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Background: This prospective multicenter study developed an integrative clinical and

molecular longitudinal study in Rheumatoid Arthritis (RA) patients to explore changes

in serologic parameters following anti-TNF therapy (TNF inhibitors, TNFi) and built on

machine-learning algorithms aimed at the prediction of TNFi response, based on clinical

and molecular profiles of RA patients.

Methods: A total of 104 RA patients from two independent cohorts undergoing

TNFi and 29 healthy donors (HD) were enrolled for the discovery and validation of

prediction biomarkers. Serum samples were obtained at baseline and 6 months after

treatment, and therapeutic efficacy was evaluated. Serum inflammatory profile, oxidative

stress markers and NETosis-derived bioproducts were quantified and miRNomes were

recognized by next-generation sequencing. Then, clinical and molecular changes

induced by TNFi were delineated. Clinical and molecular signatures predictors of clinical

response were assessed with supervised machine learning methods, using regularized

logistic regressions.

Results: Altered inflammatory, oxidative and NETosis-derived biomolecules were found

in RA patients vs. HD, closely interconnected and associated with specific miRNA

profiles. This altered molecular profile allowed the unsupervised division of three clusters

of RA patients, showing distinctive clinical phenotypes, further linked to the TNFi

effectiveness. Moreover, TNFi treatment reversed the molecular alterations in parallel to
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the clinical outcome. Machine-learning algorithms in the discovery cohort identified both,

clinical and molecular signatures as potential predictors of response to TNFi treatment

with high accuracy, which was further increased when both features were integrated in

a mixed model (AUC: 0.91). These results were confirmed in the validation cohort.

Conclusions: Our overall data suggest that: 1. RA patients undergoing anti-TNF-

therapy conform distinctive clusters based on altered molecular profiles, which are

directly linked to their clinical status at baseline. 2. Clinical effectiveness of anti-TNF

therapy was divergent among these molecular clusters and associated with a specific

modulation of the inflammatory response, the reestablishment of the altered oxidative

status, the reduction of NETosis, and the reversion of related altered miRNAs. 3. The

integrative analysis of the clinical and molecular profiles using machine learning allows

the identification of novel signatures as potential predictors of therapeutic response to

TNFi therapy.

Keywords: rheumatoid arthritis, anti-TNF agents, inflammation, NEtosis, microRNAs, machine learning,

predictors, efficacy

INTRODUCTION

Rheumatoid arthritis (RA) is a systemic inflammatory
autoimmune disease identified by continuous joint inflammation
promoting cartilage and bone damage, incapacity and eventually
systemic complications. Prompt treatment can preclude severe
disability and bring significant benefits to patients, although the
lack of therapeutic efficacy in a substantial number of patients is
still challenging (1).

In the last years, advances in the understanding of
RA pathogenesis by identifying key cells and cytokines
have allowed the development of new targeted disease-
modifying antirheumatic drugs (2). In the late 1990s, the
introduction of anti-tumor necrosis factor alpha drugs (TNF
inhibitors, TNFi) greatly improved the medical management
of RA patients, although some of them were reported to
be ineffective.

A recent observational study has found that nowadays anti-
TNF drugs are the first-line treatment in 96% of patients who
fail methotrexate therapy. Besides, patients who do not reach
their treatment targets (3) are forced to cycle through multiple
anti-TNF drugs while their disease has time to progress. As
all anti-TNF drugs target similar molecular and inflammatory
pathways, it is not surprising that most patients who are primary
non-responders to their initial anti-TNF therapy fail to achieve
their treatment targets when cycled through alternative anti-
TNFs. This suggests that primary non-responders should be
switched to an alternative therapy rather than enduring anti-
TNF cycling. Thus, the development of a personalized medicine
approach to identify primary non-responders to anti-TNFs prior
to treatment would allow significantly more patients to reach
their treatment target by treating them with alternative therapies
as first-line therapies.

Nowadays, the number of robust treatment response
predictors in RA is very limited, so that it has been
demonstrated that pathophysiological biomarkers have

insufficient discriminating power. Hence, several studies
have identified a number of potential clinical biomarkers of
RA response to biological therapies, including age, sex, disease
duration and activity, smoking status, presence of comorbidities,
tender joint counts (TJC), concomitant methotrexate therapy,
etc. (4–7). Yet, those studies were inconsistent and contradictory
results have been published.

Besides, none of these studies have evaluated the molecular
mechanisms underlying the distinctive response to TNF-
inhibitors (TNFi) among RA patients and their potential as
predictors of treatment response.

In the last years, relevant findings in the field of RA
pathogenesis have been described, among which new insights
come from studies on synovial fibroblasts and cells belonging to
the innate and adaptive immune system, which have documented
the aberrant production of inflammatory mediators, oxidative
stress and NETosis, along with relevant alterations of the
genome and on the regulatory epigenetic and posttranslational
mechanisms. Moreover, emerging studies by several groups,
including ours, have demonstrated that the pharmacological
therapy with biological disease modifying anti-rheumatic drugs
(bDMARDs) such as TNF or IL-6 receptor inhibitors, or anti-
CD20 antibodies promotes, in parallel to their clinical efficacy,
a specific and significant alteration in several of these altered
molecular mechanisms (8–12).

