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Chronic kidney disease (CKD), which is associated with high morbidity, remains a
worldwide health concern, while effective therapies remain limited. Hydroxychloroquine
(HCQ), which mainly targets toll-like receptor-7 (TLR-7) and TLR-9, is associated with a
lower risk of incident CKD. Taking into account that TLR-9 is involved in the development
of renal fibrosis and serves as a potential therapy target for CKD, we investigated whether
HCQ could attenuate CKD via TLR-9 signal pathway. The effects of HCQ on renal
tubulointerstitial fibrosis were further explored using a mouse model of renal
tubulointerstitial fibrosis after ischemia/reperfusion injury. Bone marrow-derived
macrophages were isolated to explore the effects of HCQ in vitro. Judicious use of
HCQ efficiently inhibited the activation of macrophages and MAPK signaling pathways,
thereby attenuating renal fibrosis in vivo. In an in vitro model, results showed that HCQ
promoted apoptosis of macrophages and inhibited activation of macrophages, especially
M2 macrophages, in a dose-dependent manner. Because TLR-7 is not involved in the
development of CKD post-injury, a TLR-9 knockout mouse was used to explore the
mechanisms of HCQ. The effects of HCQ on renal fibrosis and macrophages decreased
after depletion of TLR-9 in vivo and in vitro. Taken together, this study indicated that
proper use of HCQ could be a new strategy for anti-fibrotic therapy and that TLR-9 could
be a potential therapeutic target for CKD following acute kidney injury.

Keywords: hydroxychloroquine, chronic kidney disease, fibrosis, macrophage, inflammation
INTRODUCTION

Acute kidney injury (AKI) is a worldwide health problem, and approximately two million deaths
occur due to AKI. The incidence of AKI is rising, and patients with severe AKI have a mortality rate
of >50% (1, 2). AKI is considered to represent not only acute injury, but also influences recovery
from injury. Approximately 13% hospitalized patients experience AKI annually in the US;
moreover, around 10% individuals worldwide develop chronic kidney disease (CKD) and end-
stage renal disease consequent to AKI (3, 4). Till date, detailed mechanisms underlying the
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progression of AKI to CKD are poorly understood, and effective
treatments for renal tubulointerstitial fibrosis following AKI are
limited. Hence, novel approaches that attenuate renal
tubulointerstitial fibrosis are urgently needed (5).

Hydroxychloroquine (HCQ), which was used initially as an
antimalarial drug, was found to have beneficial effects on several
immune diseases (6). The effects of HCQ, which include
inhibition of lysosomal activity, inhibition of toll-like pattern
recognition receptors (TLRs), and inhibition of RIG-I–
stimulated induction of interferons, are multifaceted. Recently,
HCQ was confirmed to be associated with a lower risk of incident
CKD in users compared to non-users in patients with
rheumatoid arthritis; however, little is known about the role of
HCQ in renal tubulointerstitial fibrosis (7, 8). Although it seems
that the use of HCQ is associated with benefits in some renal
diseases, the mechanisms of HCQ need to be further explored
(9–11).

TLRs, which serve as targets of HCQ, are pivotal components
of the innate immune response and are expressed by
macrophages and other immune cells (12). Although the
mechanisms of action of HCQ in diseases are complex, the
most important molecular targets of HCQ are TLRs. HCQ can
inhibit the expression of TLR-7 and TLR-9, thereby contributing
to the regulation of inflammatory responses. Recently, we found
that depletion of TLR-9 could attenuate renal tubulointerstitial
fibrosis; however, whether HCQ could serve as a TLR-9 inhibitor
and attenuate CKD still remains to be elucidated (13).

To resolve the unsolved puzzle regarding the role of HCQ in
renal tubulointerstitial fibrosis, in this study we utilized a
traditional rodent model of renal tubulointerstitial fibrosis to
further explore the biological effects of HCQ, especially on
macrophages. A series of in vivo and in vitro assays were
performed to explore the relationships among HCQ,
macrophages, and renal fibrosis. A TLR-9 knockout (KO)
mouse was constructed to further elucidate the underlying
mechanisms of HCQ in CKD development following ischemia-
reperfusion injury (IRI). Our results suggest that HCQ inhibits
macrophage activation and MAPKs via the TLR-9 pathway,
thereby attenuating renal fibrosis after IRI.
MATERIALS AND METHODS

