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Objective: In people living with HIV (PLHIV), we sought to test the hypothesis that long term
anti-retroviral therapy restores the normal T cell repertoire, and investigate the functional
relationship of residual repertoire abnormalities to persistent immune system dysregulation.

Methods: We conducted a case-control study in PLHIV and HIV-negative volunteers, of
circulating T cell receptor repertoires and whole blood transcriptomes by RNA
sequencing, complemented by metadata from routinely collected health care records.

Results: T cell receptor sequencing revealed persistent abnormalities in the clonal T cell
repertoire of PLHIV, characterized by reduced repertoire diversity and oligoclonal T cell
expansion correlated with elevated CD8 T cell counts. We found no evidence that these
expansions were driven by cytomegalovirus or another common antigen. Increased
frequency of long CDR3 sequences and reduced frequency of public sequences
among the expanded clones implicated abnormal thymic selection as a contributing
factor. These abnormalities in the repertoire correlated with systems level evidence of
persistent T cell activation in genome-wide blood transcriptomes.

Conclusions: The diversity of T cell receptor repertoires in PLHIV on long term anti-
retroviral therapy remains significantly depleted, and skewed by idiosyncratic clones, partly
attributable to altered thymic output and associated with T cell mediated chronic immune
activation. Further investigation of thymic function and the antigenic drivers of T cell clonal
selection in PLHIV are critical to efforts to fully re-establish normal immune function.

Keywords: human immunodeficiency virus, T cell repertoire, blood transcriptome, antiretroviral therapy, people
living with HIV, chronic inflammation, T cell activation
INTRODUCTION

Effective anti-retroviral therapy (ART) suppresses circulating human immunodeficiency virus
(HIV) to undetectable levels, and has transformed the health of people living with HIV (PLHIV)
by abating progression to AIDS and allowing near-normal life expectancy (1–3). However, PLHIV
still experience greater morbidity due to chronic cardiovascular and respiratory disease, cancer,
org February 2021 | Volume 12 | Article 6344891
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and infection (4–6). Some of this is attributed to exposures such
as tobacco smoking (7, 8) and ART-related toxicity (9), but
predictors of clinical outcome in this context also include
circulating markers of inflammation such as pro-inflammatory
cytokines (IL6), acute phase proteins (CRP, fibrinogen) and
markers of leukocyte activation (soluble CD14 and CD163),
suggesting persistent immune dysregulation in PLHIV despite
effective ART (10, 11). Enrichment of pro-inflammatory states
has also been reflected in transcriptional studies of blood
monocytes (12), myeloid dendritic cells (13) and CD4 T cells
(14) from ART-treated PLHIV. The immunological pathways
that underpin these observations are not fully understood.
They are partly attributed to low-level HIV replication
in specific anatomical niches (15–18), and to ongoing
translocation of microbial products (19, 20) as a result of
reduced gastrointestinal barrier integrity, particularly related to
a reduction in mucosal-associated invariant T cells (21, 22) and
Th17 cells (23, 24). Importantly, HIV-associated changes in
circulating T cell numbers may also persist despite ART. This
includes incomplete reversal of CD4 T cell depletion (25) and
relatively elevated numbers of CD8 T cell counts (26, 27) leading
to a low CD4:CD8 ratio as a persistent immunological hallmark
of PLHIV (28–31).

We and others have previously established that untreated
HIV infection leads to a profound reduction in the diversity of T
cell clones and oligoclonal T cell expansion reflected by T cell
receptor (TCR) sequence analysis, resulting in skewed and highly
idiosyncratic repertoires (32–37). Effective ART over three
months that reduced HIV viral load and increased circulating
CD4 T cells, did not reverse the overall changes in the T cell
repertoire (37). The effect of long-term ART on the T cell clonal
repertoire is not known. In the present study, we sought to
extend our understanding of chronic immunological dysfunction
in PLHIV on long-term ART. We used high-throughput TCR
sequencing to identify persistent abnormalities in the clonal
T cell repertoire, and genome-wide whole blood transcriptional
profiling to evaluate whether changes in the repertoire are
associated with changes in expression of gene sets indicative of
altered immune function.
METHODS

Ethical Approvals
This study was approved by the London Hampstead Research
Ethics Committee (14/LO/1409) and registered with the ISRCTN
registry (http://www.isrctn.com/ISRCTN38386321). All
participants provided written informed consent.

Study Population
Samples were collected as part of a prospective cohort study of
PLHIV attending routine ambulatory HIV care at the Royal Free
London NHS Foundation Trust, and of HIV-negative healthy
controls (HC) recruited from Sexual Health and General Practice
clinics. At recruitment, blood samples were collected in Tempus
tubes for cryo-storage prior to RNA extraction. Clinical and
Frontiers in Immunology | www.frontiersin.org 2
laboratory data including lymphocyte subset counts and HIV
viral load measurements were obtained from participants’
hospital records. In addition, each participant completed the
health-related quality of life EuroQol 5D (EQ5D) questionnaire,
where a lower score represents a worse outcome (38), and the St
George’s Respiratory Questionnaire (SGRQ), a participant
reported measure of respiratory health status, where a higher
score represents a worse outcome (39). To minimise
confounding by differences in ethnicity or gender, only
samples from white European male participants were utilised
for the present study.

