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Esophageal cancer (EC) is one of the most common mucosa-associated tumors, and is
characterized by aggressiveness, poor prognosis, and unfavorable patient survival rates.
As an organ directly exposed to the risk of foodborne infection, the esophageal mucosa
harbors distinct populations of innate immune cells, which play vital roles in both
maintenance of esophageal homeostasis and immune defense and surveillance during
mucosal anti-infection and anti-tumor responses. In this review, we highlight recent
progress in research into innate immune cells in the microenvironment of EC, including
lymphatic lineages, such as natural killer and gdT cells, and myeloid lineages, including
macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, mast cells
and eosinophils. Further, putative innate immune cellular and molecular mechanisms
involved in tumor occurrence and progression are discussed, to highlight potential
directions for the development of new biomarkers and effective intervention targets,
which can hopefully be applied in long-term multilevel clinical EC treatment. Fully
understanding the innate immunological mechanisms involved in esophageal mucosa
carcinogenesis is of great significance for clinical immunotherapy and prognosis
prediction for patients with EC.
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INTRODUCTION

According to an analysis of 36 cancer types in 185 countries,
esophageal cancer (EC) accounts for approximately 3.2% of
incidence and 5.3% of mortality attributable to total cancers
(1). Risk factors for EC include smoking, alcohol consumption,
low fruit intake, and high body-mass index, and it is becoming a
major disease burden worldwide (2). There are two main types of
EC, esophageal adenocarcinoma (EAC) and esophageal
squamous cell carcinoma (ESCC) (3). EAC is most common in
developed countries (e.g., Europe and America), while ESCC
mainly occurs in developing countries, including eastern Asia
and Africa, and particularly China, which had the highest age-
standardized incidence, mortality, and disability-adjusted life-
years rates among 195 countries in 2017 (2). Due to the lack of
reliable diagnostic indicators, the prognosis of patients with EC
remains relatively poor; while surgical resection can prolong
patient survival, rates of recurrence and metastasis remain high,
with 5-year survival rates only 15%–25% (3, 4). In many patients
who cannot benefit from esophagectomy, immune status
determines sensitivity to radiotherapy and chemotherapy (3).

The recent realization that the involvement of innate immune
system in the process of defending mucosal-associated infection
and tumors has fuelled the accelerated interest in the roles of
innate immune cells in the pathogenesis of EC. The esophageal
mucosa harbors numerous innate immune cells, which is
attributed to their quick responses when encountering foreign
foodborne antigens (4, 5). The partial exposure of the esophageal
mucosa to the external environment makes it vulnerable to
pathogen attack, which can cause long-term inflammation that
may develop into esophageal dysplasia and subsequently cancer
(6). Via recognizing molecular alterations caused by microbial
infections (7) or cancer cells with multiple genetic mutations (8),
innate immune cells can induce effector responses such as
cytotoxicity by natural killer (NK) cells and phagocytosis by
macrophages. Besides, they can initiate adaptive immune
responses by antigen presentation to tumor-specific CD8+ T
antigen-presenting cells (APCs) (9). Innate immune cells can
also exert effector functions after antibody induction, including
antibody-dependent cellular cytotoxicity or phagocytosis, which
Abbreviations: APCs, antigen-presenting cells; BE, Barrett’s esophagus; CAR,
chimeric antigen receptor; CCR2, CC chemokine receptor 2; DCs, dendritic cells;
EC, esophageal cancer; EAC, esophageal adenocarcinoma; ESCC, esophageal
squamous cell carcinoma; FcR, Fc receptor; FGF2, fibroblast growth factor 2;
FGFR1, fibroblast growth factor receptor 1; HMGB1, high-mobility group box 1;
HSP, heat shock protein; IDO1, indoleamine 2,3-dioxygenase 1; iNOS, inducible
nitric oxide synthase-2; ILCs, innate lymphoid cells; LAMP3, lysosome-associated
membrane glycoprotein 3; MCs, mast cells; MCP-1, macrophage chemotactic
protein-1; MDSCs, myeloid-derived suppressor cells; M-MDSCs, mononuclear
myeloid-derived suppressor cells; MMP9, matrix metalloproteinase 9; NETs,
neutrophil extracellular traps; NK, natural killer; NAC, neoadjuvant
chemotherapy; NLR, neutrophil to lymphocyte ratio; OS, overall survival; PMN-
MDSCs, polymorphonuclear myeloid-derived suppressor cells; RCAS1, receptor-
binding cancer antigen expression on SiSo cells; RLRs, RIG-I-like receptors;
SIRPa, signal regulatory protein-a; TLRs, targeting toll-like receptors; Tregs,
regulatory T cells; TK1, tissue kallikrein; TAMs, tumor-associated macrophages;
TANs, tumor-associated neutrophils; TME, tumor microenvironment; TNF,
tumor necrosis factor; TP, thymidine phosphorylase; VEGF, vascular
endothelial growth factor.
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rely on Fc receptor (FcR) expression (9). Cancer cells can escape
from anti-tumor immune responses by promoting polarization
toward immunosuppressive cell phenotypes, including tumor-
associated macrophages (TAMs) and dendritic cells (DCs),
recruiting immunomodulatory cells, such as myeloid-derived
suppressor cells (MDSCs) and regulatory T cells (Tregs), and
inducing over-expression of immune checkpoint molecules by
NK or T cells (10). Due to the plasticity of innate immune
cells, another strategy of tumor immune escape is to enable
them to orchestrate the angiogenic switch under tumor
microenvironment (TME) stimuli, to support the tumor
progression (5, 11). Given the important defensive and
regulatory roles of innate immune cells in cancer progression,
extensive attention has been focused on their pathogenic or
protective functions in the microenvironment of many solid
tumors (12). Clinical immunotherapy approaches based on
innate immune cells, including inhibitors targeting immune
checkpoints, such as PD1/PD-L1, CTLA4, TIGIT, CD96,
TIM3, and LAG3, as well as bispecific antibodies or chimeric
antigen receptor (CAR) T cells, to promote specific T cell
responses, have been extensively studies and have potential for
use as adjuvant therapies, alongside surgical resection and
chemoradiotherapy, to treat cancers (9, 13). Therefore,
adequate understanding of how variations of innate immunity
in the TME affect EC pathogenesis is of great practical
significance for clinical treatment. However, until now, the
roles of innate immune cells in EC have not been
comprehensively described.