Animals and Ethics Statement
This study was performed in accordance with the animal welfare
guidelines laid down in China (Laboratory Animal Guidelines
for Ethical Review of Animal Welfare, GB/T 35892-2018) and
approved by the Institutional Animal Care and Use Committee
of Sun Yat-Sen University. Wildtype (WT) C57BL/6J mice were
obtained from Charles River Laboratories (Beijing, China) and
TLR-9 deficient (TLR-9−/−) mice with a C57BL/6J congenic
background were provided by S.G. Wan (Gannan Medical
University). Only male mice aged 6 to 8 weeks were used in
subsequent experiments. Sources and confirmation of TLR-9 KO
mice are provided in Supplementary Materials (Detailed
methods and Figure S1).
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Induction of IRI in Mice
IRI was induced in male mice using an established method (13,
14). Mice were randomized placed either in an IRI or sham group
(details of the number of mice per group can be found in the
related paragraph). The bilateral IRI (bIRI) model was used for
the IRI group. Mice were euthanized using isoflurane before
surgery or on days 1, 7, 14, 21, or 28 post-surgery. Renal and
blood samples were harvested for subsequent analyses. For HCQ
(S4430, Selleck) treatment, HCQ was dissolved in carboxymethyl
cellulose (CMC) and gavages were performed 30 min after
induction of IRI for 7 days. The concentrations of HCQ used
for treatment were 5, 10, and 20 mg/kg/day. The effects of 5 mg/
kg/day HCQ were not significant, and no significant difference
was found between 10 mg/kg/day HCQ and 20 mg/kg/day HCQ;
hence, a final concentration of 10 mg/kg/day was used (data
not shown).

Measurement of Renal Function
Blood samples were first centrifuged at 2,000 ×g for 10 min at
4°C and then at 8,000 × g for 10 min at 4°C. Serum was
collected and frozen at −80°C until use. Creatine (Cr) and
blood urea nitrogen (BUN) levels were measured using an
automatic biochemistry analyzer (7020; Hitachi, Tokyo, Japan).

Renal Histology and Fibrosis Assessment
Renal tissues were retrieved without perfusion and fixed in 4%
paraformaldehyde. Kidney paraffin sections (4 mm) were stained
with Hematoxylin and Eosin (H&E) and Periodic Acid-Schiff
(PAS) to assess renal injury. Sirius Red (SR) and Masson’s
trichome (MT) staining were used for assessment of fibrosis.

Immunohistochemistry and
Immunofluorescence
Renal tissues were first perfused with cold saline (0.9%) followed
by fixation with 4% paraformaldehyde. Paraffin-embedded slices
(4 mm) were subjected to immunohistochemical staining as
described in our previous study (15). Antibodies against
fibronectin (FN; Ab2413; RRID: AB_2262874; Abcam),
collagen I (COL I, Ab88147; RRID: AB_2081873; Abcam), a-
smooth muscle actin (a-SMA; Ab32575; RRID: AB_722538;
Abcam), and E-cadherin (E-Cad, Ab76319; RRID: AB_2076796;
Abcam) were used to assess fibrosis and epithelial-to-
mesenchymal transition (EMT). TLR-9 antibody (Ab53396;
RRID: AB_883065; Abcam) was used to detect TLR-9, and
cytokeratin 18 antibody (CK18; Ab668; RRID: AB_305647;
Abcam) was used for verification of renal tubular epithelial cells
(RTECs) (Figure S2).

Real-Time Quantitative PCR (RT qPCR)
The RNAeasy™ Animal RNA Isolation Kit with Spin Column
(R0024; Beyotime, Shanghai, China) was used to obtain total
RNA from fresh tissues according to the manufacturer’s
guidelines. Mean fold changes were calculated by averaging
three duplicate measurements, and the gene expression results
were normalized to Gapdh. Relative gene expressions in treated
groups were compared with those in blank or sham groups.
April 2021 | Volume 12 | Article 645100
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The2−△△CT method was used for calculation. The sequences of
the primer pairs are listed in Table 1. Transcript-specific primers
were generated from GenBank and primer specificity was
verified using the NCBI Primer Blast. For Real-Time qPCR, 2
mg RNA was used for reverse transcription using PrimeScript ™