The complexity of the treatment response in a given
patient and the significant differences between patients suggest
that the combination of biomarkers may be more helpful
than studying them separately. Therefore, the development of
matrices containing clinical and laboratory parameters related to
diagnosis or prognosis might help to select the best treatment for
each patient.

Integrative biology by advanced computational analysis
is a fast-expanding field that can be expected to identify
combinations of parameters capable of predicting the response
to various drugs (13).
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In this study, we developed an integrative clinical and
molecular longitudinal study in RA patients to explore changes
in serologic parameters related to inflammation, NETosis,
oxidative stress and regulating microRNAs (miRNAs) following
TNFi treatment. Besides, by using machine-learning algorithms,
we aimed at the prediction of TNFi response based on the
combination of clinical and molecular profiles of RA patients.

PATIENTS AND METHODS

Study Design and Patients
In a prospective multicenter study, a total of 104 RA patients and
29 healthy donors (HD), from two independent cohorts, were
recruited (during a 48-months period). These cohorts attended
the Reina Sofia University Hospital of Córdoba, the Virgen
Macarena Hospital of Sevilla, The Virgen del Valme Hospital of
Sevilla, the Virgen de la Victoria University hospital of Malaga,
Jerez de la Frontera University Hospital, and the University
Hospital of Jaen. All patients fulfilled the American College of
Rheumatology revised criteria for RA (14).

Approval from the ethics committees was obtained, and
subjects provided written informed consent.

Clinical/laboratory parameters of RA patients and HD from
the discovery cohort are displayed in Table 1 while clinical data
of RA patients belonging to the independent validation cohort
are displayed in Supplementary Table 1.

All patients had an inadequate response to at least two disease-
modifying antirheumatic drugs (DMARDs) and received TNFi in
combination therapy with DMARDs. All patients were naïve to
TNFi treatment.

Within the discovery cohort, 22 patients were given infliximab
(3 mg/kg/day intravenous infusion at times 0, 2, and 6 weeks,
and every 8 weeks thereafter), 39 patients received etanercept
(50mg subcutaneously every week), 12 patients were treated
with adalimumab (40mg subcutaneously every 2 weeks), 4 with
golimumab (50mg subcutaneously every month) and 2 with
certolizumab (400mg at times 0, 2, and 4 weeks, and 200mg
every 2 weeks thereafter).

Within the validation cohort, 5 patients were given infliximab,
10 patients received etanercept, 8 patients were treated with
adalimumab, 1 with golimumab and 1 with certolizumab.

Clinical assessment, before and after 3 and 6 months of TNFi
therapy, included swollen joint count (SJC), tender joint count
(TJC), 28-joint disease activity score (DAS28), clinical disease
activity index (CDAI), simple disease activity index (SDAI), and
health assessment questionnaire (HAQ). Serological evaluation,
performed by clinical laboratory routine analysis, included
analysis of rheumatoid factor (RF, U/mL), anti-cyclic citrullinated
peptide antibodies (ACPAs, U/mL), C-reactive protein (CRP,
mg/L) and erythrocyte sedimentation rate (ESR, mm/h).

Response to TNFi treatment was assessed by the European
League Against Rheumatism (EULAR) criteria, based on the
changes in DAS28 score, and the patients were categorized into
responders and non-responders to TNFi. An improvement in
DAS28 over ≥1.2 and a DAS28 value ≤ 3.2 after 6 months of
treatment was considered a good response; a DAS28 value after
6 months between 3.2 and 5.1 and a reduction between 0.6 and

TABLE 1 | Clinical and molecular profiles of rheumatoid arthritis patients and

healthy donors recruited to the study.

HD (n = 29) RA patients (n = 79) p

Clinical parameters

Gender (female/male) 19/10 64/15 0.12

Age, years (mean ± SD) 47 ± 17 51.2 ± 10.5 0.056

Disease evolution, years (mean

± SD)

11.5 ± 9.1

TJC (mean ± SD) 8.1 ± 6.0

SJC (mean ± SD) 5.9 ± 4.9

DAS28 (mean ± SD) 4.7 ± 1.2

SDAI (mean ± SD) 29.6 ± 13.3

CDAI (mean ± SD) 27.9 ± 11.9

HAQ (mean ± SD) 1.4 ± 0.7

Smoking (n, %) 5/29 (17%) 19/79 (24%) 0.323

Arterial hypertension (n, %) 0/29 (%) 17/79 (21%) 0.005

Diabetes (n, %) 0/29 (%) 7/79 (8%) 0.186

Hypercholesterolemia (n, %) 16/29 (%) 35/79 (44%) 0.197

Extra-articular manifestations

(n, %)

13/79 (16%)

Radiological involvement (n, %) 29/79 (37%)

Eroded joints (mean ± SD) 1.3 ± 2.3

Laboratory parameters

CRP, mg/mL (mean ± SD) 1.6 ± 2.2 15.8 ± 26.2 0.000

ESR, mm/h (mean ± SD) 8.1 ± 5.8 23.7 ± 17.9 0.000

ACPAs, IU/mL (mean ± SD) 343.3 ± 762.6

RF, IU/mL (mean ± SD) 112.9 ± 205.8

Treatments

NSAIDS (n, %) 59/79 (74%)

Corticosteroids (n, %) 73/79 (92%)

Statins (n, %) 8/79 (10%)

Vit D (n, %) 24/79 (30%)

Osteoporosis treatment (n, %) 18/79 (22%)

Antiplatelet (n, %) 2/79 (2%)

Anticoagulants (n, %) 2/79 (2%)

Methotrexate (n, %) 48/79 (61%)

Leflunomide (n, %) 50/79 (63%)

Dolquine (n, %) 46/79 (58%)

Salazopyrine (n, %) 16/79 (20%)

1.2 was considered a moderate response. Both of them were
categorized as responders to the therapy. Patients who exhibited
a DAS28 score at T6 > 5.1 or a reduction in DAS28 under 0.6
were considered a non-responders.