Herein, we review recent progress in understanding of the
roles of innate immune cells, including NK cells, gdT cells,
TAMs, DCs, MDSCs, neutrophils, mast cells (MCs) and
eosinophils in the TME of EC, as well as the underlying
cellular and molecular mechanisms involved in tumor
occurrence and progression, with the aim of providing
directions for combined immunotherapy strategies and
prognosis prediction.
NK CELLS

The innate immune system serves as the front line of host
defense against pathogen invasion and tumor, in which NK
cells play a vanguard role due to their powerful cytotoxic activity
(14). NK cells express various activating and inhibitory receptors
for tumor cell recognition and are the primary force in innate
anti-tumor immune surveillance, playing vital roles in inhibiting
cancer development at early stages, and in controlling cancer
metastasis (13, 15). NK cells can initiate anti-tumor responses
through directly killing tumor cells, secreting cytokines,
including IFN-g and TNF-a, and recruiting other anti-tumor
immune cells (13). Studies indicated that infiltrating NK cell
density in the EC TME is positively correlated with patient
overall survival (OS) and favorable postoperative prognosis
(16, 17). NK cells in the TME of EC can recognize and kill
tumor cells via NKp30/B7-H6 pathway, which substantially
contributes to NK cell-mediated immune responses (16).
April 2021 | Volume 12 | Article 654731
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However, EC patients with high B7-H6 expression have inferior
survival, primarily because EC cells can secret soluble B7-H6,
which competitively binds the NKp30 receptor on NK cells,
thereby inhibiting NKp30-mediated killing (16). Interestingly,
IL-17 secreted by CD4+Foxp3- Th17 cells can increase NK cell
numbers by stimulating EC cells to produce chemokines (CXCL9
and CXCL10), and augment NK cell activation and function by
enhancing their TNF-a, IFN-g, granzyme B, and perforin
production, and the expression of activating receptors (NKp46,
NKp44, NTB-A, and NKG2D) (17, 18). Nevertheless, an
important mechanism by which tumor cells counteract NK
cells is by promoting over-expression of immune checkpoints
and down-regulation of activating receptors on NK cells,
inducing their dysfunction and exhaustion (13). Up-regulated
expression of the inhibitory receptor, Tim-3, on EC tumor-
infiltrated NK cells is accompanied by NK cell dysfunction and
exhaustion, and associated with tumor invasion depth, nodal
status, and advanced clinical stage (19). Furthermore, increased
PD1 expression on peripheral and tumor-infiltrating NK cells
can inhibit their IFN-g secretion and CD107a expression through
the PD-1/PD-L1 pathway, and is associated with poor survival of
EC patients (20) (Figure 1).

Cancer cells can promote a suppressive TME, which
challenges anti-tumor immunity by inducing an imbalance in
activating and inhibitory immune cell signaling, suppressive
factor secretion, and recruitment of suppressive immune cells.
In principle, CD56dim NK cells, which exhibit higher
cytotoxicity, are more sensitive to apoptosis than CD56bright

NK cells in the presence of physiological H2O2 levels; large
amounts of H2O2 can be produced in the TME of EC, which
Frontiers in Immunology | www.frontiersin.org 3
contributes to reduced infiltration by CD56dim NK cells as
tumors develop (21). Consistently, NK cell numbers in the
circulation and omentum of patients with EAC were
significantly reduced and skewed toward the CD56bright

phenotype with increased IL-10 and reduced NKp46 and TNF-
a production, exhibiting reduced toxicity and inhibited function
(22). Similarly, in ESCC patients, with the down-regulation of
CD16 and increased expression of CD56, the NK cell levels were
also declined in the tumors and exhibited an exhausted
phenotype (23, 24), demonstrating the vital roles of the
suppressive microenvironment formed by cancer cells in
altering NK cell phenotype and activity (Figure 1).