T Cell Receptor Repertoire Sequencing
and Data Processing
Total RNA was extracted from blood and subjected to next
generation sequencing of alpha and beta chains of the TCR
repertoire on the Illumina NextSeq platform, using an
established quantitative TCR sequencing pipeline that
integrates experimental library preparation and computational
analysis with Decombinator (version 3.1) (40, 41). All software
is freely available at https://github.com/JamieHeather/
Decombinator. For each TCR, Decombinator specifies the V
and J gene used, the number of V and J gene deletions (relative to
the germline sequence), and the nucleotide insert sequence
between the end of the deleted V and J genes. Unless otherwise
stated, analyses were performed with TCRs defined by the amino
acid sequence of the encoded complementary determining
region 3 (CDR3), running from the last conserved cysteine in
the V to the conserved phenylalanine in the FGXG motif in the
J gene.

Quantifying the T Cell Receptor Repertoire
The T cell receptor repertoire of an individual is uniquely defined
by the number of different TCR sequences which it contains, and
their relative abundance. Many different algorithms have been
developed which seek to capture this information in a single
metric, so that different repertoires can be compared. In this study
we use three metrics commonly used in studies of the repertoire.
Repertoire richness is simply the total number of distinct TCRs
present in the repertoire, irrespective of their abundance. The
Gini coefficient captures repertoire inequality, ranging from zero
(all TCRs are present at equal abundance) to one (repertoire
contains only one TCR). The Shannon entropy, like richness, is a
measure of repertoire diversity. In contrast to richness, it gives
weight to sequences on the basis of their abundance. TCR-rich
samples with a more even repertoire distribution yield a higher
Shannon index value. Gini and Shannon indices were calculated
as previously described (37, 42). All three metrics are influenced
by sample size, since in practice we estimate the true TCR
repertoire on the basis of a small sample of the whole
repertoire. To account for different sequencing depth between
samples, therefore, these indices were also calculated by randomly
sub-sampling individual repertoires 100 times to the same
number of total sequences, and calculating the average metric
for each individual. The customized python script is available at
https://github.com/innate2adaptive/Decombinator/blob/master/
SupplementaryScripts/RandomlySample.py.
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CMV Status Prediction and Quantitation
of HIV, CMV and EBV-Reactive T Cell
Receptor Sequences
CMV status of participants was predicted based on the presence
or absence of CMV-targeting CDR3 beta sequences that are used
in the context of the correct V and J genes, following a previously
described statistical classification approach (43). Alpha and beta
CDR3s among the 100 most expanded sequences were annotated
as HIV, CMV or EBV-reactive if they were listed as sequences
known to target these viruses in the context of the correct chain
on the VDJdb database (https://vdjdb.cdr3.net/; accessed
26/11/2019) (44).

Intra-Individual Similarity of T Cell
Receptor Sequences
To measure similarity between pairs of CDR3s within individual
repertoires, the Levenshtein distance (the minimum number of
single-character edits required to turn one string into another)
was calculated using the R package stringdist. The pairwise
similarity matrix was then converted into a network diagram
(R package igraph), where two CDR3 sequences (nodes) were
connected (by an edge) if they differed by a Levenshtein distance
of one. A cluster was defined as a set of four or more nodes that
are connected to each other by any number of edges. Frequency
distributions of Levenshtein distances (and CDR3 lengths) were
visualized with heatmaps created in Morpheus (https://software.
broadinstitute.org/morpheus).

Inter-Individual Sharing of Identical T Cell
Receptor Sequences
Pairwise assessments of the overlap of identical CDR3 sequences
between individuals were made with the Jaccard index, which is
the number of TCRs shared between two repertories counting
each unique TCR only once (i.e. independent of abundance).
Sharing of identical CDR3 sequences among PLHIV or HC was
further determined by counting in how many individuals a given
CDR3 appeared. To correct for the larger size of the group of
PLHIV (n=26 versus n=12 HC), this analysis was performed
in 100 random samples of 12 out of the 26 PLHIV
samples available.

Blood RNA Sequencing and Data
Processing
Genome wide mRNA sequencing of the same samples subjected
to TCR repertoire analysis was performed as previously
described (45), resulting in a median of 26 million (range 21–
31 million) 41 bp paired-end reads per sample. RNAseq data
were mapped to the reference transcriptome (Ensembl Human
GRCh38 release 95) using Kallisto (46). The transcript-level
output counts and transcripts per million (TPM) values were
summed on gene level and annotated with Ensembl gene ID,
gene name, and gene biotype using the R/Bioconductor packages
tximport and BioMart (47, 48). Downstream analyses were
restricted to gene biotypes with selected BioMart annotations
(protein coding, IG_C_gene, IG_D_gene, IG_J_gene,
IG_V_gene , TR_C_gene , TR_D_gene , TR_J_gene ,
Frontiers in Immunology | www.frontiersin.org 3
TR_V_gene), resulting in 23,289 Ensembl gene IDs.
Differential gene expression was analyzed with DeSeq2 and
SARTools packages (49), using a false discovery rate (FDR)
<0.05. For all other analyses, gene expression was represented
by log2-transformed TPM values, following the addition of a
pseudocount of 0.001.

Molecular Degree of Perturbation
The modified MDP was derived using the mdp R/Bioconductor
package (50). This provides a single measure of the quantitative
difference between a given transcriptome and a standard
reference representative of a healthy state. For each
participants’ transcriptome the MDP was represented by the
median Z score >2 of individual gene expression values
calculated by subtracting the mean and dividing by the
standard deviation of gene expression values among the 12
healthy controls used as the standard reference.