Blood Collection
Whole blood from HD and RA patients was collected
by direct venous puncture either, into tubes with
ethylenediaminetetraacetic acid (EDTA) as an anticoagulant, or
into specific tubes for obtaining serum.

Blood samples were obtained before and after 6 months of
TNFi treatment. To avoid blood composition changes promoted
by diet and circadian rhythms, samples were always collected in
the early hours in the morning and after a fasting period of 8 h.
The blood was processed by spinning at 2,000 × g for 10min
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at room temperature. Then, serum was transferred to a fresh
RNase-free tube and stored at−80◦C.

To avoid differences related to the origin of samples and their
processing all the blood samples were collected and processed
following the same protocol. In this multicenter study, our lab
was the reference center. Thus, tubes for obtaining blood were
sent to all the hospitals that collaborated on recruitment, and
serum purification and storage were developed under the same
conditions. Hence, all the samples coming from external centers
were processes in our lab following the same procedures, which
ensured the homogeneity of the downstream analysis.

Assessment of Circulating Inflammatory
Profile and Oxidative Stress Markers
The inflammatory profile was analyzed in the serum of HD and
RA patients both, before and after 6 months of TNFi therapy,
by using a multiplex-type immunoassay—Bioplex (Bio-Rad, CA,
USA)—in which a panel of 27 cytokines was evaluated.

Oxidative stress parameters were determined through the
evaluation of oxidation of both lipids and proteins, along with
the analysis of the total antioxidant capacity. Assays of lipid
peroxidation levels were carried out using the Thiobarbituric acid
reactive substances (TBARS) assay kit (Canvax Biotech, Córdoba,
Spain), following the manufacturer’s recommendations.

Protein nitrosylation was measured by using the
Nitrotyrosine ELISA kit (Abcam, Cambridge, UK), following
the manufacturer’s recommendations. Serum total antioxidant
capacity (TAC) was measured by quantitative colorimetric
determination, using TAC Assay kit (Biovision, Mountain
View, CA, USA) following the instructions provided by
the manufacturer.

NETosis-Derived Products Assessment
To analyze NETosis-derived products, circulating levels of both
elastase and nucleosomes were evaluated. Cell-free elastase levels
were measured in RA patients’ and HDs’ serum using the Human
PMN Elastase ELISA Kit (Abcam, Cambridge, UK) following the
manufacturer’s recommendations.

Likewise, cell-free nucleosomes were measured using the
human cell death detection ELISAPLUS kit (Roche, Sigma-
Aldrich, St Louis, MO, USA) following the manufacturer’s
recommendations. In this assay, monoclonal antibodies against
DNA (double and single strand) and histones (H1, H2A, H2B,
H3, and H4) were used to detect mono- and oligo nucleosomes
in serum from RA patients. Quantification of nucleosomes was
performed by photometrical determination of the absorbance at
405 nm, using as reference wavelength 492 nm.

MicroRNA Isolation, Profiling, and
Quantitative Real-Time PCR
Total serum RNA—including the miRNA fraction—was
extracted using the QIAzol miRNeasy kit (Qiagen, Valencia, CA,
USA) with some modifications. A total of 200 µl of serum were
thawed on ice and lysed in 1mL QIAzol Lysis Reagent (Qiagen).
Samples in QIAzol were incubated at room temperature for
5min to inactivate RNases. To adjust for variations in RNA
extraction and/or copurification of inhibitors, 5 fmol of spike-in

non-human synthetic miRNA (C. elegansmiR-39 miRNAmimic:
5
′
-UCACCGGGUGUAAAUCAGCUUG-3

′
) were added to the

samples after the initial denaturation. The remaining extraction
protocol was performed according to the manufacturer’s
instruction. Total RNA was eluted in 14 µl of RNase-free water.

To identify the profiles of miRNAs in the serum of HDs
and RA patients, an array was performed in an exploratory
cohort -including 6 samples from clinically representative RA
patients and 3 fromHDs- using the HTG EdgeSeq miRNA whole
transcriptome assay (miRNA WTA), which enabled to measure
the expression of 2,083 human miRNA transcripts using next
generation sequencing (NGS) (HTG Molecular technologies,
Tucson, AZ, USA).

