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Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets
of oncology patients, accumulating evidence from preclinical animal models suggests that
the immunosuppressive tumor microenvironment remains a detrimental factor limiting
benefit for many patient subgroups. Recent efforts on lymphocyte-mediated
immunotherapies are primarily focused on eliminating cancer foci at primary and
metastatic sites, but few studies have investigated the impact of these therapies on the
highly complex process of cancer cell dissemination. The metastatic cascade involves the
directional streaming of invasive/migratory tumor cells toward specialized blood vessel
intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly,
this process occurs under the auspices of a specialized tumor microenvironment,
herewith referred to as “Dissemination Trajectory”, which is supported by an ample
array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization
spectrum, and which is also vital for providing microenvironmental cues for cancer cell
invasion, migration and stemness. Based on pre-existing evidence from preclinical animal
models, this article outlines the hypothesis that dissemination trajectories do not only
support the metastatic cascade, but also embody immunosuppressive niches, capable of
providing transient and localized immunosubversion cues to the migratory/invasive cancer
cell subpopulation while in the act of departing from a primary tumor. So long as these
dissemination trajectories function as “immune deserts”, the migratory tumor cell
subpopulation remains efficient in evading immunological destruction and seeding
metastatic sites, despite administration of cancer immunotherapy and/or other
cytotoxic treatments. A deeper understanding of the molecular and cellular
composition, as well as the signaling circuitries governing the function of these
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dissemination trajectories will further our overall understanding on TAM-mediated
immunosuppression and will be paramount for the development of new therapeutic
strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and
targeted therapies.
Keywords: cancer immunotherapy, tumor microenvironment, endothelial anergy, lymphocyte exclusion,
lymphocyte exhaustion, metastasis, macrophages, T cells
INTRODUCTION

Molecular investigations of the intricate and reciprocal
interactions between tumor and immune cells have been at the
frontier of cancer research in the past decade, a trend that will
likely continue given the recent development of highly effective
cancer immunotherapies (1–7). In general, antitumor immunity
is strongly reliant on the trafficking of CD8+ T cells in both
primary and metastatic tumor microenvironments (TMEs) and
can be characterized as a highly dynamic and tightly regulated
process (8–10). There is abundant preclinical and clinical
evidence that the presence of tumor-infiltrating lymphocytes
(TILs) correlates with favorable clinical outcomes (11–17), but
contradictory results have also been reported (18, 19). Moreover,
recent studies have demonstrated that the spatial distribution
patterns of TILs within the tumor microenvironment may play
an even more drastic role in determining the prognostic
outcome, than the density of TILs alone (20–22). In yet other
studies, the co-assessment of immune cell signatures related to
specific functional status (or subtypes) of TILs may be critical for
a more accurate assessment of prognostic outcomes (23–30).
These observations collectively suggest that T cell trafficking into
the TME is one of the critical aspects of antitumor immunity.
The overall immune landscape in the TME is therefore a key
determinant for the efficiency of CD8+ T cell-mediated
antitumor immunity in either natural, induced or engineered
immune responses.

The intricate relationship between immune and cancer cells
in the context of tumor development and progression has long
been recognized (31). Since the initial proposal of the cancer
immunosurveillance theory (32, 33), numerous immuno-
therapies have been developed including monoclonal
antibodies (34, 35), chimeric antigen receptor (CAR) T cells
(36–38), and tumor vaccines (39, 40). Despite the success, which
is primarily seen in hematological malignancies, such as in
leukemia and lymphoma (41, 42), the efficacy of these
treatment modalities has been less dramatic in solid tumors,
such as in breast, colorectal, and prostate cancers (31, 43). The
lack of promising outcomes in these solid tumor types is likely a
multifactorial and cumulative result arising not only from
intrinsic defects of antitumor immunity, but also from the
intricate relationships among tumor cells, immune cells, and
their surrounding microenvironment, which can obfuscate these
antitumoral immune responses (44–46). Although the majority
of these mechanisms will not be detailed as they are beyond the
scope of the current perspective, here we focus on the emerging
org 2
roles of the tumor-infiltrating myeloid cell population in limiting
antitumor CD8+ T cell responses.