Ingenuity and Reactome Pathway Analysis
Ingenuity pathway analysis (Qiagen) was used to identify the
interactome of differentially expressed genes, and to probe
interacting genes further for predicted upstream regulators.
The ten most significant upstream regulators with activation
Z-scores >2 were visualized as a network in Gephi v0.9.2.
Reactome pathway enrichment of differentially expressed,
interacting genes was analyzed with the XGR R package (51).
For visualization, 20 pathway groups were identified by
hierarchical clustering of Jaccard indices to quantify similarity
between the gene compositions of each pathway. For each group,
the pathway with the largest total number of genes was then
selected to provide a representative annotation.

Transcriptional Modules
The HIV module was derived from blood microarray data of an
independent set of healthy controls and HIV patients before and
after three months of anti-retroviral therapy. Transcriptional
profiling by Agilent microarrays (SurePrint G3 Human Gene
Expression v3 8×60K or Human Gene Expression v2 4×44K
platform) and subsequent data processing were undertaken as
previously described (52). Probes that were represented on both
microarray platforms were retained for analysis. Probe
annotations were downloaded from Agilent’s eArray web
portal, and duplicate gene names removed to retain the gene
name with highest average expression across all samples.
Differential expression among the resulting 14,706 gene names
was analyzed using Mann-Whitney tests in MultiExperiment
Viewer v4.9 (http://www.tm4.org/mev.html) with FDR <0.05.
Genes with a median expression value ≥2−fold in the untreated
HIV patient group compared to healthy controls were included
in the HIV module (Supplementary File 1). The derivation and
validation of the macrophage type 1 IFN module has previously
been published (53). The T helper cell type 1 IFN module was
derived from published transcriptomes of CD4 T cells cultured
in the presence of IFNa and stimulated with anti-CD3 and anti-
CD28 (dataset GSE54627) (54). Genes over-expressed more than
1.5-fold compared to Th1, Th2, or Th17 polarized CD4 T cells by
paired t-test with p <0.05 were included in the T cell type 1 IFN
February 2021 | Volume 12 | Article 634489
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module (Supplementary File 2). To quantify CD4 T cell
frequency we used the ‘Cluster0127: High in CD4 T cells’
module by Mabbott et al. (55), and to quantify CD8 T cell
frequency we used the ‘CD8’ module by Watkins et al. (56). In a
comparison with 15 other CD4 T cell modules and 7 other CD8
T cell modules, both these modules achieved the highest
sensitivity and specificity for their target cell type, when
applied to transcriptomic data from other immune cells across
multiple datasets, as quantified by the modular discrimination
index (MDI) score (57). Gene module scores were calculated as
mean expression of the constituent gene names in each module.
Where duplicate gene names were present in the RNAseq data,
the highest log2 TPM value was used for each sample.

Statistics
Analyses were performed in R (version 3.6.0) or python (version
2.7.15) as described above. Statistical differences were assessed in
GraphPad Prism (version 8.3.1) using the tests stated in the text
and Figure legends, and considered significant for p <0.05.
RESULTS

T Cell Receptor Repertoires Remain
Disturbed in People Living With HIV
Despite Effective Anti-Retroviral Therapy
We used a cross-sectional study design to test the hypothesis that
the T cell clonal repertoire returns to normal after long-term
Frontiers in Immunology | www.frontiersin.org 4
ART by comparison of 26 PLHIV on long-term ART and 12
HIV-negative controls among white European men, with
comparable age range and health-related questionnaire scores
(Table 1). PLHIV were on ART for a median of 8.5 years
TABLE 1 | Cohort description.

Healthy controls
(HC)

People living with HIV
(PLHIV)

Subjects 12 26
Age, years 50 (48–55) 51.5 (47–56)
Male sex 12 (100%) 26 (100%)
White British/Irish 12 (100%) 26 (100%)
Tobacco
smoking

Current 3 (25%) 5 (19%)
Ex-smoker 7 (58%) 10 (38%)
Never 2 (17%) 11 (42%)

EQ5D index 0.96 (0.85–1.00) 0.89 (0.78–1.00)
SGRQ score 6.2 (1.9–10.8) 11.6 (3.7–35.1)
ART duration, years – 8.5 (3–16)
CD4 pre-ART – 279 (155–414)
CD4 at point of sampling – 703 (491–841)
CD8 at point of sampling – 984 (694–1362)
CD4/CD8 at point of sampling – 0.77 (0.50–0.86)
CMV serology
Positive
Negative
No data

–

–

12

11
2
13

Predicted CMV status %

Positive
Negative

10
2

23
3

Data are shown as median (interquartile range) or number (percentage). ART, anti-retroviral
therapy; EQ5D, EuroQuol 5-dimensions (generic health-related questionnaire); SGRQ, St.
George’s Respiratory Questionnaire; CMV, cytomegalovirus. %CMV status was predicted
based on T cell receptor beta chain sequences that are associated with CMV seropositivity
(43). Missing data: CD4 pre-ART (n = 1 PLHIV), SGRQ (n = 2 HC, n = 4 PLHIV).
A

