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Background: The treatment modalities for pancreatic ductal adenocarcinoma (PDAC)

are limited and unsatisfactory. Although many novel drugs targeting the tumor

microenvironment, such as immune checkpoint inhibitors, have shown promising efficacy

for some tumors, few of them significantly prolong the survival of patients with PDAC due

to insufficient knowledge on the tumor microenvironment.

Methods: A single-cell RNA sequencing (scRNA-seq) dataset and seven PDAC cohorts

with complete clinical and bulk sequencing data were collected for bioinformatics

analysis. The relative proportions of each cell type were estimated using the gene set

variation analysis (GSVA) algorithm based on the signatures identified by scRNA-seq or

previous literature.

Results: A meta-analysis of 883 PDAC patients showed that neutrophils are associated

with worse overall survival (OS) for PDAC, while CD8+ T cells, CD4+ T cells, and

B cells are related to prolonged OS for PDAC, with marginal statistical significance.

Seventeen cell categories were identified by clustering analysis based on single-cell

sequencing. Among them, CD8+ T cells and NKT cells were universally exhausted

by expressing exhaustion-associated molecular markers. Interestingly, signatures of

CD8+ T cells and NKT cells predicted prolonged OS for PDAC only in the presence

of “targets” for pyroptosis and ferroptosis induction. Moreover, a specific state of T cells

with overexpression of ribosome-related proteins was associated with a good prognosis.

In addition, the hematopoietic stem cell (HSC)-like signature predicted prolonged OS in

PDAC. Weighted gene co-expression network analysis identified 5 hub genes whose

downregulation may mediate the observed survival benefits of the HSC-like signature.

Moreover, trajectory analysis revealed that myeloid cells evolutionarily consisted of 7

states, and antigen-presenting molecules and complement-associated genes were lost

along the pseudotime flow. Consensus clustering based on the differentially expressed

genes between two states harboring the longest pseudotime span identified two PDAC
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groups with prognostic differences, and more infiltrated immune cells and activated

immune signatures may account for the survival benefits.

Conclusion: This study systematically investigated the prognostic implications of the

components of the PDAC tumor microenvironment by integrating single-cell sequencing

and bulk sequencing, and future studies are expected to develop novel targeted agents

for PDAC treatment.

Keywords: single cell sequencing, immune microenvironment, pancreatic cancer, prognosis, tumor immune

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is the most aggressive
gastrointestinal tumor, with a 5-year overall survival (OS) rate
of ∼9% (1). Unfortunately, the treatment modalities for PDAC
remain limited and unsatisfactory (2, 3). Although many novel
drugs targeting the tumor microenvironment, such as immune
checkpoint inhibitors (ICIs), have shown promising efficacy in
the clinic for some tumors (4–6), few significantly prolong the
survival of patients with PDAC due to insufficient knowledge on
the tumor microenvironment (7).

In fact, the crosstalk between tumor cells and stromal

components could inspire many initiatives for novel treatment

modalities. For example, a recent study showed that CD8+ T
cells could induce ferroptosis, which is a non-apoptotic cell
death mechanism, in multiple tumor cells, and this antitumor
efficacy could be expanded by combination with ICIs (8).
Similarly, CD8+ T cells and NKT cells could induce pyroptosis
in tumors, and pyroptotic tumor cells reciprocally trigger more
robust anticancer immunity (9–11). In addition, many studies
have demonstrated that cancer-associated fibroblasts (CAFs)
promote tumor proliferation and metastasis via the secretion of
various cytokines (12, 13). These studies suggested that enhanced
treatment efficacy could be achieved when targeting the crosstalk
between tumor cells and stromal components.

Hence, elucidating the role of the components and signatures
of the tumor microenvironment is significant and imperative.
The advancement of single-cell sequencing technology has
provided researchers with a high-throughput method for
interpreting intratumoral heterogeneity by presenting the
molecular characteristics of various cell components. However,
a stringent limitation of single-cell sequencing is the difficulty
of correlating the sequencing findings with patients’ clinical
information, such as survival expectancy. In this context,
appropriate combination with the strength of single-cell and bulk
sequencing results would optimize the utilization of sequencing
data, given the availability of complete clinical information
in bulk sequencing cohorts. Many single-cell sequencing-based
studies have realized this limitation and tended to confirm their
findings in traditional bulk sequencing cohorts (14, 15).