A plethora of terminally differentiated myeloid cells
and/or their immature counterparts, including monocytes,
macrophages, neutrophils, and myeloid derived suppressor
cells (MDSCs) among others, have been identified in the
tumor stroma, whereby they conspire with tumor cells to
promote the acquisition of metastatic hallmarks (47–52). In
this heterogeneous landscape, a flurry of proangiogenic and
proinflammatory cytokines (VEGF, IL6, etc.) rising from hypoxic
and acidic microenvironments instigate myeloid cell infiltration
and activation (53–60). There is now ample evidence that this
myeloid cell-dominated milieu constitutes a rather inhospitable
and antagonistic microenvironment for T cell trafficking and
further promotes T cell exhaustion and deactivation (61–68). As
such, the latest advances in immunotherapy have been directed at
overcoming the immunosuppressive mechanisms within the tumor
microenvironment, with a special focus on counteracting the
function of protumoral myeloid cell populations (31).

It is undeniable that modern immunotherapies, including
immune checkpoint blockade (anti-PDL1, anti-CTLA4, etc.) and
adoptive transfer of genetically engineered T cells to express a
receptor that is specific for a tumor antigen have revolutionized
cancer treatment (41, 69–72). However, most such studies have
primarily evaluated cancer cell growth and proliferation
endpoints, such as primary and metastatic tumor burden, to
document their efficiency as potential anticancer treatment
modalities. The degree to which natural or engineered
antitumor immunity can successfully target the highly invasive
and migratory tumor cell subpopulation is poorly understood.
As seen by the high recurrence rates in many solid malignancies,
invasive/migratory tumor cells can evade the cytotoxic effects of
chemotherapy, radiotherapy, and other treatments, as well as
escape immunological detection and destruction (47, 73, 74).
Cancer cell dissemination is regulated by a specialized network
and subsets of myeloid cells, which form dedicated niches for the
nurturing of migratory/invasive cancer cells (47, 50, 75–77). In
this perspective, we propose that certain myeloid cell subsets,
particularly perivascular M2-like macrophages, are contextually
associated with cancer cell dissemination trajectories, offering a
localized immunosuppressive niche to the metastasizing tumor
cell population, while in the act of active dissemination. We
conclude that thorough understanding of these immunosuppressive
mechanisms in the tumor microenvironment at the molecular level
will lead to more effective therapeutic targeting of cancer metastasis
and will possibly improve the outcome of modern immunotherapies.
April 2021 | Volume 12 | Article 654877
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THE CANCER CELL DISSEMINATION
TRAJECTORY: TUMOR
MICROENVIRONMENT THAT REGULATES
THE INITIAL STEPS OF THE
METASTATIC CASCADE

From earliest portrayals to more recent representations, two
generic components have been distinguished as integral parts of
the metastatic cascade, a cancer cell dissemination step and a
cancer cell growth/proliferation step at the metastatic site, the
latter also known as colonization step (78–84). Both these steps
are regulated and may even be reinforced by a diverse array of
biological programs in the tumor microenvironment, including
epithelial-to-mesenchymal transition (EMT), invasion/migration,
chemotaxis, and dormancy (85–92), among others. Recent
advances in the underlying mechanisms of cancer cell
dissemination have indicated that cancer cells that have
undergone EMT, and thus have lost epithelial polarity and
gained mesenchymal properties, participate in a reciprocal
juxtacrine-paracrine signaling loop with tumor-associated
macrophages (TAMs), eventually leading them to the underlying
vasculature for subsequent intravasation. Cancer cell intravasation,
however, does not occur along the entirety of the cancer-associated
endothelium, but is rather restricted to specialized intravasation
sites, known as Tumor MicroEnvironment of Metastasis (TMEM)
doorways. In this section, we will briefly discuss the factors that
underlie the spatial and functional relationship between the
disseminating tumor cell subpopulation and the TMEM
doorways, a critical ingredient that regulates the initial steps of
the metastatic cascade in primary tumors.

