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The immune response affects tumor biological behavior and progression. The specific
immune characteristics of pancreatic ductal adenocarcinoma (PDAC) can determine the
metastatic abilities of cancerous cells and the survival of patients. Therefore, it is important
to characterize the specific immune landscape in PDAC tissue samples, and the effect of
various types of therapy on that immune composition. Previously, a set of marker genes
was identified to assess the immune cell composition in different types of cancer tissue
samples. However, gene expression and subtypes of immune cells may vary across
different types of cancers. The aim of this study was to provide a method to identify
immune cells specifically in PDAC tissue samples. The method is based on defining a
specific set of marker genes expressed by various immune cells in PDAC samples. A total
of 90 marker genes were selected and tested for immune cell type-specific definition in
PDAC; including 43 previously used, and 47 newly selected marker genes. The immune
cell-type specificity was checked mathematically by calculating the “pairwise similarity” for
all candidate genes using the PDAC RNA-sequenced dataset available at The Cancer
Genome Atlas. A set of 55 marker genes that identify 22 different immune cell types for
PDAC was created. To validate the method and the set of marker genes, an independent
mRNA expression dataset of 24 samples of PDAC patients who received various types of
(neo)adjuvant treatments was used. The results showed that by applying our method we
were able to identify PDAC specific marker genes to characterize immune cell infiltration in
tissue samples. The method we described enabled identifying different subtypes of
immune cells that were affected by various types of therapy in PDAC patients. In
addition, our method can be easily adapted and applied to identify the specific immune
landscape in various types of tissue samples.
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INTRODUCTION

Pancreatic cancer is one of the deadliest diseases with a 5-year
survival rate of 9% (1). The most prevalent neoplastic disease of
the pancreas is pancreatic ductal adenocarcinoma (PDAC) (2).
Failure of treatment is partially due to the high heterogeneity of
the disease (3). The interaction between cancer and immune
cells, known as the immune microenvironment (TME), leads to
diverse mechanisms of immune evasion (4). The abundance and
composition of tumor-infiltrating lymphocytes (TILs) are
fundamental to tumor immunogenicity (5, 6). The variety of
TILs and their interaction with pancreatic cancer cells influence
tumor progression (7). During the early stages of tumor
development, immune cells such as natural killer (NK) and
CD8+ T cells facilitate the destruction of immunogenic cancer
cells (8). As the tumor evolves, different immune cells infiltrate
and have an impact on the tumor’s fate. For instance, high
infiltration of CD4+ T cells correlates with a good prognosis (9),
while high infiltration levels of regulatory T cells (Tregs)
correlate with a poor prognosis (10). In addition, TME and
TILs influence the survival of PDAC patients. The high levels of
CD8/Tregs ratio correlate with longer survival of the patients
(11). Taken together, the accurate determination of the immune
infiltration in PDAC tissue samples is important because it
provides valuable information regarding how the host immune
response interacts with cancer cells. This information can be
used in guiding the immunomodulatory approaches to treat
PDAC patients.

The gold standard to identify and quantify immune cells in
blood samples is Flow cytometry. Immune cells in the blood
samples do not need enzymatic disassociation and they can be
detected relatively easily after binding to antibodies. However,
immune cells in fixed tissue samples, like Fresh-Frozen (FF) or
Formalin-Fixed, Paraffin-Embedded (FFPE) samples, are more
difficult to quantify by flow cytometry. The methods and
enzymes used to dissociate cells in tissue severely harm
membranous antigens, makes it more challenging to bind to
the antibodies. The preferred method to use for tissue samples is
immunohistochemistry (IHC) which showed to be clinically
useful (12). However, relatively a lot of tissue sections are
needed to measure only a few immune markers. The recent
development of this technique enabled multiplexing
measurements of various antibodies using one section sample
(13). Nevertheless, the number of immune cells that can be
identified using IHC-based techniques is still limited and
dependents on the availability and accuracy of the antibodies.
Alternatively, gene expression profiling is a promising and
clinically applicable method for measuring the diversity of TILs
in FFPE samples. Various techniques can be used to measure the
gene expression profiles of tissue samples. Most of the techniques
are based on using enzymatic reactions to synthesize cDNA and
amplify it, prior to measure the expression of the genes or
sequence the fragments of RNA. However, the targeted gene
expression measurements using nCounter® technology
(NanoString) enables counting the copies of RNA fragments of
tissue samples directly without any enzymatic reactions or
amplification steps. It facilitates detecting low abundance
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targets, down to 0.1–0.5 fM RNA targets, with high sensitivity
and high reproducibility [R2 > 0.98) (14, 15)]. These features
enable determining the immune cell repertoires in FFPE samples.
Moreover, many mRNA expression profile databases are
available online and can be re-analyzed either to identify the
immune cells in a specific cancer type or to validate the findings
of a specific analysis. However, an accurate method to identify
the TILs based on gene expression per cancer subtype is needed.