An increasing number of algorithms have been generated
to estimate the percentage of intratumorally infiltrated stromal
cells using transcriptome data (16–18). However, the association
between infiltrated stromal cells in the tumor microenvironment
and patient prognoses has not yet been well-established in
PDAC, especially for some immune cells that theoretically exert

antitumor functions. A major reason that potentially accounts
for this phenomenon might be that each type of stromal cell is
subdivisible and that different subtypes of a specific cell cluster
may mediate contrary functions (19, 20). A classic example is
the opposite roles of M1- and M2-polarizing macrophages—the
former suppress tumor development, while the latter promote
tumor progression in some kinds of tumors (21, 22).

Here, we annotated the cell clusters in PDAC using single-cell
sequencing data and comprehensively analyzed their prognostic
implications with bulk sequencing data. Multiple bioinformatic
methods and ex silico experiments were used to identify the
prognosis-relatedmolecular traits and potential treatment targets
of PDAC.

METHODS

Sources of Datasets
A single-cell sequencing dataset (GSE155698) including 16
PDAC and 3 adjacent normal samples was obtained from the
Gene Expression Omnibus (GEO). The bulk sequencing
datasets were derived from The Cancer Genome Atlas
(TCGA) (TCGA-PAAD), International Cancer Genome
Consortium (ICGC) (ICGC-AU), GEO (GSE21501, GSE57495,
GSE71729, and GSE85916), and ArrayExpress (E-MTAB-6134)
databases. Both the transcriptome information and clinical
information of each dataset were concurrently downloaded
from the respective websites. The transcriptome data were
transformed to the format of Log2[transcripts per million
(TPM) + 1]. Only PDAC tissues were included in the
subsequent analysis, while other histological subtypes, such as
neuroendocrine tumors, acinar cell carcinoma, and intraductal
papillary mucinous neoplasms, were excluded. T-exhaust and
immune checkpoint blockade (ICB) resistance signatures
were downloaded from the Tumor Immune Dysfunction and
Exclusion (TIDE) database.

Bioinformatics Analysis
Estimation of Intra-Tumoral Infiltrated Immune Cells

The fractions of six infiltrated immune cells, namely, CD8+
T cells, CD4+ T cells, B cells, macrophages, neutrophils, and
dendritic cells, were estimated using Tumor IMmune Estimation
Resource (TIMER) 2.0 (23).We also estimated the proportions of
infiltrated immune cells using other algorithms, such as XCELL,
CIBERSORT, and MCP-counter, in TIMER 2.0 (23). Univariate
Cox regression was performed using the R package “survival.”
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Meta-Analysis of the Prognostic
Implications of Infiltrated Immune Cells for
PDAC
The hazard ratio (HR) for each infiltrated immune cell against
the OS of PDAC was computed with the log-rank test. The HRs
of each immune cell in different bulk sequencing-based cohorts
were pooled in a fixed-effects model if no robust heterogeneity
was observed (I2 < 50% and P > 0.05). The meta-analysis was
performed using Stata 15.1, and the forest plot was depicted via
GraphPad Prism 7.0.

Processing of Single-Cell RNA Sequencing
(scRNA-seq) Data
The “Seurat” package was used to perform the single-cell
sequencing analysis. The batch effect of studies was removed
through regularized negative binomial regression by the “Seurat”
package (24). Genes detected in <3 cells were excluded, and cells
with <200 total detected genes were excluded. Afterwards, we
calculated the standardized variance of each gene across different
cells, and only the top 2,000 variable genes were selected for
subsequent analysis. Principal component analysis (PCA) was
performed to identify significant dimensions with P < 0.05 (25).
Then, the t-distributed stochastic neighbor embedding (tSNE)
algorithm was applied for dimensionality reduction with the
20 initial PCs and for performing cluster classification analysis
across all cells (26). Non-linear dimensional reduction was
also performed with the UMAP method. Then, different cell
clusters were determined and annotated by the “singleR” package
according to the composition patterns of the marker genes and
were then manually verified and corrected with the CellMarker
database (27, 28). Given that both “singleR” and CellMarker
could only classify cell clusters into basic types, we also referred to
previously published scRNA-seq analyses to further classify each
cell cluster into more precise subtypes (14, 15, 29–31).

Single-Sample Gene Set Enrichment
Analysis (ssGSEA)
The enrichment scores of the hallmark genes were evaluated
using ssGSEA with the R package “GSVA” (32). Hallmark genes
were defined as the top 50 genes with the largest fold change
(FC) in each cluster. Using ssGSEA, each sample with complete
bulk sequencing data and clinical information was labeled with
an enrichment score of the specific hallmark gene signature.
The samples were divided into two groups based on the median
enrichment score. Then, a Kaplan-Meier curve was plotted to
visualize the survival difference between the two groups. The log-
rank test and Gehan-Breslow-Wilcoxon test were performed to
verify the statistical significance of the survival difference. A P <

0.05 was regarded as indicative of a significant difference.