Although existing studies on EC have provided a preliminary
understanding of anti-tumor effects of NK cells, there is still not
enough to fully outline the roles and prognostic significance of NK
cells involved in EC. Recently, a study in human hepatocellular
carcinoma reported that breaking the balance between active
receptor CD226 and inhibitory receptors CD96 and TIGIT lead
to impaired NK cell function (25). Other than the attenuation of
targeting and killing of tumor cells and acquisition of tolerogenic/
immunosuppressive behavior, tumor-associated NK cells can
acquire pro-angiogenic activities favoring tumor progression due
to TME stimuli in various solid malignancies including prostate
cancer, lung cancer and colon cancer, which inspires us to pay
attention to the full-scale immune function of NK cells in EC (11,
26). The significance of investigations on the function of NK cells
lies in facilitating the development of NK cell-based
immunotherapy in EC. Indeed, studies from an ESCC animal
model revealed that IL-18 deficiency can down-regulate local NK
cell anti-tumor immunity by decreasing their IFN-g production,
A B

FIGURE 1 | Roles of natural killer cells in the esophageal cancer tumor microenvironment. (A) Natural killer (NK) cells exert essential anti-tumor functions through
degranulation, cytokine release, and activated receptor expression, directly killing esophageal tumor cells in the absence of antigen recognition in the tumor
microenvironment (TME). (B) Cancer cells can escape from NK cell immune surveillance in the TME through the PD-1/PD-L1 pathway and the competitive
combination of activated NKp30 receptor, expressed on NK cells, by releasing soluble B7-H6 (indicated as sB7-H6). Otherwise, large amounts of H2O2 produced by
tumor infiltrated macrophages in the TME are prone to induce CD56dim NK cell apoptosis, while CD56dim NK cells can also transform to a CD56bright phenotype
during tumor development, as well as decreasing in number and becoming dysfunctional.
April 2021 | Volume 12 | Article 654731

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cui et al. Innate Immune Cells in EC
suggesting that exogenous IL-18 supplementation has potential to
delay EC development (27). Furthermore, NK cells expanded in
vitro have high cytotoxicity against ESCC cells expressing
NKG2DLs, particularly those exhibiting an epithelial-
mesenchymal transition (EMT) phenotype, raising the
possibility of clinical therapy targeting these NK cells in patients
with ESCC (18). However, much remains to be done before these
findings can be applied to the clinical treatment of EC.
gdT CELLS

As important contributors to innate immunity, gdT cells perform
complex roles, including immune surveillance, immune
regulation, and effector functions (28); they can be divided into
two types according to their T cell receptor d chain: Vd1 and Vd2
T cells. The former exists in healthy epithelium and participates
in maintaining epithelial homeostasis, whereas the latter is
present on 70% of total peripheral gdT cells (29). Flow
cytometry analysis of gdT cells from patients with EC revealed
that the majority of peripheral circulatory gdT cells expressed the
Vg9 and Vd2 T cell receptors and exhibited cytotoxicity against
EC cells, mainly by recognizing heat shock protein (HSP) 60 and
HSP70 on the tumor cell surface (30). However, Vd1+ T cells are
dominant in the TME of ESCC, possibly because activated Vd1+

gdT cells in peripheral blood can adhere to ESCC cells and
fibroblasts via adhesion molecules, including LFA-1 (CD11a),
CD49d, CD49e, L-selectin, and CD103, whereas Vd2 T cells can
only use a few adhesion molecules, including LFA-1, L-selectin,
and CD44v6 (31).

The role of gdT cells in EC is far from well understood.
Although gdT cells make up a small population of tissue-resident
lymphocytes, they constitute an important first line of defense
against infections, autoimmune diseases and tumors, especially
in the mucosal barrier such as the skin, lung, liver, tongue, genital
tract and peritoneal cavity (32–34). However, the alterations in
gdT cell subsets and functions, as well as their prognostic and
diagnostic significance in the EC remains obscure. Indeed, we
have been focusing on the role of tissue-resident gdT cells in lung
cancer for years, and have illustrated the involvement of gdT17
cells in the effective immune surveillance of lung mucosa shaped
by microbiota, as well as in the control of melanoma in the
elderly (35, 36). It is worth pondering whether commensal
bacteria engage in the maintenance of esophageal homeostasis
and the occurrence and progression of EC, and importantly,
whether the roles of gdT cells are involved. Recently, we also paid
attention to the variations of tissue-resident gdT cells in surgical
ESCC specimens, and hope to clarify the functions of these gdT
cells in the tumor progression and its prognostic and diagnostic
value in ESCC in future study.
TAMs

Accounting for up to half of the total, TAMs are the most
abundant infiltrated leukocyte in tumors and have two
Frontiers in Immunology | www.frontiersin.org 4
functionally polarized phenotypes in the TME: classically
activated M1, and alternatively activated M2, macrophages
(37). In the initial stages of various tumors, TAMs are
preferentially polarized toward the M1 phenotype, producing
abundant proinflammatory cytokines, including IL-12 and
TNF, and exerting anti-tumor functions (38); however, on
cancer progression and changes in the TME, TAMs, driven by
tumor cell- and T cell-derived cytokines, including IL-4, IL-13,
and IL-10, gradually acquire a polarized M2 phenotype,
expressing mannose and the scavenger receptors, CD163 and
CD204, and exhibit distinct functional properties that promote
angiogenesis, as well as tissue remodeling and repair (37). The
downstream signaling pathways activated by the numerous
proteins and molecules produced by tumor cells and TAMs in
the TME can increase TAM infiltration in EC, which is
correlated with unfavorable prognosis and OS (39). For
example, cysteine-rich angiogenic inducer 61 (Cyr61) from
tumor cells and TAMs may contribute to the increase in
CD204+ TAMs via MEK/ERK pathway activation in ESCC
TME (40). Cancer cell-derived fibroblast growth factor 2
(FGF2) can facilitate TAM survival and migration through
AKT/ERK signaling, activated by neural cell adhesion
molecule 1-enhanced classical FGF receptor 1 (FGFR1) and
intracellular FGF2/FGFR1 signaling. These tumor-infiltrating
TAM are skewed toward CD163+ M2 phenotype under the
action of the transcription factor, GATA3, and cytokines,
including IL-4, IL-6, and IL-13, and promoted an
immunosuppressive TME in EAC (33). The similar event
happened in ESCC, for that CD68+PD-1+ TAMs in the ESCC
TME are skewed toward an M2 phenotype (41), which can lead
to elevation of tumor cell PD-L1 expression and promote tumor
cell invasion and migration, associating with poor OS (42).
Moreover, a study of EC patients who received neoadjuvant
chemotherapy (NAC) followed by surgery demonstrated that
high tumor CD163+ M2 macrophage infiltration is an
independent predictor of response to NAC, and associated
with poor prognosis and OS (43).