To accurately estimate the abundance of the various immune
cell populations within the TME, a set of marker genes is needed
for each cell type. Previously, a set of immune-specific marker
genes were identified to determine cell type across various types
of cancer (16, 17). However, gene expression levels are highly
affected by the type of tumor. In addition, the marker genes used
to identify immune cells may differ in various types of cancer.
The aim of this study was to identify a set of marker genes that
can be used to characterize the immune landscape in PDAC
tissue samples. To that aim, we selected a set of candidate genes
(PDAC-cMG), then checked their accuracy to identify immune
cells in PDAC samples. Genes that passed our definition criteria
were chosen to create the set of marker genes to identify immune
cells in PDAC tissue samples (i.e., PDAC-MGICs). To
demonstrate the utility of PDAC-MGICs, we applied them to
evaluate the effect of therapy on the immune cell infiltration
between PDAC patient groups that have been treated with a
combination of surgery and neoadjuvant therapy.
MATERIALS AND METHODS

Selecting PDAC Candidate Marker
Genes (PDAC-cMG)
A set of candidate marker genes specific for PDAC (PDAC-
cMG) were selected based on genes that were previously used to
identify immune cells across different types of cancer (n=43)
(16). The PDAC-cMG gene list was enriched by genes that were
found to identify immune cells in the literature (n=47) (Table 1,
Column 2). A total of 90 candidate genes were included in the
PDAC-cMG, represent 23 immune cell types.

Downloading Data From The Cancer
Genome Atlas (TCGA)
The gene expression profiling data of pancreatic adenocarcinoma
(PAAD) from the TCGA database (Level 3 RSEM-normalized,
Illumina RNA-seq, Version2) was downloaded (36). The TCGA
PAAD dataset is filtered for patients with PDAC primary tumors
that received no treatment prior to surgery (n=147). The
expression data were log2-transformed prior to pairwise
similarity calculations.

Calculating the Pairwise Similarity
The pairwise similarity statistic between all pairs in the PDAC-
cMG per cell type was calculated using an adaptation of
Pearson’s correlation metric. The adapted Pearson’s correlation
metrics was proven to be better than the simple Pearson
correlation (16):
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similarity(x, y) = o(x− �x)(y−�y)
(n−1)
2 (var(x)+var(y))

The log2-transformed vectors of the gene expression of two
genes are denoted by x and y, where the sample means are denoted
by �x and �y. The sample variance is indicated by var (x) and var (y).
This adaptation takes the slope of the correlation into account;
hence two ideal cell typemarker genes would have a similarity of 1.
All calculations were completed using R version 4.0.3.

Identifying Immune Cells in PDAC Data
The pairwise similarity for all 90 candidate genes was calculated,
and genes with high pairwise similarity (≥ 0.6) were selected to be
included per cell type in the PDAC-MGICs (Table 1, Column 3)
Frontiers in Immunology | www.frontiersin.org 3
(16). Each immune cell type was represented by at least two
unique genes included in the PDAC-MGICs (37–40). The
specificity of the selected gene markers was confirmed by
creating heatmaps showing the pairwise similarity of all
selected marker genes per immune cell type.

Validating the Immune Cell Marker Genes
Using Published PDAC Profile Data
Previously published data [(41), GEO accession: GSE129492]
from 6 PDAC patients who received no systemic therapy prior to
surgery (i.e. Surgery Only) were used to validate that PDAC-
MGICs are robust and valid immune marker genes in other
PDAC cohorts. The database was created by measuring the
TABLE 1 | Summary of the candidate gene set and the selected marker genes used to identify immune cell types in PDAC tissue samples.