B

C

D

FIGURE 1 | T cell receptor alpha and beta chain sequence repertoires
remain disturbed in people living with HIV (PLHIV) despite long term effective
anti-retroviral therapy. (A) Total number of CDR3 sequences. (B) Repertoire
richness, measured as number of unique CDR3 sequences, normalized by
number of total sequences. (C) Repertoire inequality, measured as Gini index
of CDR3 sequence abundance distributions. (D) Repertoire diversity,
measured as Shannon entropy. PLHIV, people living with HIV; HC, Healthy
controls, p values for significant differences shown for Mann-Whitney U tests.
Violin plots show distribution of data with individual data points, median and
interquartile range. Alpha chain sequences are shown on the left and beta
chain sequences on the right.
February 2021 | Volume 12 | Article 634489
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(interquartile range (IQR) 3–16 years). They had undetectable
plasma HIV RNA (<40 copies/ml) and median circulating CD4
counts of 703 cells/µl (IQR, 491–841 cells/µl).

In TCR sequencing data derived from whole blood RNA, we
interpreted unique alpha or beta chain sequences as surrogates
for individual T cell clones. The number of total TCR sequences
recovered for both alpha and beta chains were similar in PLHIV
and controls (Figure 1A). However, three metrics which have
been widely used to capture the TCR repertoire profile in a single
number (reflecting both the number of distinct TCRs and their
relative abundance) were significantly different among PLHIV
and controls. First, repertoire richness (simply the total number
of distinct alpha and beta chains in a sample independent of their
relative abundance) was significantly reduced in PLHIV (Figure
1B). Second, the frequency distribution of alpha and beta TCR
sequences was more skewed (showed greater inequality) in
PLHIV, represented by a higher Gini index (Figure 1C).
Third, the repertoire diversity captured by the Shannon
entropy, which reflects the number of distinct TCRs but gives
different weight to sequences on the basis of their abundance,
was significantly lower in PLHIV (Figure 1D). These differences
did not arise from any systematic differences in read depth,
because they were still observed after randomly sub-sampling
individual repertoires to the same number of total sequences
(Supplementary Figure 1). None of these measures correlated
with duration of therapy or pre-ART CD4 counts, but all were
significantly associated with concurrent CD8 counts and the
CD4:CD8 ratio (Table 2).
Frontiers in Immunology | www.frontiersin.org 5
We tested the hypothesis that CD8 T cells were expanded in
our long-term ART-treated PLHIV compared to controls, as
previously reported (26, 27). Blood lymphocyte subset counts
were not available in our HIV-negative control subjects for
comparison to those of PLHIV. Instead, we used expression of
validated transcriptional signatures for CD4- and CD8-positive
T cells to compare their frequency in the different groups. We
found comparable expression of the transcriptional CD4 T cell
signature, but higher expression of the transcriptional CD8 T cell
signature among PLHIV (Supplementary Figure 2A).
Accordingly, the ratio of CD4:CD8 transcripts was lower in
PLHIV compared to controls (Supplementary Figure 2B). To
support the validity of this transcriptional analysis, we showed
that CD4 and CD8 T cell counts correlated with their respective
transcriptional signatures among PLHIV where flow cytometric
quant i ta t ion of lymphocyte subsets was ava i lab le
(Supplementary Figure 2C). Likewise, the flow cytometric
quantitation of the CD4:CD8 ratio correlated with the ratio of
CD4:CD8 transcripts (Supplementary Figure 2C). Taken
together, these data suggest that the persistent decrease in
TCR repertoire diversity in PLHIV on long-term ART may be
driven by oligoclonal expansion of CD8 T cells.

Oligoclonal T Cell Expansion in People
Living With HIV Is Unrelated to HIV, CMV
or EBV
We confirmed oligoclonal expansion of the TCR repertoire in
long-term ART-treated PLHIV more directly by focusing on the
TABLE 2 | Spearman correlation analyses of transcriptomic and TCR repertoire measurements with demographic and clinical parameters.