Cancer cell intravasation doorways, also known as TMEM
doorways, constitute intratumoral niches characterized by the
physical juxtaposition of a tumor expressing high levels of the
actin-regulatory protein Mammalian enabled (MENA), a
perivascular macrophage and an endothelial cell, and represent
an independent prognostic indicator of metastatic risk in breast
cancer patients (93–96). Perivascular macrophages residing in
TMEM doorways express the tyrosine kinase receptor TIE2, thus
assuming an M2-like polarization status and tumor-promoting
effects. Under the tight regulation of TIE2 signaling, TMEM
macrophages secrete large amounts of vascular endothelial
growth factor (VEGF), which in turn, functions in a paracrine
fashion on the TMEM endothelial cell to promote the reversible
breakdown of endothelial cell-to-cell adhesions, localized
vasculature opening, and the subsequent intravasation of
invasive/migratory tumor cells from the immediate area
surrounding the TMEM doorway. Despite that the precise role
of the TMEM tumor cell in the TMEM triad has not yet been
clearly elucidated, high-resolution microscopy has suggested the
presence of invadopodia stemming from TMEM tumor cells and
extending in between the underlying vasculature (73). Thus, the
current understanding is that TMEM tumor cells pinpoint the
breaching point of the endothelial wall following TIE2-
dependent TMEM doorway activation.

Formation of active TMEM doorways has not only been
observed in primary tumors, but also in their respective loco-
Frontiers in Immunology | www.frontiersin.org 3
regional and distant metastatic sites, such as in the lymph nodes
and lungs, respectively (75, 93, 97–99). Indeed, prior work has
documented that established lymph node metastases attract
TIE2+ macrophages in the perivascular niche, which in turn
assemble TMEM doorways de novo (99). More importantly
however, photoconversion experiments that can specifically
label tumor cells in metastatic lymph nodes and observe their
behavior in real time have indicated that cancer cells within
metastatic foci are capable of utilizing TMEM doorways to re-
disseminate to tertiary metastatic sites, such as to the lungs (99).
Overall, these studies support TMEM doorway-mediated cancer
cell dissemination as a universal mechanism of cancer cell
dissemination at all stages of cancer progression.

Within the constantly evolving landscape of tumor cell
heterogeneity, it is crucial to appreciate that not all tumor cells
are equally capable of cancer cell dissemination via TMEM
doorways. Rather, only a small subset of tumor cells in
primary tumors is co-opted to utilize TMEM doorways for
intravasation in the peripheral circulation. Expression profiling
studies have specifically identified this subset as overexpressing
an alternatively spliced isoform of the actin-regulatory protein
Mammalian enabled (MENA), called MENAINV, and having
concurrently lost expression of the antimetastatic and cell
cohesion-promoting alternatively spliced isoform MENA11a
(100–104). MENA is one of the key members of the Ena/
VASP family of proteins, involved in regulation of cell
movement, shape and adhesion (105), mainly through
regulating actin filament polymerization and rate of filament
elongation during the formation of cellular protrusions (106,
107). Cancer cells that overexpress MENAINV are characterized
by formation of extracellular matrix-degrading cellular
protrusions, called invadopodia, by increased sensitivity to
chemotactic factors in the tumor microenvironment such as
epidermal growth factor (EGF) and hepatocyte growth factor
(HGF), which both facilitate cancer cell invasion and migration
(75, 98, 107–114). It is therefore not surprising that MENAINV-
expressing tumor cells are preferentially co-opted for TMEM-
mediated cancer cell intravasation. It should be noted that
MENAINV-expressing cancer cells also share markers and
phenotypic characteristics that indicate they have undergone
epithelial-to-mesenchymal transition (EMT), which is a crucial
landmark of metastatic dissemination (85, 115–118). However,
in the current perspective we will primarily refer to the
migratory/invasive tumor cell compartment as the MENAINV+

cancer cell subpopulation, given that prior studies have suggested
that MENA isoform switching is crucial for the establishment of
metastatic disease (103, 104, 106).

Multiphoton intravital imaging studies in live mice have
suggested that MENAINV-expressing tumor cells migrate along
collagen fibers with partnering TAMs in the tumor
microenvironment. A well-described, reciprocal paracrine loop
between the two cell types, involving colony stimulating factor-1
(CSF1) secretion from the tumor cell and epidermal growth
factor (EGF) secretion from the macrophage, leads to the
chemotactic attraction of one cell towards the other, coupling
them in sequence in a unique migratory pattern called “cancer
cell streaming” (104, 119, 120). The specific targeting of either of
April 2021 | Volume 12 | Article 654877
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these factors, either pharmacologically or via genetic engineering,
is sufficient by itself to disrupt cancer cell streaming and suppress
cancer cell dissemination (104, 121–123). Eventually, MENAINV+

tumor cells reach down to the perivascular niche, whereby they
utilize pre-existing TMEM doorways to intravasate into the blood
vessel (104, 114, 124, 125). Chemotactic factors, such as hepatocyte
growth factor (HGF) and stromal derived factor-1 (SDF1), either
secreted by the cancer endothelium itself or by cells associated
with the endothelium (e.g. TMEM macrophages), are responsible
for the directed migration of the entire cancer cell “streams”
towards the TMEM doorway (126, 127).