Column 1 Column 2 Column 3 Column 4

Cell type Candidate marker genes
(PDAC-cMG)

Selected marker genes
(PDAC-MGICs)

Default marker genes used in the
nSolver® Advanced Analysis

B cells BLK (16), BLNK (16), CCR9 (16), CD19 (16), CD22 (18), CD24 (19),
CR2 (16), HLA-DOB (16), HLA-DQA1 (16), MEF2C (16), MS4A1 (16)

BLK, CD19, CD22, CR2,
MS4A1

BLK, CD19, MS4A1, TNFRSF17,
FCRL2*, KIAA0125*, PNOC*, SPIB*,
TCL1A*

Plasma B cells CD27 (20), CD38 (21), SLAMF7 (22), TNFRSF17 (22) CD27, CD38, SLAMF7,
TNFRSF17

Regulatory B
cells

CD1D (23), CD5 (23), IL10 (23) CD1D, CD5

Cytotoxic cells GZMA (16), GZMB (16), GZMH (16), KLRB1 (16), KLRD1 (16), KLRK1
(16), PRF1 (16), CTSW (16), GNLY (16)

GZMA, GZMB, GZMH,
KLRB1, KLRD1, KLRK1,
PRF1

GZMA, GZMB, GZMH, KLRB1, KLRD1,
KLRK1, PRF1, CTSW, GNLY, NKG7*

Dendritic cells CCL13 (16), CD1A (24), CD1C (24), CD209 (16), HSD11B1 (16) CD1A, CD1C CCL13, CD209, HSD11B1
Conventional
Dendritic cells 1

BTLA (24), XCR1 (24), DPP4 (24), THBD (24) BTLA, XCR1

Conventional
Dendritic cells 2

CD2 (24), ITGAM (24), ITGAX (24) ITGAM, ITGAX

Plasmacytoid
Dendritic cells

CLEC4C (24), IL3RA (25), NRP1 (24)

Macrophages CD68 (16), FCGR2A (26) CD68, FCGR2A CD163, CD68, CD84, MS4A4A*
Antigen
presenting cells

CCR7 (27), CD80 (28), CD86 (26) CD80, CD86

M2
Macrophages

CD163 (29), CD36 (27), MRC1 (27) CD163, MRC1

Mast cells C2 (30), CMA1 (16), CTSG (16), FCER1A (30), MS4A2 (16), PLAU (30),
TPSAB1 (16)

MS4A2, TPSAB1 MS4A2, TPSAB1, CPA3*, HDC*, TPSB2*

Monocytes CD14 (27), CD33 (30), TLR2 (31) CD14, CD33, TLR2
Natural Killer
cells

NCR1 (16), XCL2 (16) NCR1 NCR1, XCL1*, XCL2

Natural Killer
CD56+ dim cells

IL21R (16), KIR3DL1 (16) KIR3DL1 IL21R, KIR3DL1, KIR2DL3, KIR3DL2

Neutrophils CSF3R (16), FCGR3A (30), S100A12 (16) CSF3R, FCGR3A CEACAM3*, CSF3R, FCAR*, FCGR3B*,
FPR1*, S100A12, SIGLEC5*

T cells CD3D (16), CD3E (16), CD3G (16), CD6 (16), SH2D1A (16) CD3D, CD3E, CD3G, CD6,
SH2D1A

CD3D, CD3E, CD3G, CD6, SH2D1A,
TRAT1*

CD4+ T cells CD4 (32), SELL (25) CD4, SELL
CD8+ T cells CD8A (16), CD8B (16) CD8A, CD8B CD8A, CD8B
Exhausted CD8+
T cells

CD244 (16), HAVCR2 (33), LAG3 (16), PDCD1 (33), TIGIT (33) LAG3, PDCD1, TIGIT CD244, EOMES, LAG3, PTGER4

Helper 1 T cells TBX21 (16), ALCAM (25), CD70 (16) TBX21 TBX21
Regulatory T
cells

FOXP3 (16), CD274 (34), IDO1 (35), IL2RA (30), TNFRSF18 (30) FOXP3, IL2RA FOXP3

CD45+ PTPRC (16) PTPRC PTPRC
The underlined cell types or marker genes are newly defined in comparison to the default of nSolver® Advanced Analysis module of NanoString Technology. Asterisk (*) denotes genes that
are not measured by the PanCancer Immune Profiling Panel (Platform GPL19965).
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PanCancer Immune profiles panel. It contained gene expression
profiles of 730 immune-related genes and 40 housekeeping genes
measured by using nCounter® platform of NanoString
technology (Platform GPL19965). The expression level of the
55 genes of the PDAC-MGICs set was checked and confirmed to
be higher than the detection threshold in at least 50% of the
samples. The gene expression was normalized and log2-
transformed using nSolver® (version 4.0) and the Advanced
Analysis module (version 2.0) of NanoString technology
(NanoString, Seattle, WA, USA). The mean pairwise
similarities for the PDAC-MGICs were calculated following the
same method that was described earlier.

