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Dendritic cells (DC) play a central role in the pathogenesis of allergic contact dermatitis

(ACD), the most prevalent form of immunotoxicity in humans. However, knowledge

on allergy-induced DC maturation is still limited and proteomic studies, allowing to

unravel molecular effects of allergens, remain scarce. Therefore, we conducted a global

proteomic analysis of human monocyte-derived dendritic cells (MoDC) treated with

NiSO4, the most prominent cause of ACD and compared proteomic alterations induced

by NiSO4 to the bacterial trigger lipopolysaccharide (LPS). Both substances possess

a similar toll-like receptor (TLR) 4 binding capacity, allowing to identify allergy-specific

effects compared to bacterial activation. MoDCs treated for 24 h with 2.5µg/ml LPS

displayed a robust immunological response, characterized by upregulation of DC

activation markers, secretion of pro-inflammatory cytokines and stimulation of T cell

proliferation. Similar immunological reactions were observed after treatment with 400µM

NiSO4 but less pronounced. Both substances triggered TLR4 and triggering receptor

expressed on myeloid cells (TREM) 1 signaling. However, NiSO4 also activated hypoxic

and apoptotic pathways, which might have overshadowed initial signaling. Moreover,

our proteomic data support the importance of nuclear factor erythroid 2-related factor

2 (Nrf2) as a key player in sensitization since many Nrf2 targets genes were strongly

upregulated on protein and gene level selectively after treatment with NiSO4. Strikingly,

NiSO4 stimulation induced cellular cholesterol depletion which was counteracted by the

induction of genes and proteins relevant for cholesterol biosynthesis. Our proteomic

study allowed for the first time to better characterize some of the fundamental

differences between NiSO4 and LPS-triggered activation of MoDCs, providing an

essential contribution to the molecular understanding of contact allergy.
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INTRODUCTION

Dendritic cells (DC) play a crucial role during the immune
response given their linking function between innate and
adaptive immunity. Immature DCs are phagocytic and sample
antigens from surrounding tissues. The presence of additional
stimuli, for instance activation via pattern recognition receptors
such as toll-like receptors (TLR), triggers maturation of DCs.
Upon maturation, the cells will partially lose their phagocytic
characteristics and start migrating to draining lymph nodes
while they undergo metabolic and phenotypic alterations (1–3)
facilitating the presentation of the captured antigen to prime
naïve T cells. These alterations include the secretion of different
cytokines [e g., interleukin (IL) 1β, IL-6, IL-12 or tumor necrosis
factor (TNF) α and the upregulation of antigen-presenting
molecules and other DC surface proteins such as adhesion
molecules, chemokine receptors, and co-stimulatory proteins.
Particularly well described is the upregulation of the cluster
of differentiation (CD) 86, CD54, CD40 and CD83 (4). A
metabolic shift toward glycolysis supplies sufficient energy for the
maturation of activated DCs (5).

DCs do not only play an essential role during host defense
but also during chemical-induced immune responses like allergic
contact dermatitis (ACD). It is assumed, that about 20% of the
general population of Europe and North America are sensitized
to at least one contact allergen (6). ACD is a prototypic T
cell-mediated delayed-type hypersensitivity immune response
that may be elicited after skin contact with organic chemicals
or metal ions from cosmetics, jewelery or other commodities.
Pathogenesis of ACD is sub-divided in two phases. Upon initial
exposure to a contact allergen, the sensitization phase is initiated.
Significant clinical symptoms will only emerge after re-exposure
to the contact allergen during the so-called elicitation phase (7).
The importance of DCs during the sensitization phase is well-
understood and also reflected in the adverse outcome pathway
on skin sensitization (8). To date, the maturation of DCs in the

Abbreviations: ACD, allergic contact dermatitis; ACN, acetonitrile; ALDOA,
aldolase A; APC, allophycocyanin; BV421, brilliant violet 421; CD, cluster
of differentiation; CFSE, carboxyfluorescein succinimidyl ester; CYP51A1,
lanosterol 14α-demethylase; DC, dendritic cell; EIF, eukaryotic initiation factor;
FA, formic acid; FC, fold change; FITC, fluorescein isothiocyanate; GLUT,
glucose transporter type; GM-CSF, granulocyte-macrophage colony-stimulating
factor; GST, glutathione S-transferase; HEPES, 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid; HIF, hypoxia-inducible factor; HK, hexokinase;
HMGCS1, hydroxymethylglutaryl-CoA synthase; HMGCR, 3-hydroxy-3-
methyl-glutaryl-coenzyme A reductase; HMOX, heme oxygenase; HPRT,
hypoxanthineguanine phosphoribosyltransferase; HSA, human serum albumin;
IL, interleukin; IPA, ingenuity pathway analysis; KEAP, kelch-like ECH-associated
protein; LDHA, lactate dehydrogenase; LFQ, label-free quantification; LPS,
lipopolysaccharide; MD-2, myeloid differentiation factor 2; MLR, mixed leukocyte
reaction; MoDC, monocyte-derived dendritic cell; NEAA, non-essential amino
acids; NFκB, nuclear factor κB; NQO, NAD(P)H dehydrogenase [quinone]; Nrf2,
nuclear factor erythroid 2-related factor 2; OECD, Organization for Economic
Co-operation and Development; PBMC, peripheral blood mononuclear cell;
PBS, phosphate buffered saline; PE, phycoerythrin; PFKFB, 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase; PRDX, peroxiredoxin; q(RT)-PCR,
quantitative real time polymerase chain reaction; SD, standard deviation;
SLC, solute carrier; SOD, superoxide dismutase; SREBP, sterol regulatory element-
binding protein; TLR, toll-like receptor; TNBS, trinitrobenzenesulfonic acid;
TNF, tumor necrosis factor; TNP, trinitrophenyl-; TRAF, TNF receptor-associated
factor; TREM, triggering receptor expressed on myeloid cells.

context of contact allergy has been insufficiently investigated. For
instance, there is an ongoing debate, whether or not there are
allergy-specific alterations of DCs, which may be used as allergy-
specific biomarkers. Proteomics studies can help to elucidate
molecular alterations induced by allergens. Proteins directly
affect the phenotype of an organism and possess an enormous
functional repertoire. They may, for instance, act as transporters,
messenger molecules or as enzymatic catalyst. Furthermore, the
number of genes is outnumbered by the number of proteins, e.g.,
due to manifold post-translational modifications. Thus, studying
the proteome and metabolism of DCs after exposure to contact
allergens is mandatory to get insights in the biological state of the
cells (9).

Therefore, the aim of this study was to compare DC
maturation induced by the metal allergen NiSO4 to the
bacterial trigger lipopolysaccharide (LPS). DC maturation by
the latter has been investigated extensively (10–13). Nickel has
been selected for several reasons. Firstly, nickel is the most
common cause of ACD in Europe. Even though numbers of
affected individuals are decreasing as the EU nickel directive
restricts nickel release from products intended for prolonged
skin contact, still 8–18% of the European population are
sensitized to nickel (14). Secondly, it was shown that both
Ni2+ and LPS act via TLR4 although with different molecular
binding mechanisms. LPS binds to a specific pocket on myeloid
differentiation factor 2 (MD-2) which forms a heterodimer
with TLR4 (15), inducing dimerization and internalization of
TLR4 (16, 17). In contrast, Ni2+ was shown to bind to three
histidine residues on the ectodomain of human TLR4, which is
distinct from the endotoxin binding site (18). TLR4 dimerization,
which is mandatory for receptor activation, was found to
occur independently of MD-2 in the presence of Co2+ and
Ni2+ (19).