RT Master Mix (RR036A; Takara, Shiga, Japan); amplification
was performed using SYBR Green Master Mix (Roche; Bruxelles,
Belgium) and the LightCycler480 system (Roche).
Flow Cytometry
Flow cytometry was performed as previously described (16).
Anti-mouse CD16/CD32 (553141; RRID: AB_394656, clone
2.4G2; BD Biosciences, San Jose, CA, USA) was used for
blocking nonspecific Fc sites. The antibodies used in this assay
were acquired from BioLegend (San Diego, CA, USA). BV421
anti-mouse CD45 (RRID: AB_2562559), APC anti-mouse F4/80
(RRID: AB_893481), PE anti-mouse CD206 (MMR) (RRID:
AB_10895754), FITC anti-mouse CD86 (RRID: AB_313149),
and PerCP/Cyanine5.5 anti-mouse/human CD11b (RRID:
AB_893232) antibodies were employed for detection of
immune cells. Annexin V-FITC Apoptosis Detection Kit was
used for apoptosis detection (Thermo Fisher Scientific Cat#
BMS500FI/100, RRID: AB_2575598). Data were acquired on a
FACS Calibur cytometer (Becton Dickinson [BD], Bedford, MA,
USA) and analyzed using FlowJo software (Tree Star, Ashland,
OR, USA).
Isolation of Primary RTE Cells
RTE cells were extracted from adult male mice (6–8 weeks of age)
following the method described by Ichimura et al. (17). Detailed
methods can be found in the Supplementary Materials. For TGF-
b culture, the second passage of RTE cells was used for
subsequent assays. RTE cells isolated from WT and KO mice
were exposed to TGF-b1 (10 ng/ml) (BioLegend, cat: 763102) for
72 h. Results were acquired from three independent assays.
Frontiers in Immunology | www.frontiersin.org 3
Isolation of Bone Marrow–Derived
Macrophages
Bone marrow–derived macrophages (BMDMs) were generated
using an established method (18). Cells generated from mouse
femur were cultured with macrophage colony-stimulating factor
(M-CSF; 25 ng/ml; Novoprotein, China) for 7 days. To achieve
polarization of BMDMs, BMDMs were stimulated with IL-4 (20
ng/ml, Novoprotein, China), IL-13 (20 ng/ml, Novoprotein,
China) or Lipopolysaccharides (LPS) (250 ng/ml, Sigma), and
IFN-g (20 ng/ml, Sigma) for 24 h.

Cellular Immunofluorescence
For cellular immunofluorescence, cells were washed three times
with phosphate-buffered saline (Sigma) to remove the culture
medium. Fixation and permeability were performed for 15 min
with 4% paraformaldehyde (P0099, Beyotime) for 20 min with 1%
Triton X-100 (P0096, Beyotime). QuickBlock™ Blocking Buffer
for Immunol Staining (P0260, Beyotime) was used to block non-
specific antigens. Primary antibodies were used according to the
objectives of each experiment, and the cells were incubated in
appropriate antibodies overnight. Nuclear staining was performed
using 4,6-diamidino-2-phenylindole (DAPI; P0131; Beyotime).

Western Blotting Assay
After perfusion with cold saline (0.9%), proteins from renal tissue
were acquired using a tissue homogenizer (KZ-II; Servicebio). A
total of 20 mg of protein was used for WB analysis, and 10% SDS-
PAGE gels were used for WB. Polyvinylidene fluoride membranes
(0.45 µm; IPVH00010; Millipore, Billerica, MA) were used for
protein transfer. Primary antibodies used for WB were purchased
from Cell Signaling Technology (CST). Antibodies, such as SAPK/
JNK (9252; RRID: AB_2250373; CST), Phospho-SAPK/JNK
(Thr183/Tyr185) (81E11) (4668; RRID: AB_823588; CST), p38
MAPK (D13E1) (8690; RRID: AB_10999090; CST), Phospho-p38
MAPK (Thr180/Tyr182) (4511; RRID: AB_2139682; CST), p44/
42 MAPK (Erk1/2) (4695; RRID: AB_390779; CST), and
TABLE 1 | Primer sequences for Real-time quantitative PCR.

Transcript Seq ID Forward 5′ to 3′ Reverse 5′ to 3′

IL-1b NM_008361 GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG
IL-6 NM_031168 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC
TNF-a NM_013693 CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACAG
TGF-b1 NM_011577 CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG
CD86 NM_019388 TGTTTCCGTGGAGACGCAAG TTGAGCCTTTGTAAATGGGCA
CD206 NM_008625 CTCTGTTCAGCTATTGGACGC CGGAATTTCTGGGATTCAGCTTC
IL-4 NM_021283 GGTCTCAACCCCCAGCTAGT GCCGATGATCTCTCTCAAGTGAT
IL-10 NM_010548 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG
MIP-2 / TTCCTGCTGTTTCTCTTACACCT CTGTCTGCCTCTTTTGGTCAG
MCP-1 NM_011333 ACCTGCTGCTACTCATTCAC TTGAGGTGGTTGTGGAAAAG
Arg-1 NM_007482 AGGAGCTGTCATTAGGGACATC CTCCAAGCCAAAGTCCTTAGAG
Icam-1 NM_010493 TGTTTCCTGCCTCTGAAGC CTTCGTTTGTGATCCTCCG
Vcam-1 NM_011693 AGTTGGGGATTCGGTTGTTCT CCCCTCATTCCTTACCACCC
Smad 1 NM_008539 GCTTCGTGAAGGGTTGGGG CGGATGAAATAGGATTGTGGGG
MyD88 NM_010851 TCATGTTCTCCATACCCTTGGT AAACTGCGAGTGGGGTCAG
Snail 1 / CACACGCTGCCTTGTGTCT GGTCAGCAAAAGCACGGTT
TLR-9 NM_031178 CCAGTTTGTCAGAGGGAGCC GGACAGGTGGACGAAGTCAG
Gapdh NM_008085 AATGGATTTGGACGCATTGGT TTTGCACTGGTACGTGTTGAT
April 2
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phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (4370; RRID:
AB_2315112; CST) were used to detect MAPK signaling
pathways. GAPDH (D16H11) XP® Rabbit mAb (HRP
Conjugate) antibody was used for GAPDH detection (8884;
RRID: AB_11129865; CST).

