doi: 10.1016/j.cell.2019.01.016. e14.

41. Mindt BC, Fritz JH. Next Stop: Perivasculature! ILC2s Hitch a Ride on the
CCL8 Express. Sci Immunol (2019) 4(36). doi: 10.1126/sciimmunol.aax4583

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Li, Cai, Cai, Zhang, Ding and Zhuang. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.
June 2021 | Volume 12 | Article 629854

https://doi.org/10.1155/2020/4534272
https://doi.org/10.3390/ijms21145012
https://doi.org/10.3390/jcm9061940
https://doi.org/10.1164/rccm.201712-2551OC
https://doi.org/10.1016/j.pharmthera.2019.05.014
https://doi.org/10.1155/2019/4236973
https://doi.org/10.1002/prca.201400001
https://doi.org/10.1016/j.redox.2020.101679
https://doi.org/10.1186/s12864-015-2102-3
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1155/2013/475702
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.21037/jtd-19-2842
https://doi.org/10.3389/fimmu.2020.01142
https://doi.org/10.1111/resp.13722
https://doi.org/10.1002/jcp.25998
https://doi.org/10.1164/rccm.200705-683OC
https://doi.org/10.3390/ijms21165663
https://doi.org/10.1096/fj.201902232R
https://doi.org/10.3390/ijms20061299
https://doi.org/10.1038/s41573-019-0040-5
https://doi.org/10.1038/s41573-019-0040-5
https://doi.org/10.1186/s12931-019-1100-4
https://doi.org/10.3892/ijmm.2019.4400
https://doi.org/10.1186/s12931-019-1196-6
https://doi.org/10.1016/j.trsl.2017.10.004
https://doi.org/10.1002/mgg3.644
https://doi.org/10.3389/fonc.2019.01314
https://doi.org/10.1007/s00011-018-1145-8
https://doi.org/10.1007/s00011-018-1145-8
https://doi.org/10.2147/copd.S119443
https://doi.org/10.1016/j.molimm.2020.03.022
https://doi.org/10.1177/0300060519887841
https://doi.org/10.1177/0300060519887841
https://doi.org/10.1016/j.cell.2019.01.016
https://doi.org/10.1126/sciimmunol.aax4583
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

	Investigation of a Hypoxia-Immune-Related Microenvironment Gene Signature and Prediction Model for Idiopathic Pulmonary Fibrosis
	Introduction
	Materials and Methods
	Patient Cohort and Data Preparation
	Identification of&nbsp;Hypoxia Status and&nbsp;Hypoxia-Related DEGs
	Identification of&nbsp;Immune Status and&nbsp;Immune-Related DEGs
	Identification of&nbsp;Hypoxia-Immune-Related Prognostic DEGs
	Prognosis Prediction Model of IPF Based On Hypoxia-Immune-Related DEGs
	Functional and Pathway Enrichment Analysis
	Preliminary Validation of Clinical Specimens
	Statistical Analysis

	Results
	Hypoxia Status and Hypoxia-Related DEGs in IPF
	Immune Status and Immune-Related DEGs in IPF
	Hypoxia–Immune-Related DEGs in IPF
	Prognosis Prediction Model of IPF Based on Hypoxia-Immune-Related DEGs
	Hypoxia-Immune Related Immunocyte Infiltration Pattern
	Validation of the Prognostic Prediction Model in External Independent Cohorts
	Preliminary Validation of Clinical Specimens

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