We were interested in elucidating whether these differences
in binding to TLR4 might eventually induce different proteins
and pathways. The comparison of an allergen with a bacterial
stimulant allows the identification of allergy specific effects and
possible biomarkers which may support current in vitro testing
strategies for skin sensitization. Hence, we here present a global
proteomic analysis of LPS and NiSO4-treated primary human
monocyte-derived DCs (MoDCs) using label-free quantification
(LFQ). MoDCs were treated for 24 h with 400µM NiSO4 or
2.5µg/ml LPS. Upon harvest, cells were prepared for proteomic
analysis as well as for flow cytometry analysis of selected cell
surface markers and cytokines. Proteomic data were validated
using suitable methods like qPCR revealing differences in NiSO4-
and LPS-induced activation.

MATERIALS AND METHODS

Reagents
Unless stated otherwise, all chemicals were purchased from
Sigma-Aldrich. Phosphate buffered saline (PBS, P04-36500),
RPMI 1640 (P04-17500), human serum (P-2701), HEPES (P05-
01100), sodium pyruvate (P04-43100), penicillin-streptomycin
(P06-07100) and non-essential amino acids (NEAA, P08-32100)
were purchased from PAN.
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MoDC Generation and Chemical Treatment
PBMCs were isolated by standard density gradient centrifugation
with Ficoll Paque Plus (GE Healthcare, 17-1440-03) from
human buffy coats. Buffy coats were obtained from German
Red Cross (Berlin, Germany) according to the current version
of the declaration of Helsinki with an approved ethic vote
(Charité, Berlin Germany; EA4/071/13). Untouched CD14+ and
CD14+CD16+ monocytes were isolated by negative depletion
using the human PAN monocyte isolation kit (Biolegend,
480060), following the manufacturer’s instructions. Monocytes
were cultured in commercial ready-to-use MoDC differentiation
medium containing 400 IU/ml IL-4 and 500 IU/ml GM-CSF
(Miltenyi Biotec, 130-094-812) at 37◦C with 5% CO2. Every
two days, half of the culture medium was replaced with fresh
medium. On day six, immature MoDCs were harvested, washed
with PBS and resuspended in fresh medium at a density of
106 cells/ml. Cells were either treated with medium only as
control, 2.5µg/ml LPS (from Escherichia coli O111:B4, L3024-
5MG) or 400µM NiSO4 (31483, tested endotoxin-free using
QCL-1000TM Endpoint Chromogenic LAL Assay (Lonza, 50-
647U) according to the manufacturers protocol). For proteomic
studies and flow cytometry, cells were harvested after 24 h of
continuous chemical incubation; for quantitative RT-PCR, cells
were incubated either for 24 h or over a 36 h period with sample
collections at various time points.

Flow Cytometry
To characterize the phenotype of harvested MoDCs, cells were
stained for 30min at 4◦C with BV421 anti-CD86 (FUN-1,
562433), FITC anti-CD40 (5C3, 555588), FITC anti–CD83
(HB15e, 556910), PE anti–CD80 (L307.4, 557227), APC anti-
CD1a (HI149, 559775) (all BD Biosciences) and PE anti-
CD14 (TÜK4, Miltenyi, 130-113-147). Viability was monitored
using fixable near-IR dead cell stain (Thermo Fisher Scientific,
L34976). For each antibody staining, a control isotype staining
was included. Data were acquired using a FACSAria III
flow cytometer (BD Biosciences) and analyzed with FlowJo
software (V.10.6.1, FlowJo LLC, Ashland, OR, United States). An
exemplary gating plot is depicted in Supplementary Figure 1.
Graphical visualization was performed using GraphPad Prism
6 (GraphPad Inc., San Diego, CA, United States). On day
6 of MoDC differentiation, the immature state of MoDCs
was confirmed by measuring downregulation of the monocytic
marker CD14 and upregulation of the DC-marker CD1a (data
not shown).

Phagocytosis of TNBS-Modified Human
Serum Albumin
Human serum albumin (HSA, fraction V, Merck,
12668-10GM-M) was dissolved in PBS (10 mg/ml) and
incubated at 37◦C for 60min with 5mM trinitrobenzenesulfonic
acid (TNBS, 92822-1ML) (mole ratio HSA:TNBS 1:300)
following a modified protocol of Dietz et al. (20). Subsequently,
free TNBS was removed with a 30 kDa cutoff spin filter and
two consecutive washes with PBS. Purified trinitrophenyl
(TNP)-modified HSA was resuspended in PBS, and protein
concentration was determined using the Pierce BCA protein

assay (Thermo Fisher Scientific, 23225). As a control, pure HSA
dissolved in PBS was processed equally. MoDCs were treated for
3 h or 24 h with LPS or 400µMNiSO4. To monitor phagocytosis,
cells were harvested, seeded at a density of 105 cells/well in
a 96-well plate and incubated with HSA-TNP or pure HSA
(200µg/ml). After 3 h, cells were stained with fixable near-IR
dead cell stain followed by an intracellular BV421 anti-TNP
(A19-3, BD Biosciences, 562601) stain with inside stain kit
(Miltenyi, 130-090-477).

Mixed Leukocyte Reaction (MLR)
Chemical-treated MoDCs were harvested after 24 h, washed with
PBS and 6 × 104 cells/well were seeded in a 96-well U-bottom
plate. Following the manufacturer’s instructions, allogenic PAN
T cells were negatively depleted from PBMCs with PAN T cell
isolation kit (Miltenyi, 130-096-535). T cells were labeled with
4 nM CSFE (Thermo Fisher Scientific, C34554) to monitor cell
proliferation and added to MoDCs at a concentration of 6 × 105

cells/well (ratio T cells: MoDCs = 10:1). As a negative control, T
cells were cultured without MoDCs. As a positive control, a co-
culture of T cells and medium-treated MoDCs, was stimulated
with 1µg/ml staphylococcal enterotoxin B superantigen (S4881-
1MG). Cells were cultured in RPMI 1640 supplemented with
10% human serum, 2mM GlutaMAX (Gibco, Thermo Fisher
Scientific, 35050061), 10mM HEPES, 1x NEAA, 1mM sodium
pyruvate, 100 U/ml penicillin, 0.1 mg/ml streptomycin and 100
U/ml β-mercaptoethanol (Gibco, 21985023) at 37◦C with 5 %
CO2. On day 4, proliferating T cells were identified by their
reduced CFSE signal.

Inhibition of p38 and HIF1α

MoDCs were treated with 20µM SB203580 (Biomol, AG-CR1-
0030-M005) to inhibit p38 activity, or with 0.5 nM echinomycin
(Biomol, BVT-0267-M001) to inhibit binding of hypoxia-
inducible factor (HIF) 1α to hypoxia response elements for
30min. Subsequently, LPS and NiSO4 were added at final
concentrations of 2.5µg/ml and 400µM, respectively. After 24 h,
viability and CD86 expression were analyzed by flow cytometry.

Immunoblotting of HIF1α

Chemically treatedMoDCs were collected after 24 h of treatment.
Cells were washed with ice-cold PBS and cell lysis was performed
with the lysis buffer described in the LC-MS/MS sample
preparation section. Protein concentration was determined using
the Pierce BCA protein assay. Subsequently, 20 µg protein
were loaded on 10% SDS-PAGEs. Following the separation,
proteins were transferred to nitrocellulose membranes (BioRad,
1620115). The immunoblots were blocked in 5% skimmed milk
and incubated for 16 h at 4◦C to allow binding of the primary
anti-HIF1α antibody (H1alpha67, Novus Biologicals, NB100-
105). Binding of the secondary antibody (horseradish peroxidase
labeled, Dianova, 115-035-206) was performed for 1 h at room
temperature. The blot was visualized using Pierce ECLWest Pico
Substrate (Thermo Fisher Scientific, 34078) using a Fusion FX6
gel documentation (Vilber, Eberhardzell, Germany). A HRP anti-
β actin antibody (AC-15, Abcam, ab49900) was used as loading
control. Blots were analyzed using the Image Lab 6.0.1 software
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(BioRad). All values were background-corrected and the HIF1α-
signal was normalized to the β-actin signal and medium control.