All differentially regulated miRNAs and fold changes were
imported into the web-based bioinformatics tool QIAGEN’s
Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, http://
www.INGENUITY.com) to perform a functional classification
and identify potential mRNA targets. The right-tailed Fisher’s
exact test was used to calculate the p-value determining the
statistical probability that the association between a set of
molecules and a pathway or function might be due to chance
alone. IPA analysis also allowed the selection of altered miRNAs
that exhibited an enrichment in mRNA targets involved in the
pathogenesis of RA for their validation in the whole cohort
by real time PCR (RT-PCR) using a LightCycler R© Thermal
Cycler System (Roche Diagnostics, Indianapolis, Indiana, USA).
Specifically, 3 µl of RNA eluate were reverse transcribed in 10
µl reactions using the miRCURY LNATMUniversal RT mi-RNA
PCR, Polyadenylation and cDNA synthesis kit (Exiqon, Vedbaek,
Denmark). RT-PCR was carried out with 4 µL cDNA diluted
20x and 6 µL of reaction mixture [5 µL of SYBR Green master
mix (Exiqon) and 1 µL of the corresponding PCR primer mix
(microRNAs LNATM PCR primer set, Exiqon)]. After an initial
hold of 10min at 94◦C, samples were cycled 40 times at 95◦C
for 10 s and at 60◦C for 1min. The expression levels of miRNAs
were normalized to the mean of spiked-in miRNA Cel-miR-39.
The expression levels of miRNA were calculated using the 2-
11Ct method. All measurements were performed in duplicate.
Controls consisting of reaction mixture without cDNA were
negative in all runs. List of miRNA sequences is displayed in
Supplementary Table 2.

Machine Learning Analysis
Three different logistic models (15) were made to study clinical
and molecular variables groups before starting therapy, looking
for patients’ best classification as responders or non-responders,
using Python library Scikit-Learn (16). A logistic regression
model with L2 penalty (all variables used) was made for clinical
variables group. Training set (75%) and test set (25%) were
settled for model validation. Identical approach was developed
for molecular variables group. To study combined effect of both
variables’ groups, the same approach was used changing only to
L1 penalty (variables selection) (Supplementary Figure 1).

Statistical Analyses
Statistical analysis and graphical representation of results were
performed using GraphPad Prism 8 software (San Diego CA,
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USA). The normal distribution of the variables to characterize
the differences in the analyzed parameters was assessed using the
Kolmogorov-Smirnov test.

Based on this test, comparisons between quantitative and
qualitative variables were made using the Student’s t-test, or
alternatively, using a non-parametric test (Mann-Whitney U).

Paired samples within the same subjects were compared
by Wilcoxon signed-rank test. Differences among groups
of treatment were analyzed by repeated measures ANOVA.
Correlations were assessed by Spearman’s rank correlation.
Differences were considered significant at P < 0.05.

When considering clinical and analytical measures, missing
data values were<1% either, at baseline and after 3 and 6 months
of therapy.

Regardingmolecular measures, missing data values at baseline
were around 5%.

Because of a number of patients were not willing to donate
blood samples after 6 months of therapy, and/or bleeding was not
recommended by clinicians at this time, we achieved molecular
data from approximately 75% of patients included in the study.

RESULTS

MicroRNA Profile, Inflammatory, Oxidative
Stress and NETosis-Derived Serum
Parameters, Are Deregulated, Interrelated
and Associated With the Clinical Profile of
RA Patients
Whole miRNome profiling in serum samples identified altered
levels of 223 miRNAs in RA patients before TNFi, when
compared to HDs (cut-off: 2-fold change), of which 137 resulted
to be upregulated and 86 downregulated (Figure 1A left panel).

By using the IPA software, the functional classification of these
miRNAs revealed their association with clinical features of the
RA physiopathology. Thus, the altered miRNAs signature in RA
was enriched for biological processes such as connective tissue
disorders, inflammatory response, infection, immunological,
hematological, metabolic, respiratory and skeletal and muscular
disorders, among others (Figure 1A central panel).

In order to validate the results in the whole cohort of
RA patients and HDs, we performed an in-silico analysis that
allowed the identification of a set of microRNAs as potential
modulators of the expression of key targets involved in the
pathology of RA. We identified a panel of 5 microRNAs
including miR- 106a-5p, 143-5p, 148b-3p, 199a-5p, and 346 that
showed potential targets molecules related to pro-inflammatory
cytokines, chemokines, metalloproteinases, adhesion factors
and critical immune receptors (BMP3, CCL-4, CCL-5, CCL-
20, CXCL6, CXCL8, ITGA5, IL-6, IL6ST, IL-1RL1, MMP3,
MMP13, TLR7, TNF, VCAM1, VEGFA, etc), along with a
high number of molecules that regulate intracellular pathways
associated with inflammatory and autoimmune processes (DKK-
1,−2,−3, IKBKB, JAK1, MAPK14, MAP2K1, MAP3K5, NFKB1,
NFßKBIA, PI3K3C2A, SOCS3, STAT3, WNT7, WNT2, WNT9B,
etc.) (Supplementary Figure 2).

The expression of the 5 selected miRNAs was further
analyzed by RT-PCR in the entire cohort, thus showing that the

relative expression of all the selected circulating miRNAs was
significantly altered in serum from RA patients when compared
to HDs (p < 0.05) (Figure 1A right panel).

An inflammatory profile was also demonstrated in the
serum of RA patients, including over-expression of a number
of interleukins (IL-1β,−1RA,−2,−4,−5,−6,−8,−12,−13,−15
and−17) (Figure 1B), cytokines, chemokines and growth factors
(Eotaxin, FGFbasic, GCSF, GM-CSF, IFNγ, MCP-1, MIP-1α,
PDGF-BB, TNFα, and VEGF) (Figure 1C).

In addition, direct predicted miRNA-target interactions were
identified between those deregulated miRNAs and several altered
pro-inflammatory molecules (Supplementary Figure 3).