Weighted Gene Co-expression Network
(WGCNA)
We utilized the transcriptome profile of the E-MTAB-6134
cohort, which was the largest PDAC cohort with transcriptome
and clinical data, to qualify and construct the co-expression
network by the “WGCNA” package in R (33). Next, Pearson’s

correlation matrices were constructed for pairwise genes. We
constructed a weighted adjacency matrix using a power function:
amn = |cmn|

β (cmn = Pearson’s correlation between gene m
and gene n; amn = adjacency between gene m and gene n).
The β value emphasizes strong correlations between genes and
penalizes weak correlations. After choosing the appropriate β

value, the adjacency matrix was transformed into a topological
overlap matrix (TOM), whichmeasures the network connectivity
of a gene defined as the sum of its adjacency with all
other genes for network construction. To divide genes with
similar expression patterns into gene modules, average linkage
hierarchical clustering was performed according to the TOM-
based dissimilarity measure with a minimum size of 50 for the
gene dendrogram. Then, we further calculated the dissimilarity
of module eigengenes (MEs), chose a cut line for the module
dendrogram and merged some modules.

MEs were regarded as the major component in PCA for
each gene module. We calculated the correlation between MEs
and clinical traits or hallmark gene signatures to identify the
relevantmodules. Gene significance (GS) was defined as the log10
transformation of the P value in the linear regression between
the gene expression level and clinical data. In addition, module
significance (MS) was defined as the average GS for all the genes
in a module. When the modules of interest were established,
the core genes in a module were identified by GS > 0.2 and
MS > 0.8. Specifically, in the present study, we also compared
the expression levels of the selected core genes between tumor
and normal tissues using GEPIA 2.0 (34), which incorporates the
transcriptome data of normal pancreas tissue and thus facilitates
the identification of differentially expressed genes.

Trajectory Analysis and Consensus
Clustering
The single-cell pseudotime trajectories of the scRNA-seq
data were constructed using the Monocle 2 algorithm (35).
This algorithm uses a machine learning technique, learning
a parsimonious principal graph to reduce the given high-
dimensional expression profiles to a low-dimensional space.
Single cells were projected to this space and ordered into
a trajectory with branch points. For data interpretation, the
cells that were located in the same branch were thought
to be in the same differentiation state, while cells located
in different branches were thought to have different cell
differentiation characteristics. Differentially expressed genes
between different differentiation states were identified by the
R package “limma” (36). Unsupervised consensus clustering
based on the differentially expressed genes was conducted using
the “ConsensusClusterPlus” package. The clustering procedure
included 1,000 iterations, and 80% of the data were sampled in
each iteration. The optimal number of clusters was determined by
the relative change in the area under the cumulative distribution
function (CDF) curves of the consensus score.

Cell Culture and qRT-PCR
CAFs were first separated and purified from human pancreatic
cancer tissues in our laboratory based on the study by Walter
et al. and then subjected to immortalization treatment (37).
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Fresh pancreatic cancer tissue was minced into 1–3 mm3

fragments and digested with 0.25% trypsin at 37◦C for 30min.
The resulting fragments were centrifuged at 600 × g for 5min
and washed once with Dulbecco’s modified Eagle’s medium
(DMEM) containing 10% fetal bovine serum (FBS). The tissue
fragments were then plated and allowed to adhere. After
incubation at 37◦C for several days, fibroblast outgrowth from
the tissue fragments occurred. The fibroblasts were sub-cultured
by trypsinization for 2–3 passages until free of epithelial
cell contamination and maintained in DMEM supplemented
with 10% FBS, 2% penicillin, and streptomycin (Invitrogen).
The cells were grown at 37◦C in a humidified atmosphere
containing 5% CO2. CAFs and the pancreatic cancer cell line
SW1990 were cultured in DMEM supplemented with 10%
FBS. The non-cell supernatant from SW1990 cultures was
extracted through centrifugation at 800 rpm/min. Then, CAFs
were treated with SW1990-derived supernatant during medium
changing. TGF-beta (3 ng/ml) was added to CAF cultures as a
positive control.