Quantification of Secreted Cytokines
MoDC culture supernatants were collected after chemical
treatment for 24 h. Cells and debris were removed by
centrifugation for 10min at 300 g. Following the manufacturer’s
instructions, IL-1β, IL-6, IL-8, IL-10, IL12p70, IL-18 and TNFα
were quantified with a customized bead-based LEGENDplex
immunoassay (Biolegend) on a FACS Aria III. Data were
analyzed using the provided LEGENDplex v8.0 software. Data
were log2 transformed and visualized with GraphPad prism.
Student’s t-test was applied to calculate p-values relative to
medium control.

Quantitative Real-Time PCR
MoDCs were collected after chemical treatment, washed with
ice-cold PBS and resuspended in TRIzol reagent (Invitrogen,
Thermo Fisher Scientific, 15596026). RNA was isolated
from 106 cells following the TRIzol manufacturer’s protocol.
Quantification of isolated RNA was performed on a NanoDrop
1000 (VWR, Radnor, PA, United States). One microgram
RNA was used for reverse transcription into cDNA using
the High-capacity cDNA reverse transcription kit (Applied
Biosystems, Thermo Fisher Scientific, 4368813). Quantitative
real-time PCR was performed on a TaqMan PCR 7500 fast
system (Applied Biosystems) using Fast SYBR green master
mix (Applied Biosystems, 4385618) and the following primers:
HPRT DNA forward 5′-GTTCTGTGGCCATCTGCTTAG-
3′, reverse 5′- GCCCAAAGGGAACTGATAGTC-3′; HIF1α
DNA forward 5′-TTTTTGCTGAAGACACAGAAGC-3′,
reverse 5′- GCTTGCGGAACTGCTTTCTA-3′; SLC2A1
DNA forward 5′- CCAGCAGCAAGAAGCTGAC-3′, reverse
5′- AGGATGCTCTCCCCATAGC-3′; HMGCR DNA
forward 5′-TGTTTACTGGTAACAATAAGATCTGTG-
3′, reverse 5′-GTTGACGTAAATTCTGGAACTGG-3′;
SOD2 DNA forward 5′-TTGGCCAAGGGAGATGTTAC-
3′, reverse 5′-AGTCACGTTTGATGGCTTCC-3′; NQO1
DNA forward 5′-GCACTGATCGTACTGGCTCA-3′,
reverse 5′-GAACACTCGCTCAAACCAG-3′; TNFα
DNA forward 5′-CTTCTGCCTGCTGCACTTTGGAG-
3′, reverse 5′-GGCTACAGGCTTGTCACTCGG-3′; HK2
DNA forward 5′-GTTCCTGGCTCTGGATCTTG-3′,
reverse 5′-GGCAATGTGGTCAAACAGC-3′; SREBF2
DNA forward 5′-CACCAAGCACGGAGAGGT-3′, reverse
5′-GGGGAGGAGAGGAAGGAGA-3′; PFKFB3 DNA
forward 5′-AAAAGTGTTCAACGTCGGGG-3′, reverse
5’-CGAAAACCGCAATTTGTCCC-3’; SLC2A3 DNA
forward 5’-GAGGACGTGGAGAAAACTTGC-3’, reverse
5′-GCCAAATTGGAAAGAGCCGA-3′; SLC2A6 DNA
forward 5′-ATCCCAGGCATCCTGGTTTG-3′, reverse 5′-
GGTCGTTGAGGATCATGGCA-3′. The following genes
were analyzed using QuantiTect Primer Assay (Qiagen):
HMOX1 (#QT00092645); PRDX1 (#QT01005536); GSTO1
(#QT02394287); CAT1 (#QT00079674). cDNA was 1:10 fold
diluted in water and 1 µl was used for qRT-PCR analysis. Gene
expression was normalized to the housekeeping gene HPRT,

and relative gene expression was determined using the 11CT
method (21). Significance relative to medium-control was
calculated using Student’s t-test in GraphPad Prism.

Cholesterol Quantification
To evaluate effects of chemical treatment on cellular cholesterol
content, MoDCs were treated with LPS and NiSO4 as stated
above. As a positive control for the inhibition of the cholesterol
biosynthesis, medium-treated MoDCs were treated with 40µM
lovastatin (M2147-25MG). After 24 h, cells were harvested
and washed with PBS. Lipids were extracted following the
Folch protocol (22). Briefly, cells were resuspended in 500 µL
chloroform-methanol (2:1, 1024451000, 1060072500), and lipids
were extracted for 20min by shaking and occasional vortexing at
4◦C. Extraction was repeated after addition of 125 µL water. The
suspension was centrifuged for 10min at 1,000 g and 300 µL of
the organic phase were transferred to a new Eppendorf tube and
vacuum-dried. Proteins were obtained from the interphase and
their concentration was determined using the Pierce BCA protein
assay. Cholesterol levels of the samples were quantified using
the Amplex Red Cholesterol Assay Kit (Thermo Fisher Scientific,
10236962). Desiccated lipids were dissolved in assay buffer and
analyzed following the manufacturer’s protocol. Fluorescence
was measured at 590 nm emission on a Synergy Neo2 plate
reader (BioTek, Winooski, VT, United States) with excitation
at 540 nm. Total cholesterol levels were standardized to the
respective protein concentration and normalized to the untreated
control. P-values were calculated using Student’s t-test relative to
the medium control.

LC-MS/MS
Cell Lysis
After chemical treatment, MoDCs were collected, washed
twice with ice-cold 0.9% NaCl and lysed in 100 µL lysis
buffer per 106 cells. The lysis buffer was composed of
150mM NaCl (S7653-250G), 10mM TRIS pH 7.2 (T1503-
250G), 5mM EDTA (E5134-250G), 0.1% SDS (436143-25G),
1% Triton X-100 (T8787-100ML), 1% sodium deoxycholate
(30970-100G), 200µM phenylmethylsulfonyl fluoride (P7626-
1G), 1mM sodium orthovanadate (S6508-10G) and cOmplete
protease inhibitor cocktail (Roche, 1.167.498.001). Cells were
vortexed, incubated on ice for 15min and centrifuged. The
protein concentration of the supernatant was determined using
Pierce BCA protein assay.

Sample Preparation
An untargeted proteomics approach was applied using label-free
quantification as described before (23). Briefly, 30 µg protein
per sample was reduced with 0.1 µmol tris(2-carboxyethyl)
phosphine (C4706-10G), followed by alkylation with 0.2 µmol
iodoacetamide (Merck, 8.04744.0025). Protein solutions were
acidified and acetonitrile (ACN, Carl Roth, AE70.2) was added
to reach more than 50 % (v/v) organic content facilitating
protein binding to SpeedBeadsTM magnetic carboxylate modified
particles (SP3 beads, GE Healthcare, 65152105050250). Proteins
were loaded on 20 µg beads, followed by a first washing step
with 70% (v/v) ethanol (Merck, 22.462.500) in water and a
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second step with 100 % (v/v) ACN. Proteins were digested with
trypsin (enzyme:protein ratio 1:50, Promega, V5117) in 100mM
tetraethylammonium bromide (T7408-100ML). Digestion was
stopped by addition of 100 % (v/v) ACN to reach ≥ 95% (v/v)
organic content, thus again allowing the peptides to bind to the
beads. Peptides were again cleaned-up using 100% (v/v) ACN.
Elution of peptides was carried out in two steps with 87% (v/v)
ACN in ammonium formate (pH 10) (Agilent Technologies,
AGG1946-85021), followed by 2% (v/v) dimethyl sulfoxide
(D2650-5x-10ml), resulting in two fractions per sample. Samples
were evaporated to dryness and reconstituted in 0.1% (v/v)
formic acid (FA, Fluka, Thermo Fisher Scientific, 56302-50ML-F)
before measurement.