Age% Years ART# CD4 count
pre-ART$

CD4 count at
sampling#

CD8 count at
sampling#

CD4/CD8 at
sampling#

EQ5D
index%

SGRQ
score†

Modified MDP
rho
p-value

0.0512
0.76

0.0872
0.67

−0.1054
0.62

−0.4390
0.025

0.1692
0.41

−0.3074
0.13

−0.0967
0.56

0.0101
0.96

HIV module
rho
p-value

−0.0210
0.90

−0.3436
0.086

0.2663
0.20

−0.0359
0.86

−0.0133
0.95

−0.0137
0.95

−0.1142
0.49

−0.1758
0.34

Richness

Alpha
rho
p-value

−0.3031
0.064

−0.2636
0.19

0.1451
0.49

0.2681
0.19

−0.4749
0.014

0.4968
0.0098

0.2612
0.11

−0.0407
0.83

Beta rho
p-value

−0.2848
0.083

−0.2236
0.27

0.0851
0.69

0.2920
0.15

−0.4304
0.028

0.4773
0.014

0.2541
0.12

−0.0702
0.70

Inequality

Alpha
rho
p-value

0.2967
0.070

0.2423
0.23

−0.1516
0.47

−0.2906
0.15

0.4715
0.015

−0.4989
0.0095

−0.2661
0.11

0.0286
0.88

Beta rho
p-value

0.2754
0.094

0.2219
0.28

−0.0893
0.67

−0.3012
0.13

0.4311
0.028

−0.4811
0.013

−0.2536
0.12

0.0875
0.63

Diversity

Alpha
rho
p-value

−0.2418
0.14

−0.2309
0.26

0.2232
0.28

0.3833
0.053

−0.4913
0.011

0.6164
0.0008

0.2607
0.11

−0.0585
0.75

Beta rho
p-value

−0.1688
0.31

−0.1892
0.35

0.3090
0.13

0.5102
0.0078

−0.2964
0.14

0.5828
0.0018

0.2247
0.18

−0.0090
0.96

Mean abundance top 100

Alpha
rho
p-value

0.2075
0.21

0.0507
0.81

0.0089
0.97

−0.1104
0.59

0.5337
0.0050

−0.4238
0.031

−0.2509
0.13

−0.0088
0.96

Beta rho
p-value

0.1858
0.26

0.0193
0.93

0.0520
0.81

−0.1935
0.34

0.4270
0.030

−0.3796
0.056

−0.1807
0.28

0.0396
0.83
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most abundant CDR3 sequences. The 10% most common
sequences occupied a significantly larger proportion of the
total repertoire in PLHIV compared to controls (alpha: 52% vs
39%, Mann Whitney test p<0.0001; beta: 52% vs 35%, p=0.0003)
(Figure 2A). Similarly, the frequency distribution of the 100
most abundant sequences was significantly shifted to larger clone
sizes in PLHIV, with the mean abundance being two-fold greater
compared to the controls (Figures 2B, C). The mean abundance
of the 100 most common sequences was positively correlated
with concurrent CD8 counts in PLHIV (Table 2), consistent
with the hypothesis that CD8 T cells contribute to oligoclonal
expansion within the TCR repertoire. We tested the hypothesis
that the expanded clones in PLHIV may represent the response
to persistent HIV despite effective suppression by ART, by
counting the frequency of published HIV-reactive CDR3
sequences from the VDJ database of 20,433 alpha and 30,465
Frontiers in Immunology | www.frontiersin.org 6
beta sequences (Supplementary Table 1) (44) in the pooled list
of 100 most expanded CDR3 sequences from each group of study
participants. Among PLHIV, 3/2311 (0.1%) alpha CDR3
sequences in 7/26 individuals and 7/2401 (0.3%) beta CDR3
sequences in 8/26 individuals were HIV reactive. This compared
to 2/1067 (0.2%) alpha CDR3 sequences in 2/12 individuals and
0/1165 beta CDR3 sequences among controls (Figure 3A).

Oligoclonal CD8 T cell expansion is also a hallmark of CMV
infection (58), with an even larger proportion of the memory CD8
T cell pool recognizing CMV in HIV-infected individuals
compared to HIV-uninfected controls (59, 60). CMV serology
was not available on all PLHIV and control subjects for which
we had TCR sequence data. Instead, we used the TCR sequencing
data to predict CMV serostatus as previously described (43). In this
analysis, 87% of all the participants in our cohort were predicted to
be CMV-positive with similar proportions in PLHIV and controls
A

B

C

FIGURE 2 | People living with HIV (PLHIV) show increased oligoclonal
expansion of CDR3 sequences. (A) Frequency distribution of all CDR3
sequences, showing the proportion of the total repertoire that is occupied by
each 10 percentile range of unique sequences. The percentile ranges are
shown in decreasing order from the most abundant 10% (red) to the least
abundant 10% (yellow at the top of each bar stack). Bars=median, error
bars=interquartile range. (B) Frequency distribution of the 100 most abundant
CDR3 sequences. (C) The mean abundance of the 100 most abundant
CDR3 sequences in each individual.
A

B

C

FIGURE 3 | People living with HIV (PLHIV) do not show significant
enrichment of HIV, CMV and EBV-reactive CDR3 sequences. Frequency of
(A) HIV, (B) CMV and (C) EBV–reactive sequences, identified through public
annotation on the VDJdb database, as a proportion of the total number of the
100 most abundant alpha and beta chain CDR3 sequences. PLHIV, people
living with HIV; HC, Healthy controls; p values for significant differences
shown for Mann Whitney U tests. Violin plots show distribution of data with
individual data points, median and interquartile range.
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(Table 1). Based on the known CMV serology status in a subset of
our PLHIV group (n=13), the overall accuracy of this classification
approach was 85% (10/11 CMV-positive and 1/2 CMV-negative
individuals being correctly identified). In view of the high
prevalence for CMV positivity among our cohort, we evaluated
the frequency of CMV-reactive CDR3 sequences from VDJdb as
described above for HIV-reactive sequences. Among PLHIV, 161/
2311 (7%) alpha CDR3 sequences and 54/2401 (2.2%) beta CDR3
sequences were CMV-reactive. This compared to 94/1067 (0.2%)
alpha CDR3 sequences and 20/1165 (1.7%) beta CDR3 sequences
among controls. Neither alpha nor beta chain CMV–associated
sequences were enriched in PLHIV compared to controls (Figure
3B). Similarly, extension of this analysis to another prevalent herpes
virus, EBV, failed to show any virus-specific CDR3 sequence
enrichment among PLHIV (Figure 3C). Taken together, these
data reject the hypothesis that oligoclonal T cell expansion in
PLHIV is due to HIV, CMV or EBV-associated responses.
Frontiers in Immunology | www.frontiersin.org 7
Reduced Intra-Individual Similarity
of CDR3 Sequences in People Living
With HIV
In order to test whether specific or related antigens other than
HIV, CMV or EBV may drive oligoclonal expansion of T cell
clones in PLHIV compared to controls, we measured intra-
individual CDR3 amino acid sequence similarity on the
premise that TCRs with more similar CDR3s are more likely to
recognize related antigens (61). We measured similarity between
CDR3 pairs within an individual, using the Levenshtein distance
(the minimum number of single-character edits required to turn
one string into another) (37). To reduce computational time, we
restricted this analysis to the 2500 most abundant CDR3
sequences. For each individual we constructed a similarity
network connecting CDR3 sequences (nodes) that differed by a
Levenshtein distance of one (Figure 4A). In this analysis, the
convergence of TCR clones into fewer but larger clusters would
A