RESULTS

A Meta-Analysis Revealed the Correlation
Between Infiltrating Immune Cells and the
OS of Patients With PDAC
In past decades, many approaches have been developed to
estimate or quantify the infiltration level of immune cells
in tumor tissues, such as immunohistochemical staining
and transcriptome-based estimation (16–18, 38, 39). We
applied six algorithms, TIMER, CIBERSORT, XCELL, EPIC,
QUANTISEQ, and MCP-counter, to estimate the infiltration
percentage of immune cells (Supplementary Table 1). Then,
we integrated the survival data of patients in seven PDAC
cohorts with the infiltration level of each immune cell and
performed univariate Cox regression to screen prognosis-related
components (Supplementary Table 1). Given the difficulty of
pooling the Cox regression-derived HR values due to the
large confidence interval (CI) in this case, we performed a
meta-analysis using the log-rank test-derived HR values. Six
basic immune cell types (CD8+ T cells, CD4+ T cells, B
cells, macrophages, neutrophils, and dendritic cells) estimated
by the TIMER algorithm were selected for meta-analysis.
Null or only minor heterogeneity was detected in the fixed
effect model; hence, we generated the results of the meta-
analysis with low bias. The results showed that neutrophil
infiltration was associated with worse OS for PDAC, while
CD8+ T cell, CD4+ T cell, and B cell infiltration was
related to prolonged OS for PDAC with marginal statistical
significance (Figure 1).

Single-Cell Sequencing Results Delineated
the Heterogeneity of Stromal Cells in the
PDAC Microenvironment
Interestingly, many theoretical anticancer cells, such as CD8+
T cells, did not show obvious survival relevance in the meta-
analysis. We assumed that at least some of these anticancer

immune cells were exhausted or experienced differentiation into
protumoral cells, which deprived them of their tumor-killing
capability. To investigate the alteration of stromal cells in
PDAC, we reanalyzed the scRNA-seq dataset and annotated
cell types according to their perturbation in the transcriptome.
After carrying out the quality control procedures described in
the Methods section (Supplementary Figures 1A,B), the top
2,000 variable genes were used in cell clustering (Figure 2A;
Supplementary Figures 1C,D), which identified 26 clusters
(Supplementary Figures 1E,F) and then classified these
clusters into 17 cell types (Supplementary Figure 1G). The
proportions of each cell type are shown in Figure 2B, and
their clustering distribution is presented in Figures 2C–E;
Supplementary Figure 1H. For some clusters, we took a
conservative approach and annotated them as basic cell
categories, such as T cells and myeloid cells. However, when
specific cell markers were highly overexpressed in a cluster, we
tended to annotate them into more precise clusters, such as NKT
and CD8+ T cells. The significant gene markers are presented in
Supplementary Table 2.

T Cells With a Cytotoxic Signature Predict
Prolonged Survival Only in PDAC Patients
With the Presence of “Targets” for
Pyroptosis and Ferroptosis Induction
NKT and CD8+ T cells are theoretically capable of killing
tumor cells through cytotoxic effects; however, most of these
cells seem to lose their anticancer ability in the real tumor
microenvironment. Through scRNA-seq, we verified that these T
cells with a cytotoxic signature universally expressed exhaustion-
related or ICB resistance markers (Figures 3A,B), which not
only produced immune evasion among tumor cells but also
caused a low response to immunotherapy, such as ICB. Then,
we tested whether such signatures of exhausted cytotoxic T
cells were associated with patient prognoses. As expected, no
obvious association was observed between the signature of
CD8+ T cells and OS in most cohorts except for GSE57495
(Supplementary Figure 2; Figure 3C). Then, we explored why
the signatures of exhausted CD8+ T cells could still predict
prolonged OS in some patients. Several recent studies suggested
a novel mechanism by which cytotoxic cells trigger tumor
cell death, as we reviewed previously (10). These studies
demonstrated that cytotoxic T cells, including CD8+ T cells
and NKT cells, could kill tumor cells through ferroptosis
and pyroptosis induction. Then, we validated this hypothesis
in GSE57495, which was the only dataset that showed a
correlation between exhausted cytotoxic T cell signatures and
patient prognoses. Survival analysis showed that the signature
of CD8+ T cells was positively associated with prolonged
OS only in samples harboring overexpression of targets for
ferroptosis (SLC7A11) and pyroptosis (GSDMB, GSDMC, and
GSDME) induction (Figure 3C). We continued to investigate
the association between the NKT cell signature and patient
OS and found that the NKT signature predicted better OS
in only two datasets (E-MTAB-6134 and GSE57495). We
generated a new index called the target score, which is defined
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FIGURE 1 | A meta-analysis revealed the association between infiltrated immune cells and PDAC patient OS. (A) B cells, (B) CD4+ T cells, (C) CD8+ T cells, (D)

dendritic cells, (E) macrophages, and (F) neutrophils.