LC-MS/MS
Samples were analyzed on a UPLC system (Ultimate 3000,
Dionex, Thermo Fisher Scientific) coupled to a Q Exactive HF
(Thermo Fisher Scientific) as described previously (23). Peptides
were loaded on an Acclaim PepMap 100 C18 trap column (3µm,
nanoViper, 75µm × 5 cm, Thermo Fisher Scientific, PN164535)
at a flow rate of 5 µl/min using an eluent composed of 2% (v/v)
ACN and 0.05% (v/v) trifluoroacetic acid (Biosolve, 202341A8) in
water. Peptides were separated by a 150min non-linear gradient
from 0 to 80% ACN in 0.1% FA on a reversed-phase column
(Acclaim PepMap 100 C18, 3µm, nanoViper, 75µm × 25 cm,
Thermo Fisher Scientific, PN164569). A chip-based ESI source
(Nanomate, Advion, Ithaca, NY, United States) was used for
ionization at 1.7 kV and coupled to the Q Exactive HF. The MS1
scans were acquired at a resolution of 120K in a range of 350–
1,550m/z. AGC target was set to 3× 106 with amaximal injection
time of 100ms. The top 10 most abundant peptides were isolated
forMS2 acquisition with an isolation window of 1.4m/z. Peptides
were fragmented at normalized collision energy of 28, and the
fragment ion spectra were acquired at a resolution of 15K using
AGC target of 2× 105 andmaximal IT of 100ms. All spectra were
acquired using XCalibur (Version 3.0).

Analysis
MS raw data were processed with MaxQuant Version 1.6.3.10
(24). If not stated otherwise, default parameters were used.
Peptides were identified using a database search against the
Homo sapiens UniProtKB reference proteome (24-09-2019,
74349 reviewed and unreviewed entries). Carbamidomethylation
of cysteine was chosen as fixed, whereas oxidation of methionine
and acetylation of protein N-terminus were set as variable
modifications. A minimum of two peptides with at least one
unique peptide was required for protein identification applying
FDR ≤ 0.01. Match between runs was activated. Proteins were
quantified based on two unique peptides. Protein contaminants
and reverse hits were excluded before further use. LFQ protein
intensities were processed, and results were visualized in R-
3.5.0. Accordingly, the data were log2-transformed, filtered for
proteins that were quantified in a minimum of four replicates
under at least one condition, followed by variance-stabilization.
Imputation was performed using the DEP package (25) (fun =

“MinProb,” q = 0.01) for proteins not quantified in any of the
replicates under the particular condition. Fold changes (FCs)

and p-values were calculated using Student’s t-test relative to the
medium control. Proteins with a p-value ≤ 0.05 were considered
as significantly changed.

Pathway Enrichment
Significantly enriched pathways were identified using ingenuity
pathway analysis (IPA, Qiagen), considering significantly
enriched proteins.

RESULTS

Phenotypical and Functional MoDC
Characterization
The effects of NiSO4 and LPS on the phenotype and function
of primary human monocyte-derived DCs (MoDCs) were
investigated first. MoDCs were generated from buffy coats
of five individual donors, and treated with LPS (2.5µg/mL)
or NiSO4 (400µM) for 24 h. Cell viability and upregulation
of the maturation markers CD86, CD83, CD40 and CD80
on their surface was measured (Supplementary Figure 1).
Cell viability was assured to be above 75% for all samples
(Supplementary Figure 1A), in agreement with the acceptance
criteria of the human Cell Line Activation Test (26).
MoDCs were used in further experiments, if maturation
markers were upregulated after LPS- and NiSO4-treatment
(Supplementary Figures 1B–E). Overall, changes induced by
LPS were more pronounced.

Furthermore, the gene expression of the allergy relevant
cytokine TNFα was determined by qRT-PCR. The TNFA gene is
directly induced after TLR4 signaling and activates nuclear factor
κB (NFκB). To capture the dynamics of TNFA expression, we
measured its gene expression over 36 h at various time points.
The time course of gene induction was comparable for LPS and
NiSO4 peaking 2 h after treatment. However, LPS acted as a much
more potent inducer (Supplementary Figure 2).

Moreover, selected inflammatory cytokines (IL-1β, IL-6, IL-
8, IL-10, IL12p70, IL-18, and TNFα) were quantified in the
cell culture supernatants using a bead-based immunoassay
(Supplementary Figure 3). The production of IL-8 for example
is used as a biomarker for DC activation (26). All cytokines
were significantly enriched in the cell culture supernatant of
both treatments compared to the unstimulated control. Only
for IL-10, NiSO4-induced release was not significantly altered
compared to medium control. Overall, the secreted amounts of
all analyzed cytokines were higher in LPS-treated compared to
NiSO4-treated cells.

The Phagocytotic Activity of LPS- and NiSO4-Treated

MoDCs Is Markedly Reduced
It is widely accepted that mature DCs are less phagocytotic
compared to their immature progenitors. The degree of
reduction of phagocytosis depends on the stimuli as well
as on the DC maturation state (27–29). Thus, we aimed to
functionally compare dendritic cells that were maturated with
either LPS or NiSO4 by monitoring uptake of trinitrophenyl-
modified HSA. MoDCs maturated for 3 h with either substance
showed no significant reduced phagocytotic activity compared
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to untreated cells (Supplementary Figure 1G). However,
prolonged chemical treatment of 24 h reduced phagocytosis of
MoDCs (Supplementary Figure 1F). The degree of reduction in
phagocytotic activity was comparable for LPS and NiSO4.

LPS- and NiSO4-Treated MoDCs Induce Proliferation

of Allogenic T Cells
To test whether NiSO4 affects the ability of MoDCs to activate
T cells, we performed a mixed leukocyte reaction. Control,
LPS- or NiSO4-treated MoDCs were incubated for 4 days with
allogenic T cells, and proliferation of the latter was determined
by CFSE dilution. LPS- and NiSO4-treated MoDCs induced
stronger proliferation of T cells compared to controlMoDCswith
LPS being the more potent inducer (Supplementary Figure 4A).
These results are in concordance with the upregulation of co-
stimulatory molecules on the DC surface. As control, T cells were
incubated in the absence of MoDCs, which resulted in hardly any
proliferation compared to T cells cultured in the MLR (negative
control, data not shown) while the superantigen staphylococcal
enterotoxin B induced a strong T cell proliferation (positive
control, data not shown).

Overall, the upregulation of activation markers, expression of
inflammatory cytokines, reduced antigen-uptake and the ability
to induce T cell proliferation prove the activation of MoDCs after
treatment with NiSO4 and LPS. Thus, even if less pronounced
compared to LPS, immunological signaling induced by NiSO4

was demonstrated.