B

C

FIGURE 4 | Reduced intra-individual similarity of CDR3 sequences in people living with HIV (PLHIV). (A) Network graphs showing clusters of related alpha or beta
chain CDR3 sequences from representative repertoires of healthy controls (HC) or PLHIV. Networks were created from the 2500 most abundant CDR3 sequences in
each repertoire. Each node represents a unique CDR3 sequence, with the node diameter proportional to its abundance in the repertoire. Two CDR3 nodes are
connected by an edge if they differ from each other by a Levenshtein distance of one. Only clusters with four or more nodes are shown. (B) Number of alpha or beta
chain CDR3 clusters in each individual. (C) Median cluster size (number of nodes) for alpha or beta chain CDR3 clusters in each individual. p values for significant
differences shown for Mann Whitney U tests. Violin plots show distribution of data with individual data points, median and interquartile range.
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suggest that the repertoire may be targeting the same or related
antigens. In fact, the number of clusters was equivalent in PLHIV
and controls, and the cluster sizes were smaller in PLHIV among
alpha chain sequences (Figures 4B, C). In a sensitivity analysis,
Frontiers in Immunology | www.frontiersin.org 8
we found similar results when the analysis was restricted to
CDR3 sequences that were present at least three times in an
individual, and more likely to be derived from memory T cells
(40) (Supplementary Figures 3B, C). These data suggest that
A

B

C

D

FIGURE 5 | A subset of people living with HIV (PLHIV) have more T cell receptors (TCRs) with unusually long CDR3 sequences. (A) Frequency distributions of
Levenshtein distances among alpha and beta CDR3 amino acid sequences, integrated across all PLHIV or all healthy controls (HC). Pairwise Levenshtein distances
were calculated for the 2500 most abundant CDR3s in each repertoire, or restricted to CDR3s that were present at least three times (the 980 most abundant
sequences in each repertoire) or only once (the 980 least abundant sequences in each repertoire). One beta sample from the PLHIV group was excluded from the
analysis of the top 980 sequences as it contained <100 CDR3s with abundance ≥3. (B) Heatmaps of Levenshtein distance distributions among the least abundant
sequences as defined in (A). Each column represents the repertoire from an individual subject. (C) Frequency distributions of CDR3 amino acid sequence lengths
among alpha and beta chains, integrated across all PLHIV or HC. Length distributions were determined for the whole repertoire, or restricted to a subset of CDR3
sequences as defined in (A). (D) Heatmaps of CDR3 length distributions among the least abundant sequences.
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expanded clones in long-term ART treated PLHIV do not arise as
a result of reactivity to a common target, but may represent
expansion of a divergent population of T cells directed at a
heterogenous set of antigens in each individual.

People Living With HIV Have More T Cell
Receptors With Unusually Long CDR3
Sequences
To further investigate the mechanisms that contribute to the
greater dissimilarity of CDR3 sequences within individual PLHIV,
we compared the frequency distributions of Levenshtein distances
across PLHIV and controls. The integrated data from PLHIV
showed a population of highly dissimilar CDR3 sequences with
Levenshtein distances >20 that were not present in controls
(Figure 5A).

CDR3s with a clone size of ≥3 are most likely to represent
memory T cells, whereas those that are present only once are most
likely to represent naïve T cells (40). The highly dissimilar CDR3s
in PLHIV were only evident in the least abundant sequences,
suggesting that they were a feature of naïve T cells (Figure 5A).
At the individual level, this observation was not evident in every
case, but more pronounced in a subset of PLHIV (Figure 5B).
The average CDR3 length of TCRs is 13–15 amino acids (62).
Therefore, we hypothesized that such large Levenshtein distances of
>20 reflect the presence of TCRs with unusually long CDR3
sequences in PLHIV. We evaluated this hypothesis both on the
level of nucleotide and amino acid sequences. PLHIV had
Frontiers in Immunology | www.frontiersin.org 9
marginally more alpha and beta TCRs with long (>40) nucleotide
inserts at the VJ gene junction, while the number of nucleotide
deletions from the V and J genes (relative to their germline
sequences) was comparable to controls (Supplementary Figure 4).
However, some PLHIV showed more alpha and beta TCRs with
very long CDR3 sequences (>20 amino acids) (Figures 5C, D).
Consistent with the analysis of Levenshtein distances, these
findings were more evident in the least abundant clones likely
to represent naïve T cells. Such sequences are thought to be
restricted during normal thymic selection (63). Therefore, their
presence in peripheral blood of PLHIV may reflect
thymic dysfunction.