Concordance of the New PDAC-MGICs
We validated the marker genes concordance by calculating p-
values for the cell type gene sets as implemented in the nSolver®

Advanced Analysis module (version 2.0). The null hypothesis
that a given gene set exhibits no greater cell type-specific-like
behavior than a randomly selected gene set of similar size was
tested. Therefore, the concordance was calculated for each cell
type (i.e., a metric of a gene set’s adherence to the assumption of
cell type-specific and consistent expression):

concordance(X) = 1
trace(Cov(X)) (p

−1
2 ,⋯ : p−

1
2)Cov(X)(p−

1
2 ,… p−

1
2 )T

The matrix of log2-transformed expression values of the gene
set for a specific cell type is denoted by X, and p is the number of
genes. The concordance function returns 1 if all genes are
perfectly correlated with a slope of 1 and degrade to 0 as this
pattern weakens. This concordance is compared to the
concordance of 1000 random gene sets of size p, denoted by
X0’. The p-value equals the proportion of concordance (X0’)
values greater than concordance(X0), where concordance(X0) is
the concordance of the selected marker genes. The concordance
of the gene markers was compared to the default gene markers in
nSolver® Advanced Analysis module.

Validation Using PDAC Samples Affected
by Various Types of Neoadjuvant Therapy
The performance of PDAC-MGICs for samples affected by
treatments is tested for 18 samples of patients that were subjected
to different neoadjuvant therapy prior to surgery: 6 patients received
FOLFIRINOX chemotherapy, 6 patients received FOLFIRINOX +
stereotactic body radiotherapy (SBRT), and 6 patients received
FOLFIRINOX + conventional radiotherapy (XRT) (41). The
samples were matched based on lymphovascular invasion and
perineural invasion. The database was created by measuring the
PanCancer Immune profiles panel. It contained gene expression
profiles of 730 immune-related genes and 40 housekeeping genes
measured by using nCounter® platform of NanoString technology
(GEO accession: GSE129492). Gene expression profiles were
normalized and log2-transformed using nSolver® and the
Advanced Analysis module, and the pairwise similarity and
concordance were calculated as described earlier.

To identify immune cells within the nSolver® advanced
analysis module, genes that are annotated to define immune
Frontiers in Immunology | www.frontiersin.org 4
cells within the probe annotation file (provided by NanoString)
were changed. After that, the modified probe annotation file was
uploaded to a new analysis file, and the average of all genes
confirmed to identify a specific immune cell was calculated
resulting in a score of a cell type. The scores of cells were
compared between the groups of interest, and the significance
was calculated using a t-test between the groups.

Utilization of PDAC-MGICs
The clinical utility is demonstrated by uploading our defined
marker genes PDAC-GMICs in the nSolver® Advanced Analysis
module to identify immune cells in the “cell type profiling” section.
The PDAC-GMIC set was used to assess the composition of the
immune microenvironment for all patients in GSE129492 (41).
The abundance of the immune cell types is represented by a cell
score, which is the average log2-transformed expression values of
their corresponding marker genes. To correct for the total tumor-
infiltrating immune cells per patient, the abundance was calculated
relatively to the CD45+ cells. The relative abundance of a cell type
in a group of patients is the average log2-scale expression of the
marker genes divided by the average log2-scale expression of
CD45+. To demonstrate the impact of changing the definition
of cells, the relative cell abundances based on the default marker
genes of the nSolver® Advanced Analysis module were compared
to the relative cell abundance based on PDAC-MGICs.

An overview of our method is presented in (Figure 1).
RESULTS

PDAC-MGICs Enabled Identifying 22
Immune Cell Types
The PDAC-cMGs with a pairwise similarity ≥ 0.6 were selected
and summarized in (Table 1, Column 3). For example, 11 genes
were chosen as candidate genes to define B cells. Calculating the
pairwise similarity of all the 11 genes showed that 5 genes had a
high pairwise similarity (≥ 0.6), while the other 6 genes had a low
pairwise similarity (< 0.6). Therefore, B cells were defined using
the 5 genes with high pairwise similarity (Figure 2). Following
the same method, a total of 55 genes were selected as marker
genes to identify 22 immune cells in PDAC (Supplementary
File 1).