Histology, Immunohistochemistry, and
Immunofluorescence Analysis
Quantification of fibrosis, immunohistochemistry, and
immunofluorescence analysis was performed using ImageJ
software (NIH Image, Bethesda, MD, USA). Five randomly
chosen high-resolution images per mouse (original
magnification ×100) captured using the Leica system were used
for quantification. Two independent investigators, blinded to the
experimental conditions, performed this process.

Statistics
The Kolmogorov-Smirnov (KS) normality test was first used to
test whether the data were normally distributed; all the data met
this criterion. Student’s t-test (two groups) and one-way analysis
of variance (for ≥3 groups) were used to analyze significant
differences. All values are expressed as the mean ± standard
deviation (SD). Data were analyzed using GraphPad Prism 8.0
(GraphPad Software Inc., La Jolla, CA, USA). A P-value<0.05
was considered statistically significant.
RESULTS

HCQ Reduces Renal Tubulointerstitial
Fibrosis Following IRI In Vivo
To construct a renal tubulointerstitial fibrosis model, WT mice
were first used to examine the development of AKI in CKD (19).
Renal tissues of WT mice subjected to bilateral clamping of renal
arteries and veins for 26 min were obtained. Picrosirius red (PSR)
and Masson ’s trichrome (MT) were used to assess
tubulointerstitial fibrosis on days 14, 21, and 28 post-injury.
The degree of positive PSR- and MT-stained areas increased in a
time-dependent manner, which indicated the successful
construction of a renal tubulointerstitial fibrosis model after
acute injury (Figure 1A). The effects of HCQ were further
explored, and results suggested that renal fibrosis was
attenuated in the HCQ-treated WT group than in CMC-
treated WT group (Figures 1A, B) (P <0.01). Expression of FN
and COL I was significantly inhibited in the HCQ-treated WT
group compared to that in CMC-treated WT group (P <0.01)
(Figures 1B, C). Renal function at days 7 and 14 was better
preserved in HCQ-treated mice, whereas the difference was less
apparent by day 21 post-IRI (Figure 1C and Figure S3).