Proteomic Analysis
To analyze the underlying cellular effects and to identify
similarities and changes of LPS- and NiSO4-activated DCs, we
applied a global proteomics approach. A principal component
analysis was employed to assess the similarity of the treatment
groups. Biological replicates show little variance, indicative
for the high quality of our proteomic dataset. NiSO4-samples
cluster between LPS- and control-samples (Figure 1A), pointing
toward an intermediate cellular state of NiSO4-treated cells.
In total, more than 3,300 proteins were identified using a
label-free quantification approach (Supplementary Table 1). Of
these, the majority was identified in both treatment groups
(Figure 1B). Analysis of significantly altered proteins relative
to the control exhibited 493 significantly altered proteins by
LPS, while 402 proteins were changed by NiSO4-treatment
and 144 proteins were altered by both treatments with p
≤ 0.05 (Figure 1B). Furthermore, the z-score of each fold
change was calculated and plotted in a heat map (Figure 1C),
which allowed comparison across replicates and treatments.
Biological replicates show minimal variance, which allowed
the identification of clusters of significantly altered proteins
compared to the control. Interestingly, we observed different
clusters of upregulated proteins for NiSO4-treated cells compared
to LPS-treatments, indicating a distinct mode of action. Next,
we visualized the data using volcano plots to identify statistically
significantly regulated proteins based on their p-value compared
to the magnitude of change. As shown in Figure 1D, LPS induced

a more pronounced spread of the data. Overall, upregulation was
favored over downregulation for both chemicals.

To differentiate the effects of LPS- or NiSO4-treatment on
cellular pathways, significantly altered proteins (p ≤ 0.05) were
used to identify enriched pathways using QIAGEN’s Ingenuity
Pathway Analysis (IPA). Notably, LPS-treatment induced more
significantly enriched pathways than NiSO4 (Figure 1E). Shared
pathways between the two groups included Nrf2-mediated
oxidative stress response, CD40 signaling, triggering receptor
expressed on myeloid cells (TREM) 1 signaling and acute phase
response signaling. Pathways that were uniquely induced after
NiSO4-treatment comprised the superpathway of cholesterol
biosynthesis, the unfolded protein response and eukaryotic
initiation factor (EIF) 2 signaling.

NiSO4-Treatment Activates Nrf2 Target
Genes in MoDCs
The nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated
oxidative stress response was predicted to be highly activated
in the ingenuity pathway analysis for NiSO4-treated MoDCs.
Furthermore, this pathway was among the few pathways that
were induced much stronger by NiSO4 compared to LPS
(Figure 1E). Hence, we ought to investigate the differences
between the two stimuli concerning the Nrf2 pathway in more
detail. Gene expression of Nrf2-target genes was analyzed by
quantitative RT-PCR (Figure 2). Indeed, 4 out of 6 genes,
namely GSTO1, GSTM1, NQO1, and PRDX1, were induced
only due to NiSO4- but not after LPS-treatment. HMOX1
gene expression was more pronounced after NiSO4-treatment;
however, the effect was not statistically significant. SOD2 gene
levels were exacerbated after both treatments, rendering SOD2
the only Nrf2 target gene that was found to be significantly
upregulated after LPS-treatment. On the protein level, heme
oxygenase (HMOX) 1 was confirmed in the proteomic data set
as significantly upregulated after NiSO4-treatment. Superoxide
dismutase (SOD) 2 showed strong upregulation on protein level
after both treatments. However, only LPS induced changes were
significant. From this data, it can be concluded that NiSO4

causes a distinct oxidative stress level in MoDCs which may
strongly contribute to the activation of the cells. Thus, induction
of oxidative stress may be an additional mode of action besides
TLR4 activation in NiSO4-treated MoDCs.

NiSO4 Leads to Cholesterol Depletion but
Induces Cholesterol Biosynthesis Pathway
Pathway enrichment analysis by IPA revealed the superpathway
of cholesterol biosynthesis as one of the strongly activated
pathways after treatment of MoDCs with NiSO4 (Figure 1E).
Proteins matched to this pathway were significantly upregulated
and comprised proteins like lanosterol 14α-demethylase
(CYP51A1), hydroxymethylglutaryl-CoA synthase (HMGCS1)
and 7-dehydrocholesterol reductase. We therefore quantified
cellular cholesterol levels using the Amplex Red Cholesterol
assay and confirmed a significant depletion of cholesterol in
NiSO4-treated MoDCs (Figure 3A). The strength of this effect
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FIGURE 1 | Quantitative proteomic analysis of differentially regulated proteins in LPS- and NiSO4-treated MoDCs. (A) Principal component analysis of the five

biological replicates showing a distinct clustering of each group, (B) Venn-diagrams of total as well as significantly altered proteins in the LPS-group (blue) and

NiSO4-group (green), (C) heat map of significantly regulated proteins. Plotted are z-scores for all identified proteins, (D) volcano plots showing significantly regulated

proteins for LPS- and NiSO4-treated MoDCs compared to untreated MoDCs (p ≤ 0.05). Mean values of the log2-fold change are displayed and plotted against

–log10(p-value), red = upregulation, blue = downregulation, (E) significantly changed pathways in LPS and NiSO4-treated MoDCs. Canonical IPA pathways with a

positive z-score (red) are predicted to be activated; blue represents a negative z-score and inactivation of the pathway. Gray indicates unmatched pathways. IPA

analysis was based on proteins that were significantly changed compared to control (p ≤ 0.05). Within the IPA software, z-scores were calculated and only

experimental data of human origin was allowed. The tissue specificity was set to immune cells. Significance was calculated using Student’s t-test.

was comparable to that of cells treated with lovastatin, an
inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase
(HMGCR), which is the rate-limiting enzyme of the cholesterol
biosynthesis. In contrast, LPS did not induce changes in cellular
cholesterol levels. Based on these findings, we analyzed the gene

expression of HMGCR and sterol regulatory element-binding
protein (SREBB) 2, the regulating transcription factor of this
pathway. Both genes were found to be constantly upregulated in
NiSO4-treated MoDCs but were not induced (or even slightly
downregulated) after treatment with LPS (Figures 3B,C).
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FIGURE 2 | Expression of Nrf2-target genes in LPS- and NiSO4-treated

MoDCs. Depicted is the gene expression of glutathione S-transferase omega

(GSTO1, A), glutathione S-transferase mu (GSTM1, B), heme oxygenase

(HMOX1, C), NAD(P)H dehydrogenase (NQO1, D), peroxiredoxin (PRDX1, E)

and superoxide dismutase (SOD2, F) as measured by the qRT-PCR after

treatment of MoDCs with medium only, 2.5µg/ml LPS or 400µM NiSO4 for

24 h. Gene expression was normalized to the gene expression of the

housekeeping gene HPRT and medium control. Thereof, mean and SD are

shown (n = 3 donors). Applying the Student’s t-test, significance was

calculated to medium control (*p-value ≤ 0.05; **p-value ≤ 0.01; ***p-value ≤

0.001; ****p-value < 0.0001).

LPS and NiSO4 Induce Metabolic Shifts
That Lead to Hypoxic Conditions in Case
of NiSO4
Metabolic reprogramming is essential during DC maturation
since the metabolic switch from oxidative phosphorylation to
glycolysis ensures adequate energy supply to support cellular
reconstructions. Thus, we aimed to investigate the effects of
NiSO4 on the metabolism of DCs. In the proteomic data set,
proteins associated with anaerobic glycolysis were significantly
upregulated after treatment with NiSO4, including lactate
dehydrogenase (LDHA) along with the glycolytic enzymes
aldolase A (ALDOA), hexokinase (HK) 2 and 6-phosphofructo-
2-kinase/fructose-2,6-biphosphatase (PFKFB) 3. These findings
were supported by elevated expressions of proteins from the
glucose transporter (GLUT) family which facilitate the transport
of sugars. Namely, solute carrier (SLC) 2A1, SLC2A3/2A14 and
SLC2A6 expression were significantly increased after NiSO4-
treatment (Figure 4A).