as target score =
HR(targets high expression)
HR(targets low expression) . In this equation,

HR(targets high expression) reflects the influence of the NKT
signature on patients’ OS in PDAC samples with overexpression

of specific targets for ferroptosis or pyroptosis, while HR (targets

low expression) reflects the influence of the NKT signature on

patients’ OS in PDAC samples with downregulation of specific
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FIGURE 2 | scRNA-seq identified 17 cell types in the PDAC microenvironment. (A) The top 2000 variable genes with large, standardized variances were selected for

subsequent analysis. (B) The percentage of each cell type in PDAC tissues and normal adjacent tissues. (C–E) tSNE algorithm classified cell clusters based on

transcriptome data.
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FIGURE 3 | Exhausted cytotoxic T cells predict prolonged survival only in PDACs with the presence of “targets” for pyroptosis and ferroptosis induction. (A,B)

Intratumorally infiltrated cytotoxic T cells universally expressed exhaustion markers and ICB resistance signatures. LogFC refers to log2 (fold change); fold change

equals the ratio between the mRNA level of a specific gene in one cell cluster and that in the other cell clusters. PCT1 refers to the percentage of cells that express a

specific gene. (C) CD8+ T cell infiltration predicts prolonged OS only in samples overexpressing GSDMB, GSDMC, GSDME and SLC7A11, which are targets for

cytotoxic T cells to induce pyroptosis and ferroptosis. (D) Heatmap showing the distribution of target scores among different PDAC cohorts. (E–H) NKT cell infiltration

predicts prolonged OS only in samples overexpressing GSDMB-D and SLC7A11, which are targets for cytotoxic T cells to induce pyroptosis and ferroptosis.

targets for ferroptosis or pyroptosis. A heatmap was generated
to visualize the Target_score of different targets across various

datasets (Figure 3D), which suggested universal survival benefits

caused by high NKT signature expression in samples with

high target expression. Survival analysis further demonstrated

that the high expression of some ferroptosis and pyroptosis
targets was a precondition for the NKT signature predicting a

benefit in terms of OS (Figures 3E–H). Then, we determined the

independency of the prognostic implication of the NKT signature

from other infiltrated immune cells. Multivariate Cox regression
showed that the cytotoxic T cell signature was associated with

prolonged OS, independent of other components in the PDAC
microenvironment (Supplementary Table 3).

T Cells With Increased Ribosome-Related
Protein Signatures Predict a Better
Prognosis in PDAC
An LTB(+)IL-7R(+)CD3(+) cell cluster was identified by
scRNA-seq (cluster 0). We analyzed the top 100 upregulated
genes in this cluster and showed that 51 genes were ribosome-
related proteins (Figure 4A). Then, we performed survival
analysis and found that the cluster 0 signatures could predict
prolonged OS in PDAC in multiple datasets (Figures 4B–E).

In addition, we investigated the prognostic implications
of the three states of B cells in PDAC. Overall, these
signatures predict prolonged OS in only some cohorts
(Supplementary Figure 3A). Notably, plasma cell infiltration
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FIGURE 4 | T cells with increased ribosome-related protein signatures predict better prognoses for PDAC. (A) Approximately 50% of the markers of this T cell cluster

were ribosome-related proteins. (B–E) High infiltration of this T cell cluster predicts prolonged OS in GSE21501, GSE57495, TCGA, and MTAB.

predicted better OS in the three cohorts (MTAB, ICGC, and
GSE57495) (Supplementary Figure 3B).

Increased Hematopoietic Stem Cell
(HSC)-Like Signatures Predict Better
Prognoses in Patients With PDAC
The XCELL algorithm calculated the infiltration percentage
of HSCs in the PDAC microenvironment; however, no direct
evidence indicated the existence of intratumoral HSCs in
previous studies, and scRNA-seq was performed here. It is
biologically plausible that some cell clusters retain parts of
the molecular signatures of HSCs. For example, we found
that CD34, as a classical marker of HSCs, was significantly
upregulated in cluster 19, which we identified through scRNA-
seq (logFC = 1.48). Furthermore, we conducted a meta-analysis
to investigate whether the HSC signature was associated with
the patient prognosis. The results showed that increased HSC
signatures significantly predicted prolonged OS in PDAC (HR
= 0.72, 95% CI 0.61–0.85) (Figure 5A). To further analyze the
mechanism by whichHSC signatures could predict prolongedOS

in PDAC, we performed WGCNA to explore the gene modules
associated with HSC signatures in the MTAB cohort, which
is the largest PDAC cohort with completed transcriptome and
follow-up data (Figure 5B). Interestingly, the dark turquoise
module was negatively associated with HSC signatures and the
OS and DFS of patients (r = −0.47, r = −0.31, and r = −0.28,
respectively) (Figure 5C). According to the criteria GS > 0.2
and MS > 0.8, we identified 5 core genes associated with HSC
signatures (Figures 5D,E) and patient prognoses (Figure 5F).