HCQ Treatment Inhibits Leukocyte and
Macrophage Infiltration in the Kidney
Following IRI In Vivo
Leukocyte infiltration is an important hallmark of inflammation
during tissue injury (20). Infiltration of leukocytes, especially
macrophages, which substantially contribute to IRI, was
Frontiers in Immunology | www.frontiersin.org 4
observed. Results showed that HCQ-treated mice exhibited
significantly fewer CD45+ (total leukocyte) cells at day 28 post-
IRI (7.46% vs. 1.63%, p = 0.001) (Figure 2A). Fewer macrophages
were observed in the HCQ-treated WT group than in CMC-
treated WT group post-injury (P<0.01) (Figure 2A). Macrophage
phenotypes that contribute to the processes of fibrosis and tissue
repair were also observed. CD11b+F4/80high cells are regarded as
M2-like macrophages, whereas CD11b+F4/80low cells are M1-like
macrophages (21, 22). The results showed that HCQ treatment
decreased the number of M2-like macrophages to a greater extent
than that of M1-like macrophages (Figures 2A, B). Cytokine and
chemokine production-related M1 and M2 macrophages were
also explored using RT qPCR, and the results were consistent with
flow cytometry results. M1 macrophage-related (CD86, IL-1b, and
IL-6) and M2 macrophages-related (CD206 and Arg-1) cytokines
were inhibited in the HCQ-treated WT group, as also cytokines
associated with migration (MIP-2, MCP-1, Icam-1, and Vcam-1)
in renal tissue post-injury (Figure 2C). HCQ is a TLR inhibitor
that can inhibit TLR-7 and TLR-9; therefore, the expression of
TLRs was also assessed. Results showed that the expression of
TLR-9 increased post-injury and was inhibited after HCQ
treatment; however, no significant difference was found
regarding the expression of TLR-7 (Figure 2C).
HCQ Modulates Activation of
Macrophages In Vitro
To further explore the effects of HCQ on macrophages, BMDMs
were acquired from the mouse femur and identified using CD11b
and F4/80 (Figure 3A). M1 or M2 macrophages were induced
using an established method (Figure 3B) (18, 23). Results
suggested that the purity of macrophages (CD11b+F4/80+) was
over 90% after co-culture with M-CSF (25 ng/ml) for 7 days.
BMDMs were cultured with different doses of HCQ for 24 h, and
the results indicated that HCQ promoted the apoptosis of
BMDMs, including early apoptosis and late apoptosis (Figures
3C, D). Considering that the difference in apoptotic effects
between 25 and 100 mM of HCQ was not significant, 25, 50,
and 100 mM were used for further studies. Taken together, these
results demonstrated that HCQ could inhibit the induction of
M1 and M2 macrophages in vitro (Figure 3E).
TLR-9 Knockout Limits the Inhibitory
Effects of HCQ on BMDMs In Vitro
HCQ is a TLR inhibitor that mainly inhibits the TLR-7 and TLR-
9 pathways (12). Previous results indicated that the effects of
HCQ on renal fibrosis may have relied on the inhibition of TLR-
9 (Figure 2C); therefore, a TLR-9 KO mouse was constructed
(Figure 4A). TLR-9 KO BMDMs were obtained from KO mice,
and macrophage differentiation was induced using the same
methods mentioned above. Upon induction, the proportions of
M1 and M2 macrophages were found to be lower in KO BMDMs
than in WT BMDMs (Figure 4B). The inhibitory effects of HCQ
on proportions of CD86+ cells (M1) and CD206 cells (M2) were
also observed. Proportions of M1- and M2-like macrophages
were significantly reduced in KO group than in WT group
April 2021 | Volume 12 | Article 645100
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(P<0.01), and it seemed that the proportion of M2 macrophages
was reduced to a greater extent when treated with HCQ at the
concentration of 100 mM (Figure 4C). Assessment of cytokine
and chemokine production also indicated that HCQ could
decrease the expression of CD86, TNF-a, IL-6, and Vcam-1
when stimulated with LPS and IFN-g (Figure 4D). The
expression of CD206, TNF-a, IL-6, TGF-b1, and Vcam-1 was
also inhibited by HCQ when stimulated with IL-4 and IL-13
(Figure 4E).
Frontiers in Immunology | www.frontiersin.org 5
HCQ Attenuates Renal Tubulointerstitial
Fibrosis Through TLR-9 Receptor In Vivo
KO mice were also used to further explore the effects of HCQ on
CKD in vivo, and renal tissues were acquired 28 days post-IRI.
Results showed that the improved effects of HCQ on the
transition of AKI to CKD were eliminated in KO mice, and no
significant difference in renal fibrosis or infiltration of leukocytes
was found between HCQ- and CMC- treated KO groups
(Figure 5).
A

B

C

FIGURE 1 | HCQ treatment reduces renal tubulointerstitial fibrosis following IRI in vivo. Mice were subjected to IRI and treated with either CMC or HCQ (10 mg/kg/
day for 7 days). Serum samples and kidneys were harvested at various days following reperfusion. Tissue sections are representative of five mice per group.
(A) Representative images of Sirius red and Masson’s trichrome stains on normal and injured kidneys of WT mice at various time points following reperfusion. The
scale bars represent 100 mm. (B) Upper panel: Design of HCQ intervention and samples acquired; Down panel: Representative images of Picrosirius red - and
Masson’s trichrome-treated FN and Col I at day 28 following reperfusion in CMC-treated and HCQ-treated groups for WT mice; the scale bars represent 100 mm.
(C) Left panel: levels of serum creatinine and BUN from CMC-treated and HCQ-treated WT mice at various time-points following reperfusion; right panel:
quantification of Sirius red-stained areas in sections of murine renal cortical medullary junction and semiquantitative analysis of COL I and FN immunofluorescence
staining. Data are represented as means ± SD and analyzed using the Student’s t test. Magnification: 200×. NS, no significant difference, ***P < 0.001.
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HCQ Down-Regulates Mitogen-Activated
Protein Kinase Inflammatory Signaling
Pathways During Renal Tubulointerstitial
Fibrosis Vial TLR-9 In Vivo
To further determine how HCQ might affect the inflammatory
signaling pathways during renal fibrosis following IRI, kidneys
were acquired at day 21 post-injury to evaluate the mitogen-
activated protein kinase (MAPK) signaling pathway, a major
contributor to fibrosis (24, 25). Phosphorylation of p38, Erk, and
JNK decreased following HCQ treatment in the WT group, while
no significant difference was found after HCQ treatment in the
KO group (Figures 6A, B). Cytokines related to pro-fibrotic and
Frontiers in Immunology | www.frontiersin.org 6
TLR-9 signaling pathways were also explored. Levels of TGF-b1,
Smad, Snail 1, and MyD88 were downregulated in the WT group
when treated with HCQ, and no significant difference was found
between HCQ- and CMC-treated KO groups (Figure 6C).