Increased NETs extrusion and enhanced oxidative status were
also demonstrated by enlarged neutrophil cell-free elastase and
Nucleosomes serum levels in RA patients (Figure 1E), along
with increased levels of LPO and reduced N-Tyr and TAC
(Figure 1D).

Correlation studies demonstrated a strong relationship among
the levels of all the parameters evaluated, including inflammatory
and oxidative stress markers, as well as with NETosis-derived
products and microRNAs (Supplementary Figure 4).

Unsupervised Cluster Analysis of the
Integrated Serum Molecular Signatures
Stratified RA Patients According to Their
Disease Status
By using self-organizing map (SOM) clustering analysis in the
RA cohort, 3 clusters were distinguished, representing different
serum molecular profile groups with respect to the circulating
levels of inflammatory, oxidative and netotic mediators along
with those of validated microRNAs (Figures 2A,C). Principal
component analyses (PCA) confirmed a well-defined separation
between these molecular clusters (Figure 2B). The clinical
and laboratory profiles of each cluster were then evaluated
(Figures 2C,E).

Briefly, cluster 1 (22% of the clustered cohort) was described
on average by medium disease activity scores and low radiologic
involvement, low prevalence of smokers and reduced prevalence
of cardiovascular risk factors such as hypercholesterolemia.

On the contrary, cluster 3 (23% of the clustered cohort)
comprised the patients with highest disease activity scores, along
with a higher percentage of smokers and an enlarged prevalence
of hypercholesterolemia.

Cluster 2 (55% of the clustered cohort) represented an
intermediate clinical phenotype, though closer to cluster 3
in relation to disease activity scores, radiologic involvement,
percentage of smokers and incidence of hypercholesterolemia.

No differences among clusters were found in relation to age,
sex, positivity for autoantibodies, and disease duration.

Molecular analyses further recognized differential
inflammatory, netotic, oxidative and miRNA profiles in RA
patients’ serum among clusters, on which patients belonging
to clusters 1 and 3 displayed the most specific and distinctive
expression patterns of interleukins, chemokines and growth
factors, along with distinctive levels of oxidative stress markers
such as lipoperoxides and N-Tyr, products of NETosis, including
Elastase and Nucleosomes, and microRNAs (Figure 2D).
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FIGURE 1 | Molecular characterization of rheumatoid arthritis patients. (A) Whole circulating microRNA (miRNA) expression profile in plasma of Rheumatoid Arthritis

(RA) patients (n = 6) and healthy donors (HDs) (n = 3) by HTG EdgeSeq Assay showing miRNAs up-regulated in red and miRNAs downregulated in green (Fold

Change >2 or <-2) (Left panel). Functional classification of altered miRNAs according biological functions and diseases following Ingenuity Pathway Analysis (central

panel). RT-PCR validation of selected miRNAs associated with the pathogenesis of RA (right panel). (B) Interleukin profile of RA patients and HDs in serum by Luminex

Assay (Bio-Plex). (C) Cytokine, chemokine and growth factor profile of RA patients and HDs in serum by Luminex Assay (Bio-Plex). (D) Oxidative stress markers in

serum of RA patients and HDs including Nitrotyrosine (N-Tyr), Lipoperoxides and Total Antioxidant Capacity (TAC). (E) NETosis-derived products in serum of RA

patients and HDs including neutrophil elastase and nucleosome levels. Analyses were performed on the whole cohort of RA patients (n = 79) and HD (n = 29). *p <

0.05.

Clinical Profile of RA Patients and
Response to TNFi Therapy
At the start of the TNFi therapy all subjects showedmedium-high
disease activity, reflected by a mean DAS28 of 4.75 (2.05–7.5).
A 74% of patients took non-steroidal anti-inflammatory drugs
(NSAIDS) daily, and 92% received steroid treatment (range 2.5–
30mg/d prednisone). Methotrexate alone or in combination with
other DMARD was further administered in 61% of subjects.

According to DAS28 response criteria, at 3 months of
treatment, 28 (35%), 25 (32%), and 26 (33%) RA patients
showed good, moderate, and no response to TNFi therapy,
respectively (Figure 3A). All the clinical parameters evaluated,
including DAS28, SDAI and CDAI scores, along with HAQ,
number of swollen and tender joints improved significantly. In
addition, acute phase reactants were also reduced (Figure 3B).
Interestingly, most of good responders at 3 months remained
responsive to therapy at 6 months. Besides, a significant number
of moderate responders shifted to good responders in relation to

those that remained as moderate or changed to non-responders
(Figure 3A).

All five biological agents had a favorable influence on
the evolution of those parameters, so that changes were not
influenced by treatment with monoclonal antibodies nor with
soluble receptor (Supplementary Figure 5A). Considering the
clinical response more consolidated at 6 months of treatment, we
selected this time after starting therapy to assess serummolecular
changes and to search for potential biomarkers as predictors
of response.