In fact, TAMs are involved in a variety of pathways that
promote tumor progression of EC. The activation of the AKT/
ERK pathway is the driving force to promote tumor cell growth,
migration and invasion in EC (39, 44). This AKT/ERK pathway
can be triggered by multiple factors derived from TAMs or
cancer cells themselves, involving the FGF2/FGFR1 signaling we
mentioned above (39), growth differentiation factor 15 induced
in TAMs and derived from cancer cells (possibly through TGF-b
type II receptor) (39, 44), overexpression of ANXA10 by cancer
cells interacting with CD204+ TAMs (41), and high CXCL8
expression in TAMs and cancer cells (through the CXCL8-
CXCR1/CXCR2 axis) (42), which are closely correlated with
tumor invasion depth, lymph node metastasis and poor
prognosis and OS of ESCC patients.

Another mechanism that the increased CD163+ TAM in the
TME promote ESCC tumor progression is that they can augment
angiogenesis by releasing thymidine phosphorylase (TP) under
the influence of macrophage chemotactic protein-1(MCP-1) (45,
46), inducing vascular endothelial growth factor (VEGF)
April 2021 | Volume 12 | Article 654731
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expression in EC cells (45, 47), and promoting stromal cell
matrix metalloproteinase 9 (MMP9) production (48). CD163+

TAM distribution in tumor sites is closely related to EMT (49),
possibly because their IL-1b production can enhance EMT,
promoting tumor cell migration and invasion (50).
Additionally, MCP-1 expression levels in the TME are
positively correlated with increased stromal cell and TAM CC
chemokine receptor 2 (CCR2) expression, associated with tumor
invasion depth, lymph node metastasis, and distant metastasis,
and predict poor prognosis in patients with ESCC (45–47).

The majority of research on TAMs in EC has concentrated on
ESCC. The clearly increased numbers of TAMs in both tumor
structures and stroma is significantly negatively correlated with
EC patient survival (43, 51–53). Under the combined action of
various factors in esophageal TME, TAMs are gradually skewed
toward an M2 phenotype, which is closely associated with
angiogenesis and tumor aggressiveness, and thus predicts poor
prognosis in patients with EC (Figure 2) (48). The M2/M1
macrophage ratio in esophageal tumors can serve as a sensitive
indicator predicting lymph node metastasis and patient
prognosis (54). To our knowledge, there is currently no
TAMs-based immunotherapy strategy in EC. Study of an N-
nitrosomethylbenzy-lamine-induced ESCC animal model
suggested that CCL2-CCR2 signaling activation participates in
TAM recruitment into the TME, which can promote immune
evasion and tumor progression through the PD-1/PD-L2
Frontiers in Immunology | www.frontiersin.org 5
pathway, indicating potential intervention and immunotherapy
strategies targeting TAMs in patients with ESCC (47).
DCs

As the main professional APCs, DCs are essential for triggering
and regulating antigen-specific immune responses, and
closely connect innate and acquired immunity. Human DCs
are a heterogeneous population consisting of two types of
conventional DC (cDC), cDC1 and cDC2, and plasmacytoid
dendritic cell subsets in equilibrium, plus inflammatory DCs,
which are generated in response to inflammation, and
Langerhans cells (LCs), which originate from embryonic
monocytes and can self-renew (55). DCs distributed in the
esophageal mucosa are generally LCs, which remain in an
immature immune state under normal conditions, rapidly
maturing into professional APCs after capturing pathogen or
tumor associated-antigens, to trigger T cell activation and
immune responses (56). Mature DCs express various
important markers, including CD80, CD86, and CD208. DCs
at different stages of maturity are uniquely distributed in the
ESCC TME. Abundant CD1a+ immature DCs are distributed in
the cancerous epithelium, while fewer CD208+ mature DCs are
present in the tumor stroma, particularly the peri-tumoral region
(57). In ESCC, DC density indicates the immune defense status
A

B

FIGURE 2 | Interactions between tumor infiltrating macrophages, cancer cells, and stromal cells via multiple immune factors in the esophageal cancer tumor
microenvironment. (A) tumor infiltrating macrophages (TAMs) transform from an anti-tumor M1 phenotype to a pro-tumor M2 phenotype with tumor progression,
under the influence of the transcription factor, GATA3, and cytokines, including IL-4, IL-6, and IL-13. (B) By producing various immune factors, or interacting
with cancer cells and stromal cells to promote their release of associated components, TAMs are closely correlated with epithelial to mesenchymal transition,
angiogenesis, cancer cell survival and migration, invasion depth, and lymph node metastasis, and generally predict poor prognosis and survival in patients with
esophageal cancer.
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of the host against the carcinoma, as patients with marked DC
infiltration in tumors survive for longer than those with low DC
density (58).