A few studies have previously investigated the mechanisms via
which MENAINV expression is induced in the migratory/invasive
cancer cell subset. Although the exact mechanism has not been
deciphered at the molecular level, there is strong indication that
TAMs streaming with tumor cells are crucial for MENAINV

induction in the latter. Specifically, in vitro co-culture experiments
have indicated an up to 50-fold increase in MENAINV expression
when tumor cells were co-cultured with macrophages, and this
Frontiers in Immunology | www.frontiersin.org 4
phenotype was demonstrated to be contact-dependent, suggesting
that juxtacrine signaling loop may also be elicited during the cancer
cell streaming behavior (124). In support to these observations, the
in vivo depletion or suppression of macrophage differentiation has
shown a significant reduction of cancer cell dissemination (128).

In this perspective, the described MENAINV+ migratory/
invasive cancer cell population partnered with intratumoral
TAMs during streaming, along with corresponding TMEM
doorways used during the intravasation process, will be
collectively referred to as the “Dissemination Trajectory” (Figure
1). Indeed, it is expected that different signaling pathways,
cytokine/chemokine profiles, and metabolic patterns will
characterize the dissemination trajectories versus the more
proliferative compartments of solid tumors. Here, we explore
dissemination trajectories as immunosuppressive landscapes, in
an effort to explain current translational and clinical observations
on why natural or engineered antitumor immunity is not efficient
in preventing the metastatic cascade, albeit demonstrating
promising results in eliminating tumor growth potential.
FIGURE 1 | The “Dissemination Trajectory” Working Model of Metastatic Dissemination. Two major cellular prerequisites are necessary for cancer cell dissemination:
a TMEM doorway and a highly invasive, highly migratory cancer cell subsets streaming toward TMEM doorways. TMEM doorways are composed of three cell types,
a TIE2+ macrophage, an endothelial cell and a tumor cell forming an invadopod in the vasculature, and signaling conversation among these three cells results in
localized vascular opening to facilitate transendothelial migration of the highly invasive, highly migratory cancer cell subset. The highly invasive and migratory cancer
cell subsets participate in a reciprocal paracrine and juxtacrine signaling loop with intratumoral macrophages that do not express TIE2, resulting in the increased
induction of the actin-regulatory protein MENAINV. Eventually, these interactions result in the so called “streaming migration”, which is directed toward TMEM
doorways, and MENAINV-facilitated transendothelial migration and metastatic dissemination. TMEM doorways and their streaming MENAINV+ cancer cell subsets are
herewith referred to as “dissemination trajectories”. These specialized microenvironments are distinguishable from other tumor compartments with rapidly dividing
tumor cells that do not share similar molecular pathways, here described as “proliferative compartments”. Four layers of immunosuppressive mechanisms dominate
within the dissemination trajectories, that result in the development of immune deserts further facilitating the process of metastatic dissemination. These mechanisms
postulate that: (a) the TMEM endothelium is anergic, thus not allowing for T cell diapedesis; (b) dissemination trajectories do not support cytokine/chemokine
matching for allowing T cell chemotaxis; (c) dissemination trajectories have a unique metabolic landscape that is refractory for T cell chemotaxis and/or function; and
finally (d) dissemination trajectories are characterized by the induction of immune checkpoint signaling, that promoted exhaustion of T cells. Overall, tumor-associated
macrophages (TAMs) within these dissemination trajectories play the pivotal role in regulating all four layers of immunosuppression, although secondary mechanisms
have also been identified.
April 2021 | Volume 12 | Article 654877
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THE CANCER CELL DISSEMINATION
TRAJECTORY AS AN
IMMUNOSUPPRESSIVE NICHE
A substantial amount of preclinical and clinical studies has indicated
that tumor-associated myeloid cells, predominantly tumor-