Given that all five genes were related to unfavorable prognoses,
we speculated that these genes may be differentially expressed

between tumor and normal tissues. Then, we validated the

prognostic implications of these five hub genes in six other
cohorts, where each gene was associated with unfavorable OS
in at least two validation datasets (Supplementary Figure 4).
Using the integrated data of the tumor transcriptome from the
TCGA database and the normal pancreas transcriptome from
the Genotype-Tissue Expression (GTEx) database, we showed
that LDHA, SLC2A1, and PGK1 were upregulated in tumor
samples (logFC > 2, P < 0.05).
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FIGURE 5 | Increased hematopoietic stem cell-like signatures predict better prognoses in patients with PDAC. (A) A meta-analysis revealed that HSC-like signatures

predict prolonged OS in PDAC patients. (B) WGCNA identified gene modules with high coexpression correlation. (C) The correlations between 25 coexpressed gene

modules and HSC-like signatures and clinical characteristics. (D) The linear correlations between the expression of five core genes and HSC-like signatures. (E)

Comparison of the expression levels between groups with high or low levels of HSC-like signatures. (F) The survival implications of five core genes in PDAC. (G) The

differential expression of core genes between tumor and adjacent normal tissues. *P < 0.05.
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FIGURE 6 | Pseudotime trajectory analysis revealed the evolutionary characteristics of myeloid cells. (A) Pseudotime trajectory analysis revealed 7 different states of

myeloid cells. (B) The gradation of color reflects pseudotime flows. (C) The pseudotime trajectory of each cell type in PDAC. (D) The volcano plot shows that many

antigen-presenting molecules and complement-associated genes were lost along the pseudotime flow. (E–G) Unsupervised consensus clustering identified two

independent subclusters based on the expression levels of the differentially expressed genes between two cell states spanning the longest pseudotime. (H) Survival

analysis showed that the prognosis of patients in subcluster 1 was significantly better than that of patients in subcluster 2. (I) Comparison the expression of

immune-check point between subcluster 1 and subcluster 2. (J) Comparison of the activity of 29 immune signatures between subcluster 1 and subcluster 2.

The Evolutionary Trajectory and Prognostic
Implications of Myeloid Cells in PDAC
Myeloid cells are important components in the PDAC
microenvironment and consist of macrophage cells, myeloid
derived suppressive cells, dendritic cells, and granulocytes.

Through scRNA-seq, we identified nine myeloid cell clusters
(clusters 3–6, 10, 12, 22–23, and 25) and further annotated

them as macrophages, mast cells, plasma dendritic cells,

and other myeloid cells. Pseudotime trajectory analysis

revealed seven different cell states (Figure 6A) and showed
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FIGURE 7 | Differences in the transcriptome between CAFs and fibroblasts/PSCs. (A) Volcano plot showing differentially expressed genes between CAFs and

fibroblasts/PSCs in PDAC tissues and adjacent normal tissues. (B) Validation of the downregulated genes in CAFs using tumor supernatant or TGF-beta followed by

qPCR. (C,D) GO and KEGG analyses revealed the functions of the differentially expressed genes.
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the distributions of cell states along with pseudotime flows
(Figure 6B). We also mapped cell classifications to pseudotime
trajectories (Figure 6C). The difference in the transcriptome
between the two cell states with the longest pseudotime
span was compared, wherein many antigen-presenting
molecules and complement-associated genes were lost along
the pseudotime flow (Figure 6D). Unsupervised consensus
clustering identified two independent clusters based on the
pseudotime-related differentially expressed genes in the
MTAB cohort (Figures 6E–G). Notably, the OS of patients
in cluster 1 was significantly better than that of patients in
cluster 2 (P < 0.05) (Figure 6H). This result was marginally
confirmed in the ICGC cohort (Supplementary Figure 5).
Next, we compared the activity of 29 immune signatures
between cluster 1 and cluster 2. The results showed that
cluster 1 harbored more activated immune signatures,
which may account for its survival advantage (Figures 6I,J;
Supplementary Figure 4).