TNFi Changes on Serum Molecular Profile
of RA Patients Were Specific of the Cluster
Evaluated and Associated With the Clinical
Response
According to EULAR response criteria, all patients belonging to
cluster 1 showed clinical response after 6 months of therapy. In
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FIGURE 2 | Cluster analysis of molecular features in rheumatoid arthritis patients. (A) Overview plot of the differential molecular profiles of Rheumatoid Arthritis (RA)

patients (n = 74) using Self Organization Map (SOM) clustering analysis from MetaboAnalyst 4.0. The darker lines represent the median intensities of each cluster. (B)

Principal component analysis (PCA) summarizing the differences in the molecular profile of each cluster. (C) Table of demographic and laboratory parameters of RA

patients characterizing each cluster (Cluster 1 = 16; Cluster 2 = 41; Cluster 3 = 17). (D) Heatmap of the molecular profile of each cluster showing the normalized

levels of all the biomolecules analyzed in RA patients. (E) Clinical features associated with each cluster including Disease Activity Score (DAS28), Simple Disease

Activity index (SDAI), Clinical Disease Activity Index (CDAI), Tender and Swollen Joints, Health Assessment Questionnaire (HAQ), C-reactive protein (CRP), Erythrocyte

Sedimentation Rate (ESR), and Bone Erosion. *p < 0.05.

clusters 2 and 3, 67% of patients were responders and a 33%
of them were non-responders (Figure 4A). Thus, considering
the similarity of these clusters concerning both, the clinical and
molecular profiles and the response to treatment, and in order to
identify molecular mechanisms of non-response, we decided to
evaluate jointly the molecular changes occurred in these clusters
after TNFi therapy.

As a general feature, we identified two main distinctive
molecular profiles among RA patients responders to TNFi,
involving, on one hand, low-medium baseline levels of
inflammatory, oxidative and netoticmediators in those belonging
to cluster 1, and on the other hand, high baseline levels of these
parameters in responders belonging to the other two clusters.

Accordingly, in cluster 1 we observed few or no changes in
the levels of these parameters after 6 months of therapy. On
the contrary, the clinical response to TNFi in clusters 2 and
3 was found linked to a significant reduction in levels of a
number of inflammatorymediators, oxidative stressmarkers, and

products of NETosis, along with the restoration in the levels of
microRNAs. These changes were not observed in patients that
did not display clinical response to therapy (Figure 4).

Moreover, we observed that in responders patients to TNFi
therapy, the levels of most of these parameters reached the ranks
found in healthy donors after 6 months of therapy, while in non-
responders, these parameters remained significantly elevated
(Figure 5).

It must be noted that changes observed in molecular
parameters were similar among patients treated with
either, monoclonal anti-TNF antibodies or soluble receptor,
independently of both, the cluster on which patients
were included and the clinical response to therapy
(Supplementary Figure 5B).

In support for these results, we further observed a significant
positive correlation among the changes arisen in the levels of
these molecules and the improvement of the disease activity,
identified by DAS28 score (Figure 6).
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FIGURE 3 | Clinical response to anti-TNF therapy in rheumatoid arthritis patients. (A) Flow diagram representing the clinical response at 3 and 6 months of anti-TNF

therapy following EULAR criteria. (B) RA patients’ (n = 79) changes in clinical features at 3 and 6 months of anti-TNF therapy including Disease Activity Score

(DAS28), Simple Disease Activity index (SDAI), Clinical Disease Activity Index (CDAI), Tender and Swollen Joints, Health Assesment Questionnaire (HAQ), C-reactive

protein (CRP), erythrocyte Sedimentation Rate (ESR), Rheumatoid Factor (RF) and Anticitrullinated protein antibodies (ACPAS). *p < 0.05.

Machine Learning Algorithms Allowed the
Identification of Potential Predictors of
TNFi Response
By using machine-learning algorithms such as logistic regression
models, we searched for potential predictors of TNFi response
based on clinical and molecular profiles of RA patients before
starting therapy.

Firstly, we identified the clinical and molecular parameters
that significantly distinguished among responder and non-
responder patients, based on EULAR criteria (Figures 7A,B).
Then, the identified parameters were split in clinical and
molecular groups and logistic models were performed.

Among clinical groups, logistic model identified as good
response factors, higher levels of creatinine, complement C4,
total IgM, number of swollen joints, longer disease duration and
complementary therapy with vitamin D, showed by odd ratio
(OR) coefficients > 1. ROC curve analyses demonstrated that
the combined model of these parameters identified responder
patients with high accuracy (AUC= 0.81) (Figure 7C).

Among molecular parameters, logistic model identified
as good response factors, high levels of nucleosomes, IL-
10, miR106a-5p and IL-13, (OR > 1). Yet, high levels of
lipoperoxides, IL-15 and IL-12p70 were predictors of non

response (OR < 1). Likewise, ROC curve analysis with the
combined model of molecular variables identified responder
patients with similar accuracy (AUC= 0.807) (Figure 7D).

Interestingly, in the mixed model, combining clinical and
molecular features, ROC curve showed better discriminative
capacity than each single model (AUC= 0.909), thus supporting
the relevance of combining both, clinical and molecular features
to allow an accurate prediction of TNFi response (Figure 7E).

Moreover, similar prediction patterns were found when
compared the treatments with soluble receptor vs. monoclonal
antibodies. In fact, predictive models that mixed clinical and
molecular features fit well for both types of TNFi, displaying
areas under the curve close to 0.9 (Supplementary Figure 6).
This data reinforces the potential clinical utility of this
mixed model.