Enriching the PDAC-MGICs list by additional genes from the
literature enabled identifying 8 additional immune-cells that were
not included in the default setting of nSolver® Advanced Analysis
module. These cells are plasma B cells, regulatory B cells (Bregs), 2
types of conventional dendritic cells (cDC), antigen-presenting
cells (APCs), M2 macrophages, monocytes, and CD4+ T cells. In
addition, the enrichment of the PDAC-MGICs increased the
accuracy to identify Tregs cells, B cells, and macrophages,
because more genes were used to identify these cells as
compared to the default settings. To validate the specificity of
the selected markers, pairwise similarities were calculated across
all marker genes. The results are shown as a correlation plot for all
the marker genes (Figure 3). The highest correlation was
achieved between marker genes that were used to identify a
April 2021 | Volume 12 | Article 649061
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specific immune cell. However, a relatively high correlation was
also seen across other types of cells. For example, the 5 genes that
identified B cells showed the highest correlation for B cells. But
they also showed a lower but still good correlation in identifying T
cells. This highlights the importance of trusting marker genes that
have the highest pairwise similarity to identify a specific cell type.
Marker genes that were used to identify cDC2 showed a relatively
high correlation inMonocytes andM2macrophages, highlighting
that the definition of cDC2 is challenging using gene expressions
of the PanCancer Immune profile panel in PDAC tissue samples,
and can be improved by selecting additional marker genes.

Validation of PDAC Marker Genes
To validate the accuracy of the PDAC-MGICs, the mean pairwise
similarities between the corresponding marker genes were
calculated in the TCGA PAAD dataset (Table 2, Column 2)
and the Surgery Only dataset (Table 2, Column 4). These
similarities were compared to those calculated between the cell
types defined by the default gene markers in nSolver® Advanced
Analysis (Table 2, Column 3 & 5). Using the PDAC-MGICs
resulted in an improved pairwise similarity (≥ 0.6) in both
datasets for B cells, cytotoxic cells, DCs, neutrophils, and T
Frontiers in Immunology | www.frontiersin.org 5
cells. From the eight newly defined immune cells, five have a
mean pairwise similarity ≥ 0.6 in both datasets. The exceptions
were Bregs, and the 2 types of cDCs. Furthermore, the
concordance per cell type of the PDAC-MGICs in the Surgery
Only was calculated (Table 2, Column 6) and was compared to
the default gene markers (Table 2, Column 7). The p-value for
concordance improved for all PDAC-MGICs compared to the
default markers in nSolver® except for macrophages, CD8+ T
cells, and exhausted CD8+ T cells.

Validation of PDAC-MGICs in PDAC
Samples Subjected to
Neoadjuvant Therapy
The usability of the PDAC-MGICs was checked by calculating
the pairwise similarity (Table 2, Column 8) and concordance
(Table 2, Column 10) in 18 samples of patients that received
neoadjuvant therapy prior to surgery and compared to the
default gene markers (Table 2, Column 9, 11). Similar results
to Surgery Only group were achieved. An improvement of the
pairwise similarity and concordance was shown for all PDAC-
MGICs except for neutrophils that were not robustly identified in
the default settings.
FIGURE 1 | An overview of the method used to determine the definition of immune cells in PDAC tissue samples.
April 2021 | Volume 12 | Article 649061
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Utilization of PDAC Marker Genes
The composition of the immune microenvironment for all
samples published previously (41) was assessed by the
nSolver® Advanced Analysis module (NanoString). The
relative abundance of the immune cell types is compared
between PDAC-MGICs and the default marker genes in the
Surgery Only samples (Figure 4). Defining immune cells based
on the PDAC-MGICs showed a significant effect in the relative
scores of macrophages, neutrophils, natural killer cells (NK) and
Tregs compared to the default settings (Figure 4). The effect of
neoadjuvant therapy on the relative scours of cells was tested and
shown in (Figure 5). Defining immune cells using PDAC-
GMICs revealed that FOLFIRINOX + SBRT had the biggest
effect on immune cells compared to Surgery Only group. The
results indicate an elevation of the cells as an effect of various
types of neoadjuvant treatments, except for Bregs. The results are
Frontiers in Immunology | www.frontiersin.org 6
coherent with the previously reported results (41), but more
immune sub-types were identified.
DISCUSSION