Differentially Expressed Genes Between
CAFs in PDAC Tissues and Fibroblasts in
Normal Pancreas Tissues
Fibroblasts or pancreatic satellite cells exist in normal pancreatic
tissues; however, many studies have suggested that the formation
of tumors alters the states and function of these cells. Through
scRNA-seq analysis, we compared the mRNA expression
landscape of fibroblasts and satellite cells between PDAC and
normal pancreas tissues (Figure 7A). We found that multiple
genes involved in stromal formation, such as COL1A2, COL3A1,
COL1A1, FN1, TIMP1, DCN, and LUM, were upregulated in
CAFs (logFC > 2, adjusted P < 0.05). However, the genes that
were downregulated in CAFs have rarely been investigated in
CAFs. Hence, we investigated whether PDAC cells could induce
alterations in these genes using in vitro experiments. Given
that TGF-beta is an important mediator regulating the crosstalk
between CAFs and PDAC cells, we also established a positive
control group using TGF-beta to mimic the activated states of
CAFs. Our results showed that the relative mRNA expression
of ADIRF, MT2A, MT1M, and JUNB was downregulated
after TGF-beta treatment and/or tumor stimulation, while the
expression level of C11orf96 was upregulated, even after tumor
stimulation (Figure 7B). Gene Ontology (GO) analysis indicated
that the upregulated genes in CAFs were mainly related to
the extracellular matrix and structural organization, while the
downregulated genes in CAFs were associated with the response
to mental ions (Figure 7C). Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis also showed that the differentially
expressed genes were enriched in mineral absorption and the
extracellular-receptor interaction (Figure 7D).

DISCUSSION

The treatment modalities for multiple cancers, except for
PDAC, have entered a new era of targeted and immunological
therapy (40). A stringent obstacle in optimizing the efficacy of
PDAC treatment is its immunosuppressive and desmoplastic
microenvironment, which causes difficulties in drug delivery

and low responses to targeted therapy, including ICI-based
immunotherapy (41). The key to exploring optimized
treatment modalities is the comprehension of the intratumoral
heterogeneity of PDAC. Next-generation sequencing (NGS)
techniques have led to a rush of researchers exploring cancer
genomics or transcriptomes (42). Although NGS interprets
numerous biological behaviors of PDAC by defining the
dysregulation of oncogenic or tumor-suppressive pathways,
it is hard for NGS to decipher the role of each cell type in
PDAC development, given that bulk sequencing only reflects the
average levels of the tissue being detected (43). Even the same cell
type sometimes has a different state and manifests distinguished
functions. The development of scRNA-seq has provided
researchers with an opportunity to explore intratumoral
heterogeneity (44). The expression levels of markers could
reflect the infiltration of specific cell types in tumor tissues
using algorithms such as ssGSEA and TIMER. In addition, the
correlation between the relative infiltration level of a specific
cell type and patient survival could be established with complete
follow-up data in multiple PDAC cohorts.