In contrast, cells treated with LPS induced only upregulation
of PFKFB3 and SLC2A6. SLC2A1 was not detected, and SLC2A3

was significantly downregulated in this group (Figure 4A).
Thus, we aimed to investigate these differences in more detail
using RT-PCR. Gene expression analysis suggests different
kinetics for HK2 gene expression. Both treatments resulted
in an increasing HK2 gene expression over the first 6 h of
treatment. After 6 h a plateau was reached, which NiSO4-
treated MoDCs maintained over the investigated time. Yet, LPS-
treated MoDCs appear to counteract this gene induction leading
to subsequent downregulated expression of HK2 (Figure 4B).
Upregulation of PFKFB3 induced by LPS and NiSO4 was
verified by measuring gene expression after 24 h (Figure 4C).
Protein expression of the GLUT family proteins was confirmed
by measuring the gene expression of the respective genes
24 h after treatment (Figures 4D,E, Supplementary Figure 5B).
Stimulation of MoDCs with LPS was shown to cause metabolic
reprogramming that was mainly dependent on p38 mitogen-
activated protein kinase signaling leading to HIF1α accumulation
and elevated HK2 gene expression and activity (30). In our
study, expression of the HIF1A gene was downregulated
for both groups (Supplementary Figure 5A) but quantitative
immunoblot analysis revealed increased cellular HIF1α protein
levels after 24 h of treatment (Supplementary Figure 5C). Since
we found HK2 upregulated on protein and gene level, we
were interested in studying whether inhibition of p38 using
the inhibitor SB203580 had similar effects in LPS- and NiSO4-
stimulated cells. Indeed, CD86 expression was decreased after
inhibition of p38. However, the reduction was only significant in
LPS-treated MoDCs (Supplementary Figure 6A). Additionally,
we analyzed the effect of echinomycin-induced HIF1α inhibition
on the MoDCs. Inhibition of HIF1α induced a significant
reduction of the CD86 fluorescence signal in NiSO4- treated
cells (Supplementary Figure 6B). The pronounced dependency
of NiSO4-treated cells on HIF1α along with increased protein
levels and gene expression of glycolytic enzymes and glucose
transporters can be indicative for a prolonged stabilization of
HIF1α and hypoxia-like conditions (31).

Figure 5 summarizes the main findings of this study in a
comprehensive and visual way.

DISCUSSION

The present study aimed at elucidating the cellular mode of
action of NiSO4-stimulation in primary human MoDCs in
comparison to LPS activation. Nickel is a well-known allergen,
whereas LPS belongs to pathogen-associated molecular patterns
of Gram-negative bacteria. Both agents are known to activate
DCs by ligation to TLR4 (15, 18). As the molecular binding
mechanism is not identical (19), we studied if this may lead
to the differential regulation of allergy-specific proteins in
NiSO4-treated MoDCs. To investigate proteome alterations
and underlying mechanisms, we applied different approaches
including proteomics, quantitative RT-PCR and flow cytometry.
MoDCs generated from five individual donors were treated with
2.5µg/ml LPS or 400µM NiSO4 to induce maturation of DCs.
We confirmed maturation of MoDCs by both stimuli along with
reduced phagocytosis, secretion of immunostimulatory cytokines
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FIGURE 3 | Cellular cholesterol quantification and relative gene expression of relevant genes in LPS- and NiSO4-treated MoDCs. (A) Cellular cholesterol levels were

determined fluorometrically using the Amplex Red Cholesterol Assay kit after lipid extraction from MoDCs treated for 24 h. The fluorescence intensity was normalized

to the protein concentration of the respective sample. Cholesterol/protein-ratios were then further normalized to the untreated control. Significance to medium control

was calculated using Student’s t-test and is indicated with *p ≤ 0.05. The relative gene expression of sterol regulatory element-binding protein 2 (SREBF2, B) as well

as 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR, C) were analyzed at selected time points after treatment of MoDCs. Gene expression was measured

by qRT-PCR and normalized to the gene expression of HPRT (housekeeping gene) and medium control. Plotted are mean and SD of the normalized data (n = 3

donors). For each assay MoDCs were treated with medium only, 2.5µg/ml LPS, 400µM NiSO4 or 40µM lovastatin.

as well as induction of T cell proliferation. Overall, NiSO4-
treatment appears to elicit a phenotype comparable to LPS.

At the protein level, LPS-treated cells in our study elicited
proteins and signaling as reported previously. Arya et al. (13)
conducted a study to characterize proteomic changes induced
in MoDCs after LPS treatment. The pathways of interferon
signaling and IL-9 signaling and the proteins nuclear factor NF-
kappa-B p105 subunit (NFKB1), nuclear factor NF-kappa-B p100
subunit (NFKB2), IL-1β, TNF receptor-associated factor (TRAF)
1, E3 ubiquitin-protein ligase TRIM4, CD54, fascin and signal
transducer and activator of transcription 1 were also significantly
altered by LPS in our study. NiSO4-treatment likewise lead to
significantly altered levels of NFKB2, fascin, CD54 and TRAF1.
Hussaarts et al. (3) analyzed proteomic changes in MoDCs that
were incubated with LPS for 32 h. The authors identified TRAF1,
myristoylated alanine-rich C-kinase substrate, human leukocyte
antigen B as well as fascin as TOP4 upregulated proteins. We
could confirm these findings for LPS-treated MoDCs. However,
after NiSO4-treatment, only TRAF1 and fascin were significantly
altered. The respective TOP4 downregulated proteins in the

study by Hussaarts et al. (3) were cathepsins, ganglioside GM2
activator and macrophage mannose receptor 1, which again
were also significantly downregulated after LPS-treatment in
our proteomic data. Macrophage mannose receptor 1 was the
sole protein that was significantly downregulated after NiSO4-
treatment, too. Despite these eight proteins, also other proteins
were identified to be significantly regulated after LPS-treatment
in both studies, such as SOD2, WARS and CD54 indicating that
the maturation of MoDCs due to LPS is generally robust. In
the context of allergy, Strasser et al. (32) published a proteomic
study in MoDCs reacting to the prominent birch pollen allergen
Bet v 1. The pure recombinant allergen induced only minor
changes in MoDC. However, changes caused by birch pollen
extract were comparable to LPS induced changes. The authors
therefore suspect that Bet v 1 only displays its allergenic potential
in combination with additional danger signals such as LPS.
The data presented for the birch pollen extract and LPS show
high similarities with the data set presented here. The allergenic
pollen extract and NiSO4 induce similar IPA pathways including
Nrf2 mediated oxidative stress response, TREM1 signaling and
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FIGURE 4 | Fold change of glycolytic proteins and their respective gene expression in LPS- and NiSO4-treated MoDCs. (A) Heat map of differentially upregulated

proteins in the proteomics data set linked to glycolysis and glucose transport. Red indicates upregulation of the respective protein and blue refers to downregulation (n

= 5 donors). (B–E) Relative gene expression of hexokinase 2 (HK2, B), 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3, C), solute carrier family 2

member 3 (SLC2A3, D) and solute carrier family 2 member 1 (SLC2A1, E). Gene expression was measured by qRT-PCR at indicated time points (B) or after 24 h of

treatment for (C–E). Gene expression was normalized to the gene expression of HPRT (housekeeping gene) and medium control. Mean and SD of the normalized

data are shown (n = 3 donors). Significance to medium control was calculated using Student’s t-test (ns: not significant; *p-value ≤ 0.05; **p-value ≤ 0.01; ***p-value

≤ 0.001; ****p-value < 0.0001). MoDCs were treated with medium only, 2.5µg/ml LPS or 400µM NiSO4.