DC maturity in the TME is closely related to cancer
progression (59). Importantly, the amount of intratumor
mature DCs expressing lysosome-associated membrane
glycoprotein 3 (LAMP3), is closely associated with tumor-
infiltrated CD8+ T cell numbers, which predict favorable
prognosis in patients with ESCC (60). In clinical studies,
preoperative chemoradiotherapy was shown to lead to
significant increases high-mobility group box 1 (HMGB1)
protein levels in the ESCC TME. HMGB1 is closely related to
DC maturation and positively correlated with patient survival
(61). Additionally, by stimulating cancer cells to release
inflammatory chemokines (CCL2 or CCL20), IL-17A-
producing cells can enhance CD1a+ DC infiltration of the
TME, which is correlated with favorable OS of patients with
ESCC (18). These reports highlight the connections between DC
maturity and EC tumorigenesis and development.

Interactions of tumor and immune cells with the cytokines/
chemokines they produce in the EC TME generate complex
regulatory networks, which significantly impact DC phenotype
and function, thereby influencing tumor progression. DC
immune functions are impaired both in the circulation and at
tumor sites in patients with EC, and this is accompanied by
decreased CD80 and CD86 expression (62). The reduced activity
and function of these infiltrated DCs involves mutated p53
protein overexpression in tumors (63). Compared with benign
Barrett’s esophagus (BE), DC density is dramatically increased in
adenocarcinoma (64), along with decreased C1q expression,
which contributes to immune complex capture and subsequent
classical complement activation pathway initiation, indicating
the potential roles of DCs in EAC dysplasia and tumorigenesis
(65). Esophageal tumor cells can also induce production of the
tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase 1
(IDO1) and/or expression of PD-L1 by immunosuppressive
DCs, which can promote immune tolerance by inhibiting
CD8+ T cell infiltration and inducing immunosuppressive
Tregs, and are associated with poor prognosis in EC patients
(3, 66–68). The density of receptor-binding cancer antigen
expression on SiSo cells (RCAS1) in esophageal tumor tissues
with dramatic DC infiltration was inclined to accompany a
decrease in TILs, suggesting that RCAS1 can promote tumor
cell escape from immune surveillance by inducing DC-activated
TIL apoptosis (69). Further, CD47, a cell transmembrane protein
expressed in ESCC tumor cells, can inhibit CD8+ T-cell
infiltration and anti-tumor immune responses in a DC-
dependent manner, by interacting with signal regulatory
protein-a (SIRPa), expressed in DCs (70).
MDSCs

MDSCs are generated in the bone marrow and rapidly
differentiate into macrophages, DCs, neutrophils, eosinophils,
basophils, and mast cells in healthy individuals; however, when
Frontiers in Immunology | www.frontiersin.org 6
cancer occurs, MDSCs can migrate into peripheral lymphoid
tissues and tumor sites, contributing to TAM formation (71, 72).
MDSCs can be polymorphonuclear (PMN-MDSCs) or
mononuclear (M-MDSCs). PMN-MDSCs are morphologically
and phenotypically similar to neutrophils, while M-MDSCs are
similar to monocytes (71); both have immunosuppressive
functions, mainly targeting T cells through Arginase-1 and
inducible nitric oxide synthase-2 (iNOS) (73).

In ESCC patients, circulating MDSC numbers are elevated,
accompanied by high PD-L1 expression (74). Concurrently,
MDSC-derived TGF-b can induce high PD-1 expression on
CD8+ T cells in the TME (75). Hence, MDSCs can exert
immunosuppressive functions on T cells via the PD-1/PD-L1
pathway and are correlated with tumor burden, lymph node
metastasis, and tumor stage (74). Importantly, IL-6 exerts vital
roles in MDSC induction and their production of ROS,
Arginase 1, and p-STAT3 (76). Circulating MDSC numbers
and IL-6 levels in the TME are positively correlated with NLR,
predicting poor OS in ESCC patients (77). The cell-cell junctions
formed by interaction between p120ctn and E-cadherin
are critical in maintaining normal esophageal epithelial
homeostasis; however, p120ctn expression in the ESCC TME is
decreased or absent, leading to E-cadherin degradation and
NF-kB, AKT, and STAT3 phosphorylation in cancer cells,
promoting cancer cell GM-CSF release, which can recruit
MDSCs into the TME. NF-kB signaling activation in MDSCs
up-regulates their IL-4RA expression and nitric oxide production,
thereby inhibiting CD8+ T cell cytotoxicity and contributing to a
TME conducive to tumor cell growth (78). Further, in a
conditional p120-ctn knockout mouse model of oral-EC,
expression of the receptor CD38 induced by tumor-derived IL-6,
IGFBP-3, and CXCL16, promoted arrest of MDSC maturation in
an immature state, with stronger inhibitory functions of activated
T cells through production of iNOS, among other factors, thus
promoting tumor growth (79).
NEUTROPHILS