Reduced Inter-Individual Sharing of
Identical CDR3 Sequences in People
Living With HIV
In our previous study of untreated and short-term treated HIV
disease, we had found a reduction in the number of ‘public’ CDR3
sequences (public being defined as the number of sequences
shared by more than one individual) (37). Interestingly, public
sequences have also recently been reported to be dependent on
normal thymic selection (64). In view of the evidence of potential
thymic dysfunction among PLHIV described above, we tested the
hypothesis that long-term ART treated PLHIV show a persistent
reduction in public TCRs. Using the Jaccard index to calculate the
overlap of identical CDR3s between pairs of PLHIV, we found
that inter-individual sharing of both alpha and beta chain
A

B

FIGURE 6 | Reduced inter-individual sharing of identical CDR3 sequences in people living with HIV (PLHIV). (A) The proportion of identical CDR3 sequences that are
shared between repertoires of each pair of healthy controls (HC) or PLHIV, calculated as Jaccard index. p values for significant differences shown for Mann Whitney
U tests. Violin plots show distribution of data with median and interquartile range. (B) Frequency distributions showing the number of identical alpha or beta CDR3
sequences that are found in the repertoires of 6 to 12 out of 12 HC (red) or PLHIV (blue). To correct for the larger size of the PLHIV cohort (n=26 versus n=10 HC),
the plots show the average results (mean+SD) of analyzing 100 random samples of 12 out of the 26 PLHIV samples available.
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sequences remained significantly decreased in PLHIV compared
to controls (Figure 6A). Similarly, the number of CDR3
sequences that were highly public (found in at least 50% of
individuals) was substantially reduced among the group of
PLHIV (Figure 6B).

Persistent T Cell Activation in People
Living With HIV on Long-Term Anti-
Retroviral Therapy
In order to evaluate the functional significance of the persistent
changes in the T cell repertoire among PLHIV, we looked for
evidence of associated immune dysfunction at systems level, by
whole blood genome-wide transcriptional profiling of the same
samples. PLHIV had significantly greater perturbation of blood
transcriptional profiles compared to control subjects (Figure 7A),
as measured by the modified molecular degree of perturbation
(MDP) (50), representing the extent to which each individual
transcriptome deviated from the mean of control subjects as a
standard reference. Next, we assessed the number of differentially
expressed genes (DEG) between the two groups (FDR <0.05,
Figure 7B). Of 353 DEG, 281 genes were higher in PLHIV. We
hypothesized that these would reflect enrichment of specific
immunological pathways which represented differences in
Frontiers in Immunology | www.frontiersin.org 10
functional immunological profiles at steady state. To evaluate
these pathways, we first identified a subset of 149 genes that are
predicted to interact directly or indirectly, thereby reflecting
biological systems. This interactome showed enrichment of
immune response pathways (Supplementary Figure 5,
Supplementary File 3). Upstream regulator analysis revealed
the interactome to represent molecules primarily involved in
T cell activation and interferon (IFN)g signaling (Figure 7C,
Supplementary File 3). Together, these data suggest persistently
elevated T cell activation in PLHIV on long-term ART.
Importantly, the mean expression of the genes representing
these systems correlated with the reduction in diversity of the
TCR repertoires (Figure 7D).

Anti-Retroviral Therapy Attenuates or
Resolves Gene Signatures Associated
With Untreated HIV Infection
Finally, we evaluated the extent to which the blood
transcriptional findings in long–term ART-treated PLHIV were
distinct from those that are associated with untreated HIV. We
took advantage of independent microarray transcriptomic data
from our previous longitudinal case-control study of TCR
repertoires in HIV-infected individuals before and after three
A B

C
D

FIGURE 7 | Global immune activation at steady state in people living with HIV (PLHIV) despite effective anti-retroviral therapy. (A) Modified molecular degree of
perturbation (MDP) of healthy controls (HC) and PLHIV. p values for significant differences shown for Mann Whitney U tests. Violin plots show distribution of data with
individual data points, median and interquartile range. (B) Volcano plot showing statistical significance against quantitative gene expression differences between
PLHIV and HC. The red dashed line indicates a false discovery rate (FDR) of 0.05, equivalent to -log10 FDR of 1.3. Genes highlighted in red are considered
differentially expressed (n=353; n=281 higher in PLHIV and n=72 higher in HC). (C) Network diagram showing predicted upstream regulators of interacting
differentially expression genes (see Supplementary Figure 5), found to be enriched in PLHIV. Blue nodes represent the ten most significant upstream regulators,
with label size proportional to the -log10 enrichment p value. Red nodes represent the subset of the 149 interacting genes that are downstream of these regulators.
(D) Spearman rank correlation of TCR diversity (Shannon Index) and mean expression of target genes (red nodes) in (C), among all participants.
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months ART compared to HIV-negative controls (37). In this
dataset, we observed a large number of DEG that were enriched
in untreated HIV patients compared to HIV-negative controls
(4542 of 9292 DEG). In addition to a statistical cut-off (FDR
<0.05), we applied a fold change filter of ≥2 to derive a signature
of 434 transcripts that were most increased in untreated HIV
(Supplementary Figure 6A, Supplementary File 1). Consistent
with previous reports on transcriptional changes in untreated
HIV (65–67), this signature was enriched for immune- and cell
cycle-associated pathways, and dominated by type 1 IFN
signaling (Supplementary Figures 6B, C, Supplementary File 1).
There was significant but partial reversal of the expression of this
untreated HIV-associated signature after three months ART
(Figure 8A). In RNAseq data from our cohort of PLHIV on
long-term ART, the expression of this transcriptional signature
overlapped with that of HIV-negative controls, albeit with a
distribution that remained statistically higher (Figure 8A).