TLR-9 Signal Pathways Do Not Contribute
to Improvement of Partial Epithelial-to-
Mesenchymal Transition (EMT) In Vitro
Partial EMT, which leads to dedifferentiation of renal epithelial
cells and promotes fibrosis, also plays a role in renal fibrosis
(26, 27). Renal tissues were acquired at day 21 post-IRI, and the
roles of TLR-9 signaling pathway in EMT were also explored.
A

B C

FIGURE 2 | HCQ treatment regulates leukocyte infiltration and phenotype of macrophage in the kidney following IRI in vivo. Inflammatory cell infiltration in CMC-
treated and HCQ-treated kidneys at day 28 following IRI was determined using flow cytometry. (A) Representative dot plots of CD45+ cells and different types of
macrophages (CD11b+F4/80high and CD11b+F4/80low). (B) Quantification of related immune cell infiltration, including CD 45+ cells, F4/80high, and F4/80low subsets in
CD11b+. (C) Heatmap of mRNA expressions related to macrophages in renal tissue at day 28 post IRI. Data are represented as means and analyzed using the
Student’s t test. NS, no significant difference, *P < 0.05, **P < 0.01, ***P < 0.001.
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A B

C

E

D

FIGURE 3 | HCQ affects differentiation of BMDMs in vitro. (A) Models of BMDM acquisition and results of purity identification. (B) Models of polarization of BMDMs.
(C) Apoptosis of BMDMs was assessed using Annexin V-FITC/PI Kit. Annexin V+ PI− represents early apoptotic cells, and Annexin V+ PI+ represents late apoptotic
cells. (D) Quantitative analysis of related apoptotic cells. (E) Effects of HCQ on macrophage polarization. BMDMs were polarized into M1 or M2 subsets, and various
concentrations of HCQ were added for 24 h to assess the effects of HCQ on the differentiation of macrophages. Data are represented as means and analyzed using
the Student’s t test. ***P < 0.001.
Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6451007
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Expression of E-Cad (an epithelial marker) was significantly
higher in the HCQ-treated WT group than in CMC-treated WT
group in vivo (P < 0.01), whereas the expression of a-SMA
(indicating a subset of activated fibrogenic cells) was lower in the
HCQ-treated WT group than in CMC-treated WT group in vivo
(P < 0.01) (Figures 7A, B). To further determine the effects of
TLR-9 on RTECs, RTECs were isolated. A traditional EMT
model involving treatment with TGF-b (10 ng/ml) was used
(28). In contrast to the in vivo results, depletion of TLR-9
aggravated fibrosis (defined as high levels of FN and Col I, P <
Frontiers in Immunology | www.frontiersin.org 8
0.001) and EMT (defined as low levels of E-Cad and high levels
of a-SMA, P < 0.001) of RTECs in vitro (Figures 7C, D).
DISCUSSION

IRI is a major cause of AKI that leads to CKD (5, 29). In the
present study, we first identified that HCQ served as a TLR-9
inhibitor and inhibited the activation of macrophages, thereby
attenuating renal fibrosis post-IRI. Treatment with HCQ
A

B

D E

C

FIGURE 4 | Effects of HCQ on differentiation of BMDMs are reduced after depletion of TLR-9 in vitro. (A) Overview of the target strategy. (B) Effects of HCQ on
polarization of TLR-9−/− macrophages. TLR-9−/− BMDMs were polarized into M1 or M2 subsets, and various concentrations of HCQ were added for 24 h to assess
the effects of HCQ on differentiation of macrophages. (C) Quantification of the rate of inhibition. (D) Heatmap of mRNA expressions related to macrophage
polarization when stimulated with LPS + IFN-g. (E) Heatmap of mRNA expressions related to macrophage polarization when stimulated with IL-4 + IL-13. Data are
represented as means or means ± SD and analyzed using the Student’s t test. NS, no significant difference; **P < 0.01, ***P < 0.001.
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C