Tumor-associated neutrophils (TANs) have a different
phenotype and cell/chemokine activity from circulating
neutrophils (80). TANs can be functionally divided into anti-
tumor N1 and cancer-promoting N2 phenotypes. TGF-b in the
TME contributes to the transformation of neutrophils from N1
to N2 (80, 81). Further, neutrophil phenotype and function in the
TME change with tumor development. In early stage tumors,
neutrophils are only on the tumor periphery and exhibit anti-
tumor effects, while in later stages, they can penetrate the tumor
and demonstrate pro-tumor effects (82). Studies on neutrophils
in cancer have focused on the neutrophil to lymphocyte ratio
(NLR), as it is impossible to classify N1/N2 neutrophils using
surface markers (83). The NLR is usually derived from routine
blood tests, and may reflect changes in the TME and systemic
inflammation status (84), which are independent prognostic
indicators in patients with EC (85). NLR and platelet-to-
lymphocyte ratio are associated with EC progression (86), and
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elevated preoperative NLR is related to lymph node
metastasis, deeper tumor invasion, and advanced TNM
stage (87), predicting poor prognosis and OS in patients who
have undergone esophagectomy (85, 88, 89). In addition
to de fend ing aga ins t microbia l invas ion through
phagocytosis and degranulation, neutrophils can undergo
apoptosis after activation, and then form neutrophil
extracellular traps (NETs), fibrinoid structures comprising
extracellular chromatin and granulocyte proteins, including
myeloperoxidase and neutrophil elastase, which were
discovered because of their pathogen-trapping function, which
can promote tumor metastasis by capturing circulating tumor
cells and causing their proliferation at a second site (83, 90). In
EC patients without surgical stress or any other stimuli, tumors
alone can induce high levels of circulating NETs, which are
predictive of positive lymph node status, distant metastasis, and
advanced disease stage (91).

The functions of neutrophils in the TME, influenced by
various cytokines and/or chemokines, are controversial (92).
By changing the esophageal microenvironment and gut
bacteria, a high-fat diet can cause esophageal dysplasia, which
promotes the development of BE into EAC, which involves IL-8
chemokine family activation and neutrophil recruitment, along
with NK cell reduction, suggesting that increased neutrophils
may inhibit NK cell-mediated tumor cell cytotoxicity and
indicate poor prognosis (93). Conversely, in the ESCC TME,
IL-17 [mainly produced by CD4+ Foxp3- Th17 cells (17)]
stimulates tumor cells chemokine (CXCL2 and CXCL3)
production, causing accumulation and activation of
myeloperoxidase+ TANs, which increase their killing capacity
by releasing cytotoxic molecules, including IFN-g, reactive
oxygen species (ROS), and TNF-related apoptosis-inducing
ligand, and predict favorable prognosis in ESCC patients (94).
MCs AND EOSINOPHILS

MCs mainly localize to areas where organisms are likely to come
into contact with pathogens or harmful substances, including the
gastrointestinal tract, respiratory mucosa, and skin, and act as
multifunctional immune cells involved in both innate and
adaptive immunity in health and various disease states (95). In
several human cancers, MCs recruited by stem cell factor or
other mast cell activators in the TME, release angiogenic factors
and proteases to promote blood vessel formation and degrade the
extracellular matrix, leading to tumor cell invasion; however,
they can also release ROS/TNF-a, tryptase, heparin, IL-1, IL-4,
and IL-6, among other factors, to inhibit tumor cell growth and
apoptosis (96). In the ESCC TME, high MC density is positively
correlated with tumor angiogenesis, lymph node metastasis,
invasion depth, and tumor progression (97, 98), and a
predictor of poor survival in ESCC patients (97, 99).
Furthermore, activated MCs in EC tissue express high levels of
tissue kallikrein (TK1), which may subsequently generate
mitogenic kinin, a promoter of tumor cell growth (100).
Interestingly, another study found that the presence of a group
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of MCs able to produce IL-17 in the esophageal muscularis
propria, rather than in tumor nests, is positively correlated with
the level of activated CD169+ macrophages and effector CD8+ T
cells in the same region, indicating favorable prognosis and
survival (101). It is noteworthy that IL-17 released from Th17
cells in the EC TME, as we mentioned above, was involved in
recruiting cells with anti-tumor effects including NK cells,
neutrophils, and CD1a+ DCs, so whether MCs participated in
this process deserves further attention.

Eosinophils usually cluster together with MCs in tissue sites
under both homeostatic and inflammatory conditions (102).
With similar developmental and functional patterns, such as
releasing cationic proteins pre-stored in cytoplasmic granules by
degranulation upon activation, they often participate in host
responses to helminth infection and allergic disease in a
synergistic manner (102, 103). Based on their abilities to
release cytokines, eosinophils are being recognized to be also
involved in local immunity, tissue homeostasis, remodeling, and
repair in multiple previously unexpected tissues, especially the
mucosal tissues such as gut and esophageal (104–106). For
example, eosinophil infiltration is a typical feature of
eosinophilic esophagitis, an allergic disease associated with
epithelial barrier dysfunction and chronic type 2 inflammation
(106). Other than this, the increase of eosinophils is also found in
some ESCC patients (107), positively correlating with low
incidence of LN metastasis in patients with early ESCC and
predicting favorable OS in ESCC patients treated with
concurrent chemoradiotherapy (108, 109). Conversely,
eosinophils appear to be significantly reduced across all stages
of dysplasia and EAC progression, indicating the loss of immune
surveillance by eosinophils may contribute to BE progression
toward dysplasia and cancer (110). Indeed, eosinophils play
controversial roles in modulating tumor initiation and
progression, for that they are both the source of anti-
tumorigenic factors including TNF-a, granzyme, cationic
proteins, and IL-18, and protumorigenic molecules such as
pro-angiogenic factors, depending on the different immune
milieu (35). Nevertheless, how eosinophils exert their functions
in the occurrence and development of EC remains unclear. There
is still a long way to go to understand the specific mechanism of
eosinophils in EC, which will shed light on the control of EC
progression and the immunotherapy based on them.
CROSSTALK AND REGULATION OF
INNATE IMMUNE CELLS