In the present study, we first observed the paradox that
multiple theoretically tumor-suppressive cell types were not
associated with patient prognoses. Then, we tried to explore
the underlying mechanism by analyzing the intratumoral
heterogeneity in PDAC using scRNA-seq data and 7 PDAC
cohorts with bulk sequencing. We found that cytotoxic T cells,
including CD8+ T cells and NKT cells, predict prolonged OS
only in samples with overexpression of targets for pyroptosis and
ferroptosis induction, which was the recently reported potential
mechanism by which cytotoxic T cells mediate tumor cell killing
(8, 11, 45–47). In addition, a specific state of T cells with
overexpression of ribosome-related proteins is associated with a
better prognosis. Previous studies have shown the importance
of function-intact ribosomes in allowing T cells to execute
immune effects (48, 49), while ribosome-targeting antibiotics
impair T cell effector function and ameliorate autoimmunity
by blocking mitochondrial protein synthesis (50). Hence,
maintaining normal ribosome function in intratumoral T cells
may contribute to their antitumor efficacy and further improve
patient prognoses. In addition, an HSC-like signature predicts
better OS in PDAC. WGCNA identified 5 hub genes (LDHA,
VEGFA, SLC2A1, ADM, and PGK1) whose downregulation may
mediate the observed survival benefits of the HSC-like signature.
Interestingly, among these core genes, SLC2A1, LDHA, and
PGK1 are classical oncogenic glycolytic enzymes in PDAC (51–
53), and glycolytic products such as lactate acids could upregulate
the level of VEGFA (54), suggesting that the negative correlation
between the HSC-like signature and glycolytic activity may
account for the survival benefit associated with high HSC-like
signature expression. Moreover, pseudotime trajectory analysis
uncovered myeloid cells evolutionarily consisting of 7 states,
and antigen-presenting molecules and complement-associated
genes were lost with the pseudotime flow. Consensus clustering
based on the differentially expressed genes between two states
harboring the longest pseudotime span identified two PDAC
groups with prognostic differences, and more infiltrated immune
cells and activated immune signatures may account for the
survival benefits.
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This study has some strengths that are noteworthy. On
one hand, we integrated the scRNA-seq and bulk sequencing
data from 7 PDAC cohorts with complete follow-up data to
investigate the prognostic implications of cell components,
which is a heavy task with a large sample size. Using
the cell markers identified in single-cell sequencing for the
same cancer type to calculate the cell fractions in tissues
through bulk sequencing has distinguished benefits in avoiding
the bias derived from cell heterogeneity among different
cancer types. In addition, we yielded several findings that
might be implicated for future study and clinical translation.
For example, we proposed that cytotoxic T cells, including
CD8+ T cells and NKT cells, predict prolonged OS only
in samples with overexpression of targets for pyroptosis
and ferroptosis induction. Given that we have shown that
most intratumorally infiltrated T cells were exhausted using
scRNA-seq, this novel tumor-killing approach might also help
theoretically exhausted T cells defend against tumor cells.
Certainly, the present manuscript also has several limitations.
On one hand, we analyzed only transcriptome data; however,
proteome data would be an appropriate supplement for
validating our conclusions. On the other hand, this is a
horizontal bioinformatics study lacking longitudinal mechanistic
investigation. Notably, certain signatures predict prolonged OS
only in some cohorts not in all cohorts. Several reasons could
explain it as follows. First, the transcriptome of tissue samples
is easily disturbed, especially when preservation measures are
inappropriate. Additionally, the inherent systemic error in RNA
sequencing also leads to some unexpected bias. Therefore,
the expression levels of some genes may not be accurate in
all cohorts. Second, the follow-up OS was in fact influenced
by many factors, such as chemotherapy modalities, surgical
factors, loss of follow-up bias, etc. As a result, even if a gene
is associated with the pathophysiological behavior of PDAC,
the association of its gene expression level may not tightly
reflect OS in some cases. Third, we defined signature_high and
signature_low groups based on the median value, which is a
common method that has been widely applied in published
studies (55–58).

In conclusion, this study systematically investigated the
prognostic implications of the components of the PDAC tumor
microenvironment by integrating single-cell sequencing and bulk
sequencing, and future studies are expected to develop novel
targeted agents for PDAC treatment.
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Supplementary Figure 1 | scRNA-seq identified 26 independent cell clusters in

PDAC. (A) The mitochondrial RNA level is not associated with increased read

counts, while qualified RNA is positively correlated with increased read counts. (B)

The distribution of qualified RNA, total read counts and mitochondrial RNA levels

in tumor and adjacent tissues. (C) The standard deviation and the number of

principal components. (D) PDAC and adjacent normal tissues could be

distinguished by two principal components. (E,F) The tSNE and UMAP algorithms

classified PDAC samples into 26 independent clusters. (G) The 26 clusters were

annotated into 17 cell types according to specific cell markers.

Supplementary Figure 2 | Null survival benefits of CD8+ T cells were detected in

six PDAC cohorts.

Supplementary Figure 3 | The association between B cell signatures and the OS

of PDAC patients. (A) The whole landscape. (B) The survival curve showed results

with statistical significance.

Supplementary Figure 4 | Validation of the prognostic implications of the hub

genes identified from WGCNA.

Supplementary Figure 5 | Validation of the consensus clustering results in

another dataset (ICGC). (A–C) Unsupervised consensus clustering identified two

independent subclusters based on the expression levels of the differentially

expressed genes between two cell states spanning the longest pseudotime. (D)

Survival analysis showed that the prognosis of patients in subcluster 1 was

marginally better than that of patients in subcluster 2.

Supplementary Table 1 | The raw data and univariate COX analysis for the 119

cell signatures and PDACs’ survival in 7 cohorts.

Supplementary Table 2 | The gene markers of different cell clusters.

Supplementary Table 3 | Multivariate cox regression validates the association

between OS and cytotoxic T cell signatures in targets_high group is independent

of other infiltrated cell components.
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