We have identified and validated specific marker genes to define
immune cells in PDAC tissue samples (PDAC-MGICs). The
PDAC-MGCI are more PDAC specific than the marker genes
used to define immune cells across various types of tumor tissue
samples (PanCancer marker genes). In addition, PDAC-MGICs
enabled identifying eight additional immune cells (Table 1). To the
best of our knowledge, our method is the only PDAC specific
method that enables identifying 22 immune cells from 730 genes
only. Moreover, it is the only method to describe the effect of (neo)
adjuvant therapy in all 22 immune cells of PDAC tissue samples.
FIGURE 2 | Correlation plot of the pairwise similarity of candidate marker genes tested to identify B cells. The pairwise similarity varies between the 11 selected
genes. Five genes (blue) showed a high pairwise similarity (≥ 0.6). These genes were selected to identify B cell infiltration in PDAC tissue samples. Six genes (yellow)
showed a low pairwise similarity (< 0.6). these genes were not used to identify B cell infiltration in PDAC tissue samples. The red color in the correlation plot
presented the highest correlation score between the genes (R2 = 1); the green color presented the lowest correlation score (R2 = 0).
April 2021 | Volume 12 | Article 649061
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The method we provided is adapted from the previously
published method based on the mathematical calculation of the
pairwise similarities between the marker genes (16). Our method
is based on using genes that are expressed above the background
threshold. It differs in the number of genes used to identify
immune cell types. We identified cells based on using at least two
unique marker genes for each cell type. In addition, to increase
the accuracy of cell definition, we chose a higher cut-off for the
pairwise similarity (≥ 0.6) (42) compared to > 0.2 that was used
in the previous publication. By increasing the threshold of the
Frontiers in Immunology | www.frontiersin.org 7
pairwise similarity, some important genes may not be used to
identify an immune cell type. However, the accuracy of the
identified immune cells will increase, which will be reflected on
the time and money that will be spend on validating immune
cells. The threshold can be adjusted to different levels in each
experiment. We used ≥ 0.6 in order to identify immune cells with
high level of accuracy that will minimize the amount of future
validation. The set of genes used to identify immune cells has
been reported to be expressed by a specific type of immune cells
and showed a similar pattern of expression in PDAC database,
FIGURE 3 | Correlation plot of the pairwise similarity of all 55 marker genes selected to identify the immune repertoire in PDAC tissue sample. Pairwise similarity plot
shows a high correlation between marker genes that identify a specific immune family and the subtype of that family. The highest correlation is shown between the
marker genes that identify a specific type of immune cell. In addition, a relatively high correlation is shown between the subtypes of immune cells of the same family
(B cells and various subtypes of B cells; T cells and various subtypes of T cells). The correlation between T cells and cytotoxic cells is lower than the other subtypes
of T cells because cytotoxic cells include both T and NK cells. The correlation plot also shows a high pairwise similarity and a high specificity of marker genes that
identify macrophages and their subtypes in PDAC tissue samples. However, the various types of dendritic cells (DCs)are more difficult to identify. Genes used to
identify DCs show a good correlation with T cells and macrophages, highlighting the need to use other marker genes (not measured by the PanCancer Immune
profile panel) to increase the accuracy of identifying DCs in PDAC tissue samples.
April 2021 | Volume 12 | Article 649061
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which increases the cumulative evidence to be included as a
marker gene in the PDAC-MGIC. The identification of immune
cells infiltrating the tumor is very important to understand the
underlying mechanisms of tumor immunogenicity (5, 6). While
the previously described PanCancer marker genes (16) can give a
comprehensive understanding of the relative immune cells’
abundance in various types of tumor tissue samples, it is
highly important to check the pairwise similarity in a given
database to ensure the accurate definition of immune cells. This
importance becomes clear by checking DCs. The previously
reported marker genes for DCs are shown to be insufficient for
PDAC samples in contrast to pan-cancer samples (Table 1).
Incorporating the PDAC-MGIC in nSolver® Advanced Analysis
Frontiers in Immunology | www.frontiersin.org 8
software enabled discovering the effect of neoadjuvant therapy
on the immune profiling of PDAC tissue samples. Our method
showed the same effect of neoadjuvant therapy in PDAC samples
as was reported before (41). However, it highlighted more clearly
that the addition of a radiotherapy regimen to FOLFIRINOX
induces more profound changes in gene expression than
FOLFIRINOX alone. This was reflected in the relative scores of
B cells, exhausted CD8+ T cells, macrophages, and neutrophils.
The same types of cells had similar scores comparing Surgery
Only group to FOLFIRINOX group, (Supplementary Figures
S1–S4). Taken together, the results indicate that the addition of
radiotherapy is necessary to stimulate immune cell infiltration in
PDAC patients.
TABLE 2 | The pairwise similarities and concordance p-values of the PDAC-MGICs compared to the default marker genes of nSolver® software, Advanced Analysis
module.