The EC TME contains a various innate immune cells and
associated cytokines/chemokines. By regulating or being
regulated, innate immune cells and diverse other cell
populations, including adaptive immune cells, stromal cells,
and cancer cells, form complex regulatory networks through
receptor-ligand binding and immune factor release in the TME,
which influences the proliferation, migration, and invasion of
cancer cells, as well as angiogenesis, thus influencing tumor
growth and metastasis (Figure 3).
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The balance of activating and inhibitory receptor expression,
cytokine release, and degranulation ability endow NK cells with
powerful immune surveillance and direct killing functions
toward tumor cells; however, NK cells exhibit a dysfunctional
phenotype and exhaustion on tumor development of EC,
involving cancer cell-induced over-expression of inhibitory
receptors, such as PD-1, and suppression of activated
receptors, such as NKp30, tumor infiltrating macrophage-
induced CD56dim NK cell apoptosis via H2O2, and aggregation
of neutrophils under the influence of IL-8. As the most common
infiltrating immune cells in the tumor milieu, TAMs are
polarized into an inflammatory M1 phenotype during early
EC, facilitating CD8+ T cell activation and exerting anti-tumor
effects. As EC develops, TAMs gradually transform into an M2
phenotype, promoting tumor cell proliferation, migration, and
invasion. DC maturation in the TME can be promoted by
HMGB1 stimulated by preoperative chemoradiotherapy and is
accompanied by surface molecule (CD80, CD86, CD208, and
LAMP3) expression with anti-tumor functions of tumor-
associated antigen presentation, which facilitates effective CD8+

T cell activation. Nevertheless, DC activity and function can be
damaged by cancer cells overexpressing mutated p53. EC tumor
cells can also escape from immune surveillance by inducing DC-
triggered TIL apoptosis under the influence of RCAS1, or by
promoting the DC transformation into an immunosuppressive
phenotype, with PD-L1 and SIRPa expression and IDO1
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production, inhibiting CD8+ T cell activity. Moreover, tumors
can induce high levels of circulating NETs from apoptotic
neutrophils, which predict positive lymph node status, distant
metastasis, and advanced stage in EC. Additionally, MDSCs in
EC TME can be recruited and activated by cancer cell-derived
cytokines/chemokines (IL-6, IGFBP-3, CXCL16, and GM-CSF),
thereby accelerating tumor progression by inhibiting CD8+ T cell
activation. Controversially, MCs in EC can both promote tumor
cell growth through TK1/mitogenic kinin signaling and exert
anti-tumor effects, through activation of CD169+ TAMs and
CD8+ effector cells. Importantly, IL-17 from Th17 cells and MCs
in EC TME can promote cancer cell release of CXCL9/10,
CXCL2/3, and CCL2/20, which can increase the infiltration
and anti-tumor effects of NK cells, neutrophils, and CD1a+

DCs, respectively, and predict favorable prognosis for patients
with esophageal tumors.
IMMUNOTHERAPY STRATEGY BASED ON
INNATE IMMUNE CELLS

Treatment for EC remains less than satisfactory. Recent studies
indicate that treatment with a single PD-1 inhibition agent is
more effective for ESCC than EAC, while a combination of
inhibitors targeting PD-1 with chemotherapy is a good strategy
FIGURE 3 | Crosstalk and regulation of innate immune cells in the esophageal cancer tumor microenvironment. Among the multiple innate immune cells involved in
esophageal cancer progression, NK and gdT cells are active in the front line of anti-tumor defences with their powerful cytotoxicity. Mature dendritic cells (mDC) play
vital roles in antitumour responses by boosting the function of CD8+ effector T cells, while chemoradiotherapy can promote DC maturity by increasing HMGB1 levels
in the tumor microenvironment (TME). IL-17 derived from Th17 cells and MCs can activate CD169+ tumor infiltrating macrophages (TAMs) and effector CD8+ T cells,
as well as recruit NK cells, CD1a+ immature DCs (iDC) and neutrophils (Neu) into the TME by stimulating cancer cells to release various chemokines, thereby exerting
antitumour effects. Although the mechanism is unknown, eosinophils are also involved in the anti-tumor process. On the contrary, neutrophils can also promote
tumor development by inhibiting NK cell function in response to IL-8, as well as by forming NETs after tumor-induced apoptosis. MCs can promote tumor cell growth
through the TK1/mitogenic kinin pathway. Importantly, tumor cells can escape from innate immune surveillance by promoting TAM progression to a suppressive M2
phenotype, which inhibits CD8+ T cell function by transforming DCs into an immunosuppressive phenotype (isDC) and recruiting myeloid-derived suppressor cells to
inhibit the cytotoxic effects of CD8+ T and NK cells.
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for treatment of metastatic disease (68); however, partly due to a
lack of reliable predictive indicators of whether patients respond
effectively, the use PD-1 inhibitors, alone or with other
checkpoint antibodies, has had controversial results (36).
Problems remain for use of PD-L1 as a predictive biomarker,
because of tumor heterogeneity, a lack of reproducibility of
results, and a complex scoring system (68). Therefore, it is
imperative to identify new predictive indicators and
immunotherapy strategies.