D

FIGURE 5 | Effects of HCQ on renal tubulointerstitial fibrosis following IRI mainly rely on the TLR-9 signal pathway in vivo. KO mice were subjected to IRI and treated
with either CMC or HCQ (10 mg/kg/day for 7 days). Serum samples and kidneys were collected 28 days post- reperfusion. Tissue sections are representative of five
mice per group. (A) Representative images of Sirius red- Masson’s trichrome-staining of FN and Col I at day 28 following reperfusion in CMC-treated KO mice and
HCQ treated-KO mice; the scale bars represent 100 mm. (B) Left panel: serum creatinine and urea from CMC-treated and HCQ-treated WT mice at various time-
points following reperfusion; right panel: quantification of Sirius red-stained areas in murine renal cortical medullary junction sections and semiquantitative analysis of
COL I and FN immunofluorescence staining; (C) Representative dot plots of CD45+ cells and different types of macrophage (CD11b+F4/80high and CD11b+F4/80low).
(D) Quantification of related immune cell infiltration, including CD 45+ cells, F4/80high, and F4/80low subsets in CD11b+. Data are represented as means ± SD and
analyzed using the Student’s t test. Magnification: 200×. NS, no significant difference.
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decreased intrarenal infiltration of macrophages, especially M-2
macrophages, and reduced the severity of inflammation during
renal tubulointerstitial fibrosis in vivo. However, the effects of
HCQ on renal fibrosis or activation of macrophages decreased
after TLR-9 depletion (Figure 8).

HCQ was first approved in the United States for the therapy
and prevention of malaria in 1955. The effects of HCQ are
complex, and it can not only serve as an immunomodulatory
molecule, but also as an autophagy modulator (30). The functions
of HCQ have been explored in some renal diseases, including IRI
and IgAN (9, 11), but little is known about the effects of HCQ on
renal tubulointerstitial fibrosis. In this study, we focused on the
effects of HCQ on TLRs. Expression of TLR-9 but not TLR-7 in
renal tissue post-IRI was inhibited by HCQ, and the results are
consistent with our previous study showing that depletion of TLR-
9 attenuated renal fibrosis. Previous results indicated that the use
of HCQ was associated with a lower rate of incidence of CKD in
rheumatoid arthritis patients (8). Our study demonstrated direct
effects andmechanisms of HCQ on renal tubulointerstitial fibrosis.

TLRs are major sensors of the innate immune system and
mediate inflammation and tissue regeneration (31). TLR-9, a
member of the toll-like receptor family, also serves as a target of
HCQ (32). Because HCQ attenuates renal fibrosis and inhibits
Frontiers in Immunology | www.frontiersin.org 10
activation of macrophages, we hypothesized that the effects of
HCQ on renal tubulointerstitial fibrosis mainly rely on TLR-9. A
TLR-9 KO mouse was constructed to further confirm our
hypothesis. In vivo and in vitro results suggest that the effects of
HCQ on macrophages and renal fibrosis decreased after depletion
of TLR-9, and HCQ could not attenuate renal fibrosis post-IRI in
the KO group. These results highlight that HCQ attenuates kidney
fibrosis through the TLR-9 signaling pathway. Taking into account
that it is difficult to distinguish between the effects of TLR-9 on
CKD from those on AKI, effects of TLR-9 on AKI were also
explored. The results revealed that TLR-9 was not required for the
recovery of early renal function following IRI. Moreover, no
significant difference was found in the levels of serum Cr or
BUN between TLR-9 KO and WT mice or renal tubular injury
scores at 24 and 48 h (Data not shown). These results also indicate
TLR-9 could be an ideal therapeutic target for CKD.

TLR-9 is widely expressed in multiple cells, including
macrophages, dendritic cells, B lymphocytes, and some interstitial
tissues (33). It is primarily located in endosomes and recognizes
viruses, endogenous nucleic acids, and bacteria. Following IRI injury,
damage-associated molecular patterns are released and sensed by
these TLR-9—expressed cells, especially macrophages (34, 35). In this
study, we focused on the effects of HCQ on macrophages during
A