associated macrophages (TAMs), neutrophils, and myeloid-
derived suppressor cells (MDSCs), sustain an immunosuppressive
tumor microenvironment, which is particularly refractory to both T
cell trafficking and antitumor T cell functions (4, 129–134).
Extensive research in this field has additionally concluded that the
specific targeting and/or elimination of this myeloid-driven
immunosuppressive program can render the natural, induced,
and engineered immunological responses against tumors more
concrete and effective (135–137). In line with the above, here we
first provide proof-of-principle evidence of this notion using the
Mouse Mammary Tumor Virus Polyoma Middle-T antigen
(MMTV-PyMT) mouse model of breast carcinoma, which
successfully recapitulates human breast cancer progression (138).
During the natural progression of MMTV-PyMT carcinomas, T
cells are spatially restricted to the peritumoral stromal sheaths and
Frontiers in Immunology | www.frontiersin.org 5
are visually excluded from multicellular tumor cell cohorts (Figure
2A), insinuating structural and/or functional impediments of
intratumoral T cell trafficking. However, upon the
pharmacological depletion of TAMs via the administration of
clodronate liposomes, intratumoral T cell trafficking is clearly
improved (Figure 2B), pinpointing TAMs as the responsible
structural and functional impediments to T cell trafficking. It has
been previously shown that immune cells can excessively infiltrate
primary tumors as a result of a cytokine surge, induced by cytotoxic
factors, such as chemotherapy treatment (47, 73, 74, 139). Indeed,
administration of paclitaxel, a taxane-based chemotherapy known
to inflict prometastatic modifications as a consequence of a cytokine
surge (139–144), results in a dramatic increase of TILs, which are
otherwise restricted to the peritumoral stromal sheaths (Figure 2C).
This distribution pattern appears to be the consequence of
immunosuppressive TAMs, because clodronate-mediated
depletion of TAMs in the chemotherapy setting facilitates the
intratumoral trafficking of T cells that have responded to the
chemotherapy-driven cytokine surge (Figure 2D). Of note,
similar observations by other groups have corroborated our
findings using a diverse array of macrophage suppression or
FIGURE 2 | Immunohistochemical indication of how different pharmacologic modifications of the immunosuppressive tumor microenvironment may affect T cell
trafficking into tumors. (A–D) Immunohistochemistry for T cell specific marker CD3 in tumor sections from mouse mammary tumor virus – polyoma middle T antigen
(MMTV-PyMT) mice, developing spontaneous breast carcinomas. The images are high power fields (x40), representative from a total of three mice in each
experimental condition. Circles, CD3+ T cells infiltrating the tumor nests; Arrows, CD3+ T cells infiltrating the tumor stroma. Notice the significant changes in
intratumoral versus stromal T cell infiltration upon different treatments that modify the immunosuppressive microenvironment.) In breast carcinoma, T cells are found
in both tumor cell nests and the tumor stroma (A). Upon macrophage depletion with clodronate liposomes, most T cells can leave the stroma and penetrate the
tumor cell nests (B). However, treatment with cytotoxic chemotherapy is known to induce lymphocyte infiltration and significantly larger number of T cells is found
compared to the vehicle (C). Notably however, most of these T cells are restricted in the tumor stroma, as chemotherapy attracts immunosuppressive myeloid cells
at the same time, resulting in lymphocyte exclusion (C). If such immunosuppressive myeloid cells are depleted through clodronate liposomes in chemotherapy-
treated tumors, the increased influx of T cells is now relocated in the tumor nests (D). Immunohistochemistry was performed in archival tissue from experiments
originally conducted in the manuscript by Karagiannis et al. (139), in which ethical approval for the use of the experimental mice was also obtained (139).
April 2021 | Volume 12 | Article 654877
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re-polarization strategies (77, 145, 146). In conclusion, these
experimental data along with accompanied literature collectively
demarcate the detrimental impact of TAMs in T cell trafficking and
distribution in primary tumors.