Various tumor treatment regimens aim to enhance effector
cell function and/or control immunosuppression (9). Hence,
there is potential to treat EC by boosting innate immune
functions, such as NK cell cytotoxicity, phagocytosis, and DC
maturation, which subsequently activate and sustain tumor-
specific CD8+ T cell effects. First, the development of broad-
spectrum immune checkpoint inhibitors targeting NK cells (i.e.,
LAG3, TIM3, and PD-1, which we review here, and NKG2A,
CTLA4, TIGIT, and CD96 which require further investigation)
and/or myeloid cells (i.e., SIRPa), is a promising approach that
should be advanced in EC therapy. NK cells share the majority of
checkpoints with T cells; therefore, inhibition of these receptors
will also release various brakes on T cells and benefit both innate
immunity and T-cell functions. Second, the development of anti-
tumor antibodies that can bind to activating FcRs expressed on
innate immune cells lacking antigen receptors, such as NK cells
and macrophages, will enable them to act specifically on EC cells.
Third, multiple pattern recognition receptors expressed on the
surface of innate immune cells in mucosal sites ensure rapid
responses to pathogenic microorganisms by recognizing
pathogen-related molecular patterns. Therefore, targeting toll-
like receptors (TLRs), RIG-I-like receptors (RLRs), and
Frontiers in Immunology | www.frontiersin.org 9
stimulators of interferon, to generate a ‘pathogen-induced-like’
innate immune responses at the tumor site, may be promising
approaches in EC treatment, since the innate immune system
can sense the nucleic acids of growing tumors using the pathogen
and damage receptors involved in infection detection. Finally,
generating engineered CAR NK cells with high anti-tumor
activity and CAR macrophages which can be polarized towards
an anti-tumor M1 phenotype, in addition to, or instead of, CAR
T cells, may provide a route to next generation immunotherapies
for EC (Figure 4).

In conclusion, the application of these methods to clinical
treatment is based on sufficient research of innate immune
functions in the EC TME and numerous preclinical trials.
Indeed, combined therapy approaches may become the norm
in future treatment of EC.
PERSPECTIVE

The roles of innate immune cells in mucosal tissues in
maintaining regional homeostasis and in host resistance to
infection and tumor has been extensively elaborated. However,
partly due to specimen constraints and regional disparities in
incidence (i.e., its higher prevalence in developing countries,
particularly East Asia) (2), few studies have focused on innate
immunity in EC, and ongoing immunotherapy of patients with
esophageal tumors is almost entirely restricted to targeting of the
PD1/PD-L1 pathway (68). Based on the limited available data,
one limitation of this review is that we cannot comprehensively
compare the similarity or difference of innate immune cells
between ESCC and EAC.
FIGURE 4 | Immunotherapy strategies based on innate immune cells. Various tumor treatment regimens can be implemented by boosting the effector functions of
innate immune cells, including generating engineered CAR NK cells with high anti-tumor activity and CAR macrophages which can be polarized towards an anti-
tumor M1 phenotype, developing anti-tumor antibodies that can bind to activating FcRs expressed on innate immune cells lacking antigen receptors, and enabling
them to act specifically on EC cells, and targeting toll-like receptors (TLRs) and RIG-I-like receptors (RLRs), to generate a ‘pathogen-induced-like’ innate immune
responses at the tumor site, since the innate immune system can sense the nucleic acids of growing tumors using the pathogen and damage receptors involved in
infection detection. Another immunotherapy strategy is to control immunosuppression signals on innate immune cells via development of broad-spectrum immune
checkpoint inhibitors targeting NK cells (i.e., LAG3, TIM3, and PD-1, which we review here, and NKG2A, CTLA4, TIGIT, and CD96 which require further investigation)
and/or myeloid cells (i.e., SIRPa).
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Although previous research provides clues to the essential
roles of various innate immune cells in the EC TME,
considerable further investigations of their functions in EC
occurrence and development are required. It is worth noting
that the inadequacy and imbalance of the previous studies may
lead to incomplete evaluation of the complicated immune
contexture of EC. For example, gdT and NKT cells, two typical
innate immune cells which are deeply involved in anti-tumor
responses to multiple cancers, have rarely been studied in EC.
Recently, a group of innate lymphocytes, innate lymphoid cells
(ILCs), were identified. ILCs can be subdivided into ILC1, ILC2,
and ILC3, subtypes, based on cytokine production and
transcription factors associated with their development (111).
Alternatively, ILCs can be classified as cytotoxic (i.e.,
conventional NK cells) and helper ILCs, which resemble the T
cell classification (i.e., CD8+ cytotoxic T and CD4+ T helper cells)
(112). In addition to circulating cytotoxic NK cells, ILCs exhibit
clear tissue tropism, preferentially localizing to barrier tissues,
including the lung, intestine, and skin, and involving in
inflammation and carcinogenesis (112). Whether ILCs in the
esophageal mucosa participate in the development of esophageal
diseases, such as BE and EC remains unknown; hence, the
functions of these cells in EC warrants attention in future
Frontiers in Immunology | www.frontiersin.org 10
preclinical and clinical studies. Overall, a more comprehensive
understanding of the roles of innate immune cell populations in
EC and identification of better treatment targets will likely
ultimately benefit patients with EC.
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