Likewise, when we evaluated the performance of these models
in an independent cohort of 25 patients (invonving 14 responders
and 11 non-responder patients to TNFi), we could validate
their capacity to predict the response to TNFi before therapy.
Thus, the mixed model integrating clinical and molecular
features predicted the response with an AUC of 0.83, which was
significantly higher compared to separated clinical andmolecular
models as in the case of the discovery cohort (Figures 7F–H).
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FIGURE 4 | Molecular response to anti-TNF therapy in rheumatoid arthritis patients. (A) Diagram showing the distribution of EULAR responder and non-responder

patients among the different molecular clusters that characterized Rheumatoid Arthritis (RA) patient at baseline. Cluster 1 was characterized by responder patients

while non-responder patients were identified only in cluster 2 and 3. (B–E) Individual changes in the level of biomolecules related to inflammation (B), NETosis (C),

oxidative stress (D), and microRNAs (E) before and after 6 months of Anti-TNF-therapy between responders and non-responder patients. *p < 0.05. R (C1),

Responder patients of Cluster 1 (n = 16); R (C2-3), Responder patients of Cluster 2 and 3 (n = 25); NR (C2-3), Non-Responder patients of Cluster 2 and 3 (n = 17).

DISCUSSION

Continuous updating of the knowledge on molecular processes
associated to the pathogenesis of RA, and on the specific effects of
bDMARDs in the correction of their dysregulation, are essential
in the early and correct approach to the treatment of this complex
autoimmune disorder. RA is a dissimilar disease, involving
multiple clinical manifestations and pathogenic mechanisms
among individuals with the same diagnosis and/or throughout
different disease stages. These traits support the complexity of the
disease and the involvement of numerous factors in the trigger
and the evolution of RA (17).

The present longitudinal study has elucidated the effects
of TNFi treatment at the molecular level. In addition, a
comprehensive analysis that combines data from different
molecular categories and detailed clinical parameters has allowed
a better understanding of molecular systems linked to disease
severity effects of drugs treatment. Therefore, we demonstrated
that, in parallel to the clinical response, TNFi promoted
the re-establishment in the levels of circulating inflammatory
and oxidative stress mediators, a significant reduction of

NETosis-derived bioproducts and a substantial reversal of
altered miRNAs.

It has been suggested that the diversity of biological
processes underlying the pathogenesis of RA implies that
their clinical phenotypes represent jointly altered pathways
rather than exemplify the outcomes of single altered entities.
Accordingly, different biological therapies have demonstrated
numerous beneficial molecular effects that modulate pathological
processes of the disease in RA (18). In the present study we
identified a number of molecular alterations that develops jointly
in these patients and are intimately associated to distinctive
clinical phenotypes.

Firstly, clustering analysis based on molecular profiles before
TNFi therapy, allowed the unsupervised division of three groups
of RA patients, showing distinctive clinical phenotypes, further
linked to the effectiveness of TNFi treatment. Thus, cluster 1
comprised patients 100% responders to therapy, who displayed a
less prominent inflammatory status at baseline. On the contrary,
on clusters 2 and 3, RA responders’ patients to TNFi therapy
were characterized by a high inflammatory status that paralleled
a high disease activity. Patients from cluster 1 did not show
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FIGURE 5 | Increased levels of altered biomolecules in non-responder patients to anti-TNF therapy after 6 months of treatment. Level of Interleukins (A), Cytokines,

Chemokines and Growth Factors (B), NETosis-derived products (C), oxidative stress markers (D), and circulating microRNAs (E) in the plasma of Healthy donors

(HDs) and responder and non-responder patients after 6 months of Anti-TNF therapy. *p< 0.05. R (C1), Responder patients of Cluster 1 (n = 16); R (C2-3),

Responder patients of Cluster 2 and 3 (n = 25); NR (C2-3), Non-Responder patients of Cluster 2 and 3 (n = 17).

changes in the molecular panel evaluated. However, the fact
that all of them achieved a clinical response suggests that
changes in other inflammatory mediators might be responsible
for the therapy effectiveness. In these patients from cluster
2 and 3, therapy promoted a clear inflammatory response,
involving the downregulation of cytokines, chemokines, growth
factors, NETosis bioproducts and oxidative stress molecules.
Quite the reverse, in non-responder patients belonging to these
two clusters, the high levels found of inflammatorymediators and
other altered metabolites were not reduced by TNFi, remaining
increased after 6 months of therapy. Similar results have been
published in previous works, including ours (19). Although core
mechanisms remain to be clarified, this is the first study that
identifies two sets of patients with distinctivemolecular profiles at
baseline that share a good response to TNFi therapy, underlying
a heterogeneity in these patients that most probably derives of
numerous clinical, genetic and environmental factors awaiting to
be clarified.

In addition, our data strengths the relevance of integrating
molecular and clinical studies in these patients, in order to
identify potential predictors of treatment response. Hence,

by using machine-learning algorithms (i.e., logistic regression
models) we searched for potential predictors of TNFi response
based on clinical and molecular profiles of RA patients.
Our results identified signatures involving both clinical and
molecular parameters that might predict the response to TNFi,
which was further independent of the TNF inhibitor used,
either monoclonal antibody or soluble receptor. Thus, several
inflammatory cytokines, along with bioproducts of NETosis,
oxidative stress and microRNAs, whose altered levels have
been previously demonstrated to be altered in RA patients
and modified by bDMARDs, were predictors of response to
TNFi. Consistently, among clinical parameters, longer disease
evolution, high number of swollen joints, and increased serum
levels of creatinine, triglycerides, complement C4 and IgM, along
with the concomitant treatment with vitamin D, were associated
to the response to TNFi after 6 months of treatment.