ERK/MAPK signaling. Furthermore, we were able to identify
HMOX1, SOD2, sequestosome-1, TRAF1 and nicotinamide
phosphoribosyltransferase as significantly changed due to NiSO4.
Proteomic changes induced by the investigated NiSO4 are hence
more comparable with the birch pollen extract than with the
recombinant protein itself. It can be suspected that NiSO4 does
possess the ability to induce danger signaling that Bet v 1 seems
to lack. These findings also point to TREM1 as one important
signaling pathway in the induction of an allergy.

In our study, both stimuli, LPS and NiSO4, induced protein
and gene expression changes that are characteristic for TLR4
signaling, reflected by upregulation of NFκB2 on the protein
level. NFκB signaling was identified as a crucial pathway in
DC maturation in response to NiSO4 as it is tightly connected
to the expression of maturation markers like CD40, HLA-DR,
CD86 and the secretion of pro-inflammatory cytokines like IL-
8 and IL-6 (33). Furthermore, NFκB signaling is indicative for
the activation of TLR4 by NiSO4. The central role of NFκB in

mediating the response to NiSO4 in MoDCs was also reflected
in the strong upregulation of proteins such as SAM and SH3
domain-containing protein (SASH) 1 and TRAF1 which are
known to positively regulate NFκB activity (34, 35) and which
were also significantly upregulated in our proteomic data set
for NiSO4-exposed MoDCs. Downstream of NFκB, we identified
increased gene expression for TNFα and could also show that
NiSO4 triggered elevated secretion of this cytokine along with IL-
8. Again, LPS induced more pronounced alterations, suggesting a
more substantial capacity to activate TLR4 compared to NiSO4.

One of the most distinct differences between LPS- and NiSO4-
treatment was the induction of the Nrf2-pathway after treatment
with NiSO4. Nrf2 is an important transcription factor for
cytoprotective genes. Under normal conditions, Nrf2 is located
in the cytoplasm where it is associated with a protein complex
including the kelch-like ECH-associated protein (KEAP) 1.
KEAP1 continually promotes ubiquitination and proteasomal
degradation of Nrf2 (36). Electrophilic and oxidative stress
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FIGURE 5 | Summarizing Figure. Cellular effects of two TLR4-activators on MoDCs: LPS (A) and NiSO4 (B). (A) LPS-treatment induced a metabolic shift toward

glycolysis and a weak Nrf2-dependent stress response. IPA pathway analysis revealed a strong upregulation of interferon signaling. (B) NiSO4-treated cells showed a

distinct upregulation of glycolytic enzymes both on mRNA and protein level, suggesting metabolic reprogramming and hypoxia-like conditions. The metal allergen

NiSO4 also triggered a pronounced Nrf2-dependent stress response that culminated in upregulation of Nrf2-target genes. Most strikingly, NiSO4 induced a cellular

cholesterol depletion in MoDCs, which was reflected in the upregulation of genes and proteins involved into cholesterol biosynthesis. We speculate that haptenation to

other cellular proteins than TLR4 also contributed to the observed changes. A blue arrow indicates downregulation and red arrows indicate upregulation. A

pronounced change is indicated by two arrows.

induces a conformational change in KEAP1 which suppresses
Nrf2 ubiquitination and enables translocation of Nrf2 to the
nucleus. In the nucleus, Nrf2 binds to antioxidant-responsive
elements and induces transcription of target genes (37). Nrf2-
dependent stress response was identified as a major player in
the immunological reaction to allergens (38). Specifically, the
high relevance of Nrf2 during skin sensitization was reflected
in the upregulation of target genes like HMOX1 and NAD(P)H
dehydrogenase [quinone] (NQO) 1 at the protein level in CD34-
derived dendritic cells and THP-1 cells (39). A prior proteomic
study of our lab used Nrf2 knockout mice for the identification
of potential biomarkers for skin sensitization among them
HMOX1 and PRDX1 (40). Previously, activation of Nrf2 due
to treatment with NiCl2 was shown in monocytic THP-1 cells
(41). Our findings also underline the importance of Nrf2 in
response to NiSO4 since the Nrf2 stress response signaling was
identified as highly activated pathway using IPA analysis. In
this context, we were able to identify significantly increased
gene expression levels for the Nrf2 target genes peroxiredoxin
(PRDX) 1, SOD2, NQO1, glutathione S-transferase (GST) M1
and GSTO1 as well as elevated protein levels of SOD2 and
HMOX1. Besides NiSO4, LPS is also able to induce oxidative
stress in dendritic cells which is believed to support the
maturation of the cells (42, 43). We identified SOD2 as strongly
upregulated protein after treatment with LPS which was verified
by quantitative RT-PCR. Proteomic upregulation of SOD2 after
LPS-treatment was also reported by Hussaarts et al. (3). Thus,

Nrf2-dependent proteins play a major role during cellular
response to an allergen. However, biomarker candidates from
this group of proteins have to be selected carefully since other
substances like LPS that induce DC maturation also regulate
Nrf2-dependent proteins.

The induction of TLR4 signaling pathways by binding of
nickel undoubtedly contributed to the activation of the cells as
proposed by Schmidt et al. (18). However, Vennegaard et al. (44)
showed that sensitization to Ni2+ occurs independent of TLR4
in mice. MyD88-dependent and IL-1-related pathways mediated
the immunological reaction to Ni2+ in their in vivo model. In
our study with human MoDCs, we found significantly elevated
secretion levels of IL-1β after treatment with NiSO4, which may
be indicative for an involvement of IL-1-related pathways during
sensitization to NiSO4. We also believe that the haptenation
of nickel to other cellular proteins led to the induction of a
distinct oxidative stress response which eventually resulted in
cellular activation and the observed proteomic phenotype of the
MoDCs. The haptenation mechanisms of metal allergens remain
to date under-investigated. Yet, nickel was shown to bind to
a broad range of cellular proteins, including many heat shock
proteins and cytoskeletal proteins (45, 46). Binding of nickel
to serum albumin was shown to bypass antigen-processing of
antigen-presenting cells by a transfer of the Ni2+-ion to peptide-
major histocompatibility complexes inducing subsequent T cell
activation (45). Due to the modus operandi in this study, further
nickel-interacting proteins could not be detected.
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IPA results revealed the superpathway of cholesterol
biosynthesis as strongly induced due to NiSO4- but not after
LPS-treatment. NiSO4-treated MoDCs exhibited significantly
reduced cellular cholesterol levels which were accompanied by
upregulation of genes and proteins involved in the cholesterol
biosynthesis. Cellular cholesterol homeostasis is a delicate
equilibrium. Under cholesterol deficiency, sterol response
element-binding proteins (SREBP) become activated and
subsequently activate genes of the mevalonate pathway like
HMGCR to fuel cholesterol accumulation (47). Changes
in cholesterol levels can lead to fatal effects with major
impacts on DCs role in immunity. Disrupted cholesterol
homeostasis may affect DC differentiation and maturation,
antigen presentation, migration, as well as priming of T cells
(48). During DC maturation cholesterol highly supports the
synthesis of membranes needed for cellular expansion. Especially
the formation of lipid rafts in the cell membrane is sensitive to
changed cholesterol levels. Since TLR ormajor histocompatibility
complexes are located in these rafts, receptor-induced signaling
like NFκB- or IFN-signaling is directly affected upon perturbed
cholesterol levels (48–51). Excessive cholesterol biosynthesis
may also be a cellular mechanism to restore and maintain
cell membranes. Cholesterol decreases membrane fluidity and
therefore stabilizes the latter (52).