In view of the prediction from our bioinformatic analysis that
the untreated HIV signature was primarily driven by type 1 IFN
signaling, we extended our analysis to evaluate the expression of
two separate type 1 IFN-inducible transcriptional signatures
independently derived from macrophages (53) and T cells
(Supplementary File 2), respectively. The expression of both
these signatures was significantly enriched in untreated PLHIV,
partially normalized in response to three months of ART, and
comparable to HIV-negative controls in PLHIV on long-term
ART (Figures 8B, C). Taken together, our analysis of blood
transcriptomic data suggests that long-term ART in PLHIV leads
to resolution of elevated type 1 IFN activity associated with
untreated infection, but increased levels of T cell activation-
associated IFNg activity.
DISCUSSION

We present the first paired TCR repertoire sequencing and global
transcriptomic profiling of blood samples from PLHIV. Similar
to our previous analysis of untreated or short-term ART-treated
HIV (37), PLHIV on long-term ART still showed significantly less
TCR repertoire diversity compared to HIV-negative controls,
underpinned by oligoclonal expansion of T cell clones. Based on
evidence for a persistently elevated CD8 T cell fraction in the
peripheral blood of long-termART-treated PLHIV, we hypothesise
that CD8 T cells are responsible for the persistent changes in the
TCR repertoire. We hypothesise that increased clonal expansions
are unlikely to be driven by HIV antigens themselves, since HIV
levels remain undetectable in PLHIV. They also cannot be
explained by differences in CMV reactivity that has otherwise
been reported to drive large proportions of CD8 T cell responses
(58–60). Identifying the targets of the expanded T cells will be
important in trying to understand the underlying pathology
associated with PLHIV. In addition, two lines of evidence suggest
that persistent abnormalities of the TCR repertoire in long-term
ART-treated PLHIV may reflect dysfunctional thymic output.
First, we found increased frequency of long CDR3 sequences
Frontiers in Immunology | www.frontiersin.org 11
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FIGURE 8 | Anti-retroviral therapy (ART) attenuates or resolves the profound
impact of chronic HIV infection on transcriptional signatures. (A) Mean
expression of a gene signature (module) associated with untreated HIV
derived from microarray data, in blood from a previous cohort of HIV-negative
patients, and HIV-positive patients before and 3 months after ART (left panel),
and from RNAseq data in blood from healthy controls (HC) and PLHIV
described in the present study (right panel). (B) Mean expression of a type-1
interferon (IFN) inducible gene signature (module) derived from monocyte
derived macrophages, in blood from a previous cohort of HIV-negative
patients, and HIV-positive patients before and 3 months after ART (left panel),
and from RNAseq data in blood from healthy controls (HC) and PLHIV
described in the present study (right panel). (C) Mean expression of a type-1
interferon (IFN) inducible gene signature (module) derived from T cells, in
blood from a previous cohort of HIV-negative patients, and HIV-positive
patients before and 3 months after ART (left panel), and from RNAseq data in
blood from healthy controls (HC) and PLHIV described in the present study
(right panel). p values for significant differences shown for Mann Whitney U
tests. Violin plots show distribution of data with individual data points, median
and interquartile range.
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among the least abundant clones, most likely to represent the naïve
T cell fraction, that are typically deleted in normal thymic selection
(63). Secondly, we found reduced frequency of public TCR
sequences that are thought to depend on normal thymic
selection (64).

We complemented our repertoire analysis with evidence of T
cell dysfunction in PLHIV by bioinformatic analysis of genome-
wide transcriptomes. We found that the striking perturbation of
the blood transcriptome in untreated HIV, reflecting an
exaggerated type 1 IFN response, was largely resolved in long-
term ART-treated PLHIV. Nonetheless, the blood transcriptome
remained consistently abnormal in these patients with changes in
sets of genes linked to increased T cell activation which were
significantly correlated to changes to the TCR repertoire. The
present study is limited to white European adult males. Future
extension to more diverse demographic groups is required to
confirm its generalizability. In addition, we have not established
the activation phenotype or the antigen specificity of the
expanded T cells we observe in PLHIV. Single cell sequencing
analysis will be needed to address this question, and to validate
our application of unique alpha and beta sequences as surrogates
for T cell clones. The possibility that they may react to microbial
antigens arising from translocation of gastrointestinal products,
or perhaps abnormally presented self-antigens, offers plausible
alternative hypotheses to test. We were also not able to determine
the relative contribution of oligoclonal expansion of CD8 T cells
and abnormal recovery of the CD4 T cell repertoire.

Our data are consistent with a model in which thymic
dysfunction may lead to repopulation of the T cell repertoire
with clones that have greater propensity for functional
dysregulation, for example as a result of autoreactivity or
abnormal MHC restriction and manifest in the peripheral blood
transcriptome with evidence of increased T cell activation. Such a
model represents an important paradigm shift in our
understanding of the mechanisms of chronic immune activation
among PLHIV. In view of the relationship between chronic
immune activation and adverse clinical outcomes in long-term
ART-treated PLHIV, answers to these questions may inform novel
therapeutic approaches to restore normal immune function in HIV
infection and further reduce chronic morbidity in this population.
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