Column 2 Column 3 Column 4 Column 5 Column 6 Column 7 Column 8 Column 9 Column 10 Column 11
Cell type PDAC-

MGICs
mean

pairwise
similarity
in TCGA
PAAD
dataset

Default
marker
genes
mean

pairwise
similarity
in TCGA
PAAD
dataset

PDAC-
MGICs
mean

pairwise
similarity in
GSE129492
Surgery
Only

Default
marker
genes
mean

pairwise
similarity in
GSE129492
Surgery
Only*

PDAC-
MGICs

concordance
in

GSE129492
Surgery Only

Default
marker
genes

concordance
in GSE129492
Surgery Only*

PDAC-
MGICs
mean

pairwise
similarity in
GSE129492
Neoadjuvant

Default
marker

genes mean
pairwise

similarity in
GSE129492

Neoadjuvant*

PDAC-
MGICs

concordance
in

GSE129492
Neoadjuvant

Default
marker
genes

concordance
in GSE129492
Neoadjuvant*

B cells 0.84 0.71 0.92 0.87 0.00 0.00 0.70 0.59 0.00 0.01
Plasma B
cells

0.71 0.90 0.00 0.71 0.00

Regulatory B
cells

0.72 0.44 0.24 0.60 0.06

Cytotoxic
cells

0.7 0.64 0.59 0.54 0.00 0.01 0.43 0.46 0.01 0.01

Dendritic
cells

0.7 0.48 0.80 0.19 0.04 0.43 0.37 0.08 0.21 0.58

Conventional
Dendritic
cells 1

0.68 0.53 0.18 0.71 0.02

Conventional
Dendritic
cells 2

0.75 0.48 0.21 0.37 0.20

Macrophages 0.55 0.64 0.49 0.55 0.23 0.07 0.68 0.59 0.03 0.01
Antigen
presenting
cells

0.8 0.85 0.02 0.58 0.08

M2
Macrophages

0.84 0.67 0.09 0.76 0.01

Mast cells 0.73 0.76 0.67 0.67 0.09 0.10 0.59 0.59 0.08 0.06
Monocytes 0.71 0.62 0.04 0.48 0.06
Natural Killer
cells

0.42 0.25 1.00 0.45 0.18

Natural Killer
CD56+ dim
cells

0.26 0.37 0.70 0.28 0.13

Neutrophils 0.67 0.52 0.68 0.46 0.09 0.22 0.24 0.43 0.35 0.16
T cells 0.88 0.87 0.82 0.82 0.00 0.00 0.51 0.51 0.01 0.01
CD4+ T cells 0.61 0.66 0.10 0.48 0.14
CD8+ T cells 0.86 0.86 0.07 0.07 0.58 0.546 0.73 0.73 0.02 0.02
Exhausted
CD8+ T cells

0.68 0.43 0.54 0.59 0.11 0.074 0.21 0.06 0.35 0.56

Regulatory T
cells

0.73 0.81 0.04 0.70 0.04
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Asterisk (*) Only genes available in the PanCancer immune profiling panel (Platform GPL19965) are used to calculate the pairwise similarity. Underlined cell types are newly defined in
comparison to the default of nSolver® Advanced Analysis module of NanoString technology.
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It should be noted that our method should be used to describe
the relative scours of immune cells in two or more groups of
samples, but it does not support estimating the absolute number
of immune cells. Using a gene expression-based method to
identify immune cells does not allow distinguishing between
the number and the activity of cells. In addition, the definition of
immune cells based on using one marker gene only like NK cells,
NK CD56+ dim cells, and Helper 1 T cells, or cells that showed
pairwise similarity < 0.6, remains not very accurate. However, in
this study, we showed that the pairwise similarity is consistent
between different databases (Table 2). Few exceptions were
found, for example in CD8+ T cells, which highlights the huge
effect of neoadjuvant therapy on the expression of genes that
identify CD8+ T cells. CD8+ T cells were identified by using very
specific and accurate genes: CD8A and CD8B genes. Therefore,
the results reflect the effect of neoadjuvant therapy on the relative
scours of CD8 cells. A recent publication described the immune
landscape by estimating 22 different immune cells in PDAC
samples using CIBERSORTx (43). The immune estimation was
correlated to the molecular subtypes and the survival of the
patients. Interestingly, the number of estimated immune cells
Frontiers in Immunology | www.frontiersin.org 9
was the same as we identified in our method. However, the
immune subtypes do not completely overlap (Supplementary
Table S1). In the study of Liu et al. (43), immune cells were
computed by using LM22 gene signature containing 547 genes as
reference. Opposite to our method, genes are not mutually
exclusive. Although, an assumption is made by using mutually
exclusive genes, our method can be used to estimate the relative
abundance of 22 immune cells using 55 genes only. Furthermore,
all marker genes described in our method are specifically
measured in PDAC tissue samples, contrary to the LM22 gene
signature reference. In addition, our method can be applied using
gene expression data generated from samples that were preserved
differently like FF and FFPE tissue samples or blood samples.
Identifying PDAC specific immune cells using the PDAC-
MGICs enables revealing the effect of any type of therapy in
various clinical settings and clinical trials. Moreover, applying
the method on data generated from blood samples supports
monitoring the progression of patients, and maybe informative
to direct therapeutic decisions.