Cholesterol is also known to play a pivotal role in cellular
stress response and during hypoxia. Under hypoxic conditions,
sterol levels were depleted in the yeast Saccharomyces pombe,
which was counteracted by activation of Sre1 (the analog of
SREBPs in eukaryotes) until normal levels of sterol synthesis
were again reached after a few hours (53). In our experiment,
the gene expression of SREBP and HMGCR was continuously
upregulated in NiSO4-treated cells. Thus, potentially being
a compensatory effect for the cellular cholesterol depletion
induced by NiSO4. A recently published study on the lipid
composition in maturated human MoDCs, revealed that mature
MoDCs are stiffer than their immature progenitors. These
findings were explained by an altered lipid class composition in
mature MoDCs. Strikingly the performed lipidomic analysis also
disclosed reduced cholesterolester levels in mature MoDCs (54),
which supports our findings of cellular cholesterol depletion.
However, the role and fate of cholesterol during DC maturation
is to date not fully understood.

We suspect that diminished cellular cholesterol levels can be
explained by the formation and secretion of extracellular vesicles.
Extracellular vesicles were proven to play a pivotal role in allergy
and immunity in general (55). Exosomes of dendritic cells may
transport allergens and thereby activate T cells (56). Another
example for the relevance of DC exosomes is their use as vaccine
in cancer immunotherapy (57). Taken together, the impact of
NiSO4 on the cellular fate of cholesterol is an exciting target
for future research. Hence, we already conducted a subsequent
proteomic experiment to unravel whether the observed changes
in cholesterol biosynthesis are unique for NiSO4. Appling a stable
isotope labeling with amino acids in cell culture (SILAC), we
analyzed the effects of organic allergens, including the strong
allergens p-benzoquinone and 2,4-dinitrochlorobenzene, on the
proteome of THP-1 cells. THP-1 cells are validated for usage

within the human Cell Line Activation Test to assess skin
sensitizers (26). We were able to confirm the upregulation
of pathways connected to the cholesterol biosynthesis after
treatment of THP-1 cells with all contact sensitizers tested
(unpublished data). These data support the evidence presented in
our study in MoDCs and underline the need for further research
in this field which may eventually lead to a better understanding
of cellular mechanisms in the context of ACD.

Due to strict search criteria for the IPA pathway analysis,
no metabolic pathways were identified as significantly regulated.
However, as already described in the literature, phenotypic
alterations and cellular reconstruction during DC maturation
are supported by a metabolic reprogramming, i.e. cellular
metabolism is shifted from oxidative phosphorylation toward
glycolysis which fuels the cells with sufficient energy. The
metabolic shift toward glycolysis is triggered by strong and weak
DC activators likewise and is essential for DC migration (58).
However, long-term dependency on glycolysis was only induced
by potent DC activators and is achieved by HIF1α stabilization
(59, 60). As reported before, LPS triggered a metabolic shift
toward glycolysis by increasing the gene expression of HK2
(30). Although protein levels of HK2 were not significantly
changed due to LPS, HK2 was one of the proteins with
the most pronounced differential expressions after NiSO4-
treatment. HK2 protein expression was significantly altered and
3.4-fold upregulated, respectively. Additionally, we identified
another protein supporting the shift toward glycolysis: PFKFB3
was significantly upregulated after LPS- and NiSO4-treatment.
PFKFB3 is a kinase producing fructose 2,6-bisphosphate which
is an allosteric activator of the phosphofructokinase, a bottleneck
enzyme in the glycolysis. PFKFB3 was reported to increase
glycolytic activity in cells in the context of the Warburg effect
(61) as well as after LPS stimulation of macrophages (60). As the
PFKFB3 gene promotor possesses a binding site for HIF1α (62),
it is also induced under hypoxic and hypoxia-like conditions, e.g.
triggered by Co2+ (63).

The findings, as mentioned above, can be matched to the
proteomic data generated from MoDCs treated with NiSO4.
However, NiCl2 was reported to induce distinct hypoxia-
like conditions via induction of HIF1α (64, 65). Accordingly,
increased gene expression for glycolytic enzymes like HK2,
LDHA and SLC2A1 was reported (66). These proteins were also
significantly changed after treatment of MoDCs with NiSO4 in
our study, and additionally, elevated protein levels of HIF1αwere
detected. MoDCs stimulated with NiSO4 were more sensitive
to HIF1α-inhibition than cells stimulated with LPS. NiSO4 and
cobalt are known to induce TLR4-dependent IL-8 production,
which is defined as a key event for skin sensitization. However,
both metals also elicit hypoxia. Asakawa et al. (67) showed
that NiCl2 binds to heat shock protein 90β in THP-1 cells and
thus increases the activity of HIF1α. Elevated HIF1α activity
eventually resulted in elevated IL-8 expression. TREM1 protein
expression and IL-8 secretion were both previously reported to
be increased under hypoxic conditions (68). We could show that
NiSO4-treated MoDCs also induced TREM1 signaling as well
as IL-8 secretion. Additionally, Viemann et al. (65) described
a central role of HIF1α in endothelia cells in response to
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nickel. Besides pro-inflammatory signaling by NFκB, HIF1α
was identified as a central inducer of genes that act on cell
survival and metabolism. Hypoxia and HIF1α were found to be
elementary drivers during DC activation and thereby enhancing
the immunological response of the latter. Precisely, hypoxia
was shown to enhance pro-inflammatory signaling, cellular
glucose metabolism as well as cell surface maker expression in
mouse-derived DCs. This eventually resulted in an amplified
ability to stimulate T cell proliferation (59). We could confirm
the metabolic shift in NiSO4-treated cells along with the
upregulation of important cell surface makers and the ability
to stimulate lymphocyte proliferation. Hence, the induction
of a pronounced hypoxia by NiSO4 contributed strongly to
the immunological response of the MoDCs. However, more
data is needed to allow distinct discrimination between TLR4-
dependent and hypoxia-induced proteins in NiSO4-treated
MoDCs. Furthermore, the pronounced Nrf2-mediated stress
response may also favorably contribute to HIF1α-dependency
in NiSO4-treated MoDCs since Nrf2 directly regulates HIF1α
gene expression (69).

CONCLUSION

In the present work, we extensively studied the activation of
MoDCs by mass spectrometry-based proteomics. We aimed to
elucidate the cellular mode of action of NiSO4-induced MoDC
maturation concerning nickel allergy by comparing MoDC
activation induced by NiSO4 to the well-studied bacterial LPS.
Overall, the results for LPS-treated MoDCs are in concordance
with literature data, confirming that our technical approach
detects DC activation as such. NiSO4-treated cells upregulated
relevant activation markers, such as CD83 and CD86, and
pathways that point toward signaling in immunology, like CD40
and TREM1 signaling. However, the immunological response
triggered by NiSO4 is partly overshadowed by oxidative stress
that is potentially caused by the metallic character of Ni2+. This
implicates a subordinate role of TLR4-activation and -signaling
in NiSO4-activated MoDCs for the chosen experimental settings.
NiSO4-induced oxidative stress is likely the responsible event
upstream of the upregulation of Nrf2-target genes, as detected
at mRNA as well as at protein level. The metabolic shift observed
for NiSO4-treatedMoDCs resembles that of LPS-treatedMoDCs.
Nevertheless, prolongation of the upregulation of detected
glycolytic enzymes, in connection with elevated HIF1α levels,
suggest a hypoxia-like cellular state, which is remarkably different
from LPS-induced effects. The link between cellular cholesterol

depletion and activation of DCs triggered by NiSO4 remains to
be elucidated by future studies.

Taken together, our study suggests immunostimulatory and
cytotoxic effects of NiSO4 leading to DC activation, and possibly
culminating in sensitization to nickel in vivo. Our results
illuminate the phenotype of activated DCs during sensitization
to an allergen and thereby enhance our understanding of nickel-
induced molecular pathways.
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