Preceding studies demonstrated that these parameters were
linked to the altered autoimmune and inflammatory status of
RA patients (i.e., inflamed joints, elevated IgM and complement
C4) (20, 21), and/or were indicative of an active metabolic status
(i.e., high creatinine) (22). Moreover, available evidence indicates
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FIGURE 6 | Correlations among changes in the levels of altered biomolecules and the clinical response induced by anti-TNF therapy in rheumatoid arthritis patients.

Correlation analysis among changes in the levels of inflammatory mediators (A), NETosis markers (B) and microRNAs (C) in the serum of Rheumatoid Arthritis patients

after 6 months of anti-TNF Therapy and changes in the disease activity score (DAS28).

that high inflammation interferes with lipid metabolism, so
that hyperlipidemia is frequently associated to the adverse
clinical outcome of the disease, and good control of the chronic
inflammatory state may positively influence the lipid profile (23).

Additionally, several studies have shown that supplementary
vitamin D can effectively control the DAS28, TJC and ESR
levels in RA patients, mainly due to its anti-inflammatory
properties (24). Correspondingly, in our hands, patients having
a supplemental vitamin D treatment showed a better response to
TNFi. Similar results have been also shown in other inflammatory
diseases such Inflammatory Bowel Disease where higher levels
of Vitamin D are associated with greater odds of remission with
TNFi (25).

Hence, in our cohort, signatures involving clinical and
molecular parameters associated to a more significantly
altered inflammatory and metabolic status at baseline, and a
concomitant therapy with a compound with anti-inflammatory
properties -such as vitamin D-, seems to identify those patients
who could benefit more from TNFi treatment.

Machine learning is a new field gaining attention in
Rheumatology (26). Thus, two recent studies have shown their
potential to predict TNFi response using clinical or molecular

data. Guan et al., showed that large collection of clinical data
at baseline along with a Gaussian process regression model
correctly classified 78% of responder patients (27). In line with
this, Tao et al. showed the capacity of gene expression and DNA
methylation to predict TNFi response in RA using random forest
algorithms with an accuracy of 85% (28).

In our study, we demonstrated for the first time that the
combination of molecular and clinical data using machine
learning exhibited a greater capacity to predict the clinical
response to TNFi therapy in RA patients than each one
separately. This finding could pave the way for the development
of larger and independent validation studies aimed to achieve
a precision medicine model to predict TNFi in RA and related
diseases. Likewise, future analysis of predictors of therapy
response using other biological drugs with different mechanism
of action (Anti-CD20, Anti-IL6, JAK-inhibitors etc.) will be
also required for the development of a wide approach of
personalized medicine in RA patients in which all the available
drugs are included.

Limitations of the study: Firstly, since we did not perform
a complete serum profile involving inflammatory mediators,
oxidative stress markers, NETotic bioproducts and miRNAs,
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FIGURE 7 | Biomarkers predictors of anti-TNF response in rheumatoid arthritis by using machine learning. (A) Baseline clinical variables associated with the EULAR

clinical response to Anti-TNF in Rheumatoid Arthritis (RA) patients after 6 months (n = 74, including 52 R and 22 NR). (B) Baseline molecular variables associated with

the EULAR clinical response in RA patients after 6 months. (C) ROC curve of the machine learning model predictor of clinical response (left panel) using only clinical

variables and their individual contribution represented by the odd ratio coefficients (right panel). (D) ROC curve of the machine learning model predictor of clinical

response (left panel) using only molecular variables and their individual contribution represented by the odd ratio coefficients (right panel). (E) ROC curve of the machine

learning model predictor of clinical response (left panel) using the best combination of clinical and molecular variables and their individual contribution represented by

the odd ratio coefficients (right panel). (F) ROC curve of the machine learning model predictor of clinical response in an independent validation cohort. (G) ROC curve

of the machine learning model predictor of molecular response in an independent validation cohort. (H) ROC curve of the machine learning model predictor using both

clinical and molecular variables. (validation cohort: n = 25, including 14 R and 11 NR). *p < 0.05. R, responders; NR, non responders; AUC, area under the curve.

we cannot exclude the complementary role of other circulating
biomolecules, -including non-evaluated inflammatory molecules
or miRNAs, among others- in the response to treatment. In
addition, due to the clinical heterogeneity of RA patients
and the relatively small number of patients analyzed in this
study, data must be confirmed in larger cohorts. Moreover,
specific analyses on the mechanisms underlying the altered
expression of these molecules after TNFi therapy, as well as the
identification of cellular sources of these circulating biomolecules
are still required.

Taken together, our overall data suggest that:

1. RA patients undergoing anti-TNF-therapy conform
distinctive clusters based on altered molecular profiles,
which are directly linked to their clinical status at baseline.

2. Clinical effectiveness of anti-TNF therapy was divergent
among these molecular clusters and associated with a specific
modulation of the inflammatory response, the reestablishment
of the altered oxidative status, the reduction of NETosis, and
the reversion of related altered miRNAs.

3. Through a systematic and comprehensive study design
including discovery and validation phases, we have developed

an integrative analysis of the clinical and molecular profiles
of RA patients using machine learning, which allowed the
identification of novel signatures as potential predictors of
therapeutic response to TNFi therapy.

Our overall data pave the way for the development of
large prospective and validation studies, needed to achieve a
personalized medicine approach for RA patients.
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