C

B

FIGURE 6 | Depletion of TLR-9 attenuates renal fibrosis following IRI through the inhibition of MAPKs and pro-inflammatory chemokine/cytokine induction in vivo.
Renal tissues were acquired on day 21 following IRI. (A) Activations of MAPKs. (B) Semiquantitative analysis of the activation of MAPKs. (C) Expression of pro-
inflammatory chemokines/cytokines. Data are shown as means ± SD and analyzed using one-way analysis of variance. Each dot represents an individual mouse. *P
< 0.05, **P < 0.01, ***P < 0.001. IRI, ischemia-reperfusion injury; WT, wild-type; KO, knockout; MAPK, mitogen-activated protein kinase; HCQ, hydroxychloroquine;
CMC, carboxymethyl cellulose.
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CKD to further determine the relationship between HCQ and
macrophages and tubulointerstitial fibrosis. In vivo and in vitro
results suggest that HCQ inhibits the activation and differentiation
of macrophages. A low concentration (50 mM) of HCQ decreased the
differentiation of macrophages into an M1-like phenotype, while a
high concentration (100 mM) of HCQ reduced differentiation of M2-
like macrophages to a greater extent. M1-like macrophages mainly
participate in acute inflammatory response and mediate ROS-
induced tissue damage, including IRI. These results are consistent
with previous results, which indicate that HCQ can attenuate renal
IRI injury (11). M2-like macrophages are recognized to be anti-
inflammatory and may also lead to fibrosis post-injury. Hence,
inhibition of M1-like and M2-like macrophages by HCQ not only
attenuates the inflammatory response during AKI, but also inhibits
renal fibrosis.

Proinflammatory and profibrotic cytokines can also accelerate
the progression of fibrosis (36). Activation of TLR-9 can induce
several signaling pathways, especially those involving MAPKs.
Frontiers in Immunology | www.frontiersin.org 11
Moreover, proinflammatory and profibrotic cytokines, including
IL-1b, IL-6, TNF-a, and TGF-b, can also be released (37, 38).
Previous studies have shown that activation of MAPKs could
directly contribute to fibroblast activation and renal fibrosis (39);
these results were also confirmed in the present study. Consistent
with the histological and immunohistochemical results, we found
that inflammation and fibrosis signaling pathways were inhibited
by HCQ and terminated after depletion of TLR-9.

Recently, increasing attention has been paid to the effects of renal
intrinsic cells, especially RTECs, on fibrosis and inflammation.
RTECs have been shown not only to contribute to the aggravation
of inflammation, but also to take part in EMT (26, 27). Notably, TLR-
9 deficiency did not lead to better preservation of RTECs; rather,
fibrosis and EMT in TLR-9 KO RTE cells were indicative of more
severe injury. These results also provide evidence that the effects of
HCQ on renal fibrosis do not rely on the improvement of EMT.
Inhibition of infiltrating lymphocytes and reduced pro-inflammatory
cytokines may account for the improvement in EMT in vivo.
A B

C

D

FIGURE 7 | TLR-9 signal pathway did not contribute to the improvement of EMT in vitro. (A) First row: representative fluorescence microscope images of E-Cad
(Green), a-SMA (Red), and DAPI (Blue) staining of the kidneys of WT and KO mice that were treated with CMC or HCQ following reperfusion; the scale bars
represent 100 mm.; (B) Semiquantitative analysis of E-Cad and a-SMA immunofluorescence staining. (C) Immunofluorescence of COL I, FN, E-Cad, and a-SMA was
used to assess fibrosis and EMT of RTECs after being exposed to TGF-b (10 ng/ml) for 72 h; the scale bars represent 100 mm. (D) Semiquantitative analysis of E-
Cad, a-SMA, FN, and COL I immunofluorescence staining of RTECs following TGF-b treatment. Data are shown as means ± SD and analyzed using one-way
analysis of variance or Student’s t test. Each dot represents an individual assay. Magnification: 200×. NS, no significant difference; **P < 0.01, ***P < 0.001. EMT,
epithelial-to-mesenchymal transition; RTECs, renal tubular epithelial cells; WT, wild-type; KO, knockout; E-Cad, E-cadherin; a-SMA, a-smooth muscle; COL I,
collagen I; FN, fibronectin.
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This study, nevertheless, has a few limitations. First, although the
effects of HCQ on macrophages have been investigated in vitro, we
focusedonlyontheeffectsofHCQonmacrophagesandinflammation.
Other effects of HCQ on fibrosis should also be explored. Second, M2
macrophages canbedivided into various subsets, includingM2a,M2b,
M2c, and M2d; detailed effects of HCQ on such macrophage subsets
should be further explored. Finally, because the effects of HCQ were
observed only in animal studies and HCQ has been used clinically,
clinical trials shouldbeperformed to further confirm the effect ofHCQ
on patients with CKD.

Overall, the results of this study provide novel insights into the
roles of HCQ in acute and chronic kidney injury. HCQ treatment
attenuated renal fibrosis following renal injury in vivo, whereas the
effects of HCQ could be terminated by depletion of TLR-9. Our
results also provide new evidence that HCQ could be an ideal TLR-9
inhibitor for the treatment of renal tubulointerstitial fibrosis.
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