Our method is easily tailored and applicable to identify specific
immune cells in any type of tissue samples. Nevertheless, we
FIGURE 4 | The impact of using PDAC-MGICs to identify immune cells in PDAC tissue samples. Comparing the relative immune scores using mRNA expression
data of 6 tissue samples of patients who were subjected to surgery before receiving any treatment (Surgery Only). Immune cells were identified using the PDAC-
MGICs set (purple) or the default marker genes in nSolver® Advanced Analysis module of NanoString technology (yellow). All cell types were relative to the total
infiltration of CD45+ expression. Identifying immune cells based on the PDAC-MGICs shows a significant variation (p-value < 0.05) in Macrophages, Neutrophils,
Natural Killer cells, and Tregs cells.
April 2021 | Volume 12 | Article 649061
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highlight the importance of selecting and testing the marker genes
critically for each tissue type. It has been shown that marker genes
can be specified for each type of tissue samples (17). The candidate
marker gene list can be checked and narrowed down to a more
specific marker gene list by calculating the pairwise similarity
between all pairs of genes to ensure the accurate identification of
immune cells in any type of tissue samples. Once the marker genes
for each immune cell have been identified and checked, the
expression of the genes for each immune cell type can be
compared between the groups of interest. This method can be
applied using any RNA databases (sequencing or gene expressions).
The use of single-cell sequencing has shown that cells of the same
type can have different gene expression present (44). Furthermore,
the assumption that the gene markers are exclusively expressed by
one specific cell type is in many cases hard to prove. Therefore, we
believe that the described method can accurately estimate the
relative score of immune cells based on their marker
genes definition.
Frontiers in Immunology | www.frontiersin.org 10
CONCLUSION

We provided a method to identify specific immune cells in
PDAC tissue samples based on using mRNA expression of
marker genes (PDAC-MGICs). In addition, we validated and
utilized the PDAC-MGICs to delineate the effect of various (neo)
adjuvant treatments on the immune landscape in PDAC tissue
samples. The PDAC-MGICs set reflects the immune
microenvironment of PDAC tumor tissue sample, however, it
can be easily tailored and applicable to identify specific immune
cells in any type of tissue samples.
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Supplementary Table 1 | The 22 immune cells estimated in PDAC samples
using PDAC-MGICs and LM22 gene signature (CIBERSORTx).

Supplementary File 1 | Detailed information about all marker genes that were
chosen as candidate genes (PDAC-cMG), and the selected marker genes to identify
immune cells in PDAC (PDAC-MGICs). The file contains all the pairwise similarity
values between genes used to identify the immune cells in PDAC tissue samples.
Genes highlighted with green were selected to identify immune cells; genes
highlighted with red were not selected. The pairwise similarity values ≥ 0.6 were
highlighted with gray color.

Supplementary Figure 1 | The relative scores of B cells in 4 types of PDAC
tissue samples of patients who were subjected to (neo)adjuvant therapy. The
relative scours of B cells were calculated using the PDAC-MGIC (purple), or the
default genes in nSolver® software, the Advanced Analysis module (yellow).

Supplementary Figure 2 | The relative scores of exhausted T cells in 4 types of
PDAC tissue samples of patients who were subjected to (neo)adjuvant therapy. The
relative scours of exhausted T cells were calculated using the PDAC-MGIC (purple),
or the default genes in nSolver® software, the Advanced Analysis module (yellow).

Supplementary Figure 3 | The relative scores of macrophages in 4 types of
PDAC tissue samples of patients who were subjected to (neo)adjuvant therapy. The
relative scours of macrophages were calculated using the PDAC-MGIC (purple), or
the default genes in nSolver® software, the Advanced Analysis module (yellow).

Supplementary Figure 4 | The relative scores of neutrophils in 4 types of PDAC
tissue samples of patients who were subjected to (neo)adjuvant therapy. The
relative scours of neutrophils were calculated using the PDAC-MGIC (purple), or the
default genes in nSolver® software, the Advanced Analysis module (yellow).
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