As described above, specialized tumor microenvironments
within primary carcinomas comprising of TMEM doorways and
their associated prometastaticMENAINV+ cancer cell compartments,
herewith defined as dissemination trajectories, are both structurally
and functionally supported by distinct TAM subsets (47). Given the
experimental and literature evidence on the immunosuppressive
properties of TAMs described above, here, we surmise that
dissemination trajectories signify immunosuppressive niches,
reminiscent of immune deserts. The term “immune dessert” is
used here as an interchangeable term for collectively describing
tumor microenvironments with immune excluded and immune
desert phenotypes, as defined in multiple prior studies (147–150).
It is hereby suggested that at least four distinct mechanisms may
contribute to the function of dissemination trajectories as immune
deserts in the primary tumor microenvironment: First,
dissemination trajectories are sites of endothelial anergy; Second,
they represent sites of lymphocyte exclusion; Third, they represent
sites of metabolic reprograming, refractory to anti-tumor
lymphocyte functions; Fourth, they constitute sites of lymphocyte
exhaustion. Collectively, the aforementioned immunosuppressive
mechanisms (Figure 1) significantly undermine the capacity of the
tumor-infiltrating lymphocytes for targeting the disseminating
cancer cell population, thus allowing for a narrow, but solid
window of opportunity for the successful execution of the initial
steps of the metastatic cascade.

(a) Dissemination Trajectories as Beacons
of Endothelial Anergy
Lymphocyte migration needs to be precisely coordinated to
contribute to effective T cell trafficking in both physiological
and neoplastic contexts. This process can be summarized into
selectin-dependent leukocyte rolling, chemokine-driven integrin
activation, integrin-dependent leukocyte tethering in the
vascular wall, and leukocyte diapedesis (8, 9, 151–153). It
should be mentioned that this process is primarily mediated by
lymphocyte-endothelial cell interactions, and as a consequence,
the integrity and functionality of the endothelium in either a
physiological or neoplastic context, could have a dramatic effect
on T cell trafficking. Under the control of growth factors and
abnormal contextual signals, the tumor (neo)vasculature often
displays a high angiogenic potential coupled to irregular
distribution, enlarged vessels, excessive branching morphology,
microhemorrhaging, and disturbed blood flow, when compared
to traditional blood vessel architecture and physiology (154–
158). Another decisive factor contributing to tumor endothelium
instability, and consequently to defective T cell trafficking into
the tumor tissue, is the failure to support endothelial integrity
and functions via adequate mural cell (e.g. pericyte) coverage
(159–162). One could intuitively, but erroneously, assume that
high endothelium instability/permeability should render immune
cell trafficking much easier. However, circulating lymphocytes
require specialized molecular signatures (e.g. selectin, integrin
Frontiers in Immunology | www.frontiersin.org 6
and chemokine profiles) in tissue endothelial barriers to help with
their homing into tissues (163–167). These molecular signatures,
which are magnanimously present in High Endothelial Venules
(HEVs) of various lymphoid organs for example (168–171), are
characteristically disrupted or absent in tumor endothelia,
rendering them “leakier” and insensitive to pro-inflammatory
signals (172). This phenotype, known as “endothelial anergy”, is
characterized by impaired adherence of effector T cells to the
endothelial cells and their subsequent extravasation to the tumor
microenvironment (9, 173).

Although macrophages provide essential trophic factors to
facilitate generation and retention of pericytes in certain
developmental contexts (174, 175), at least one study has
previously indicated that TMEM doorways are devoid of NG1+

pericyte coverage (128), signifying one potential signature of
endothelial anergy at TMEM doorways. In yet other studies, it
has been shown that M2-polarized TAMs may in contrast
support macrophage-pericyte interactions in the tumor
microenvironment, but such interactions lead to enhanced
neovascularization and tumor progression (176–179), again
flagging the immediate surroundings of M2-like TAMs as
potential niches of endothelial anergy.

For a long time, it has been theorized that the tumor
vasculature is under constant and simultaneous control of
proangiogenic and antiangiogenic factors, with vascular
endothelial growth factor-A (VEGFA) representing a well-
known paradigm of angiogenesis inducers (155, 180–186).
However, prior evidence also suggests that different blood
vessel subtypes in the tumor microenvironment do not all
respond homogeneously to anti-VEGF treatment (187),
inferring the presence of contextual factors promoting
heterogeneity in VEGFA expression and activity. Indeed, the
increase of VEGF around TMEM doorways may be the cause of
the overall heterogeneity of VEGF expression around blood
vessels in tumors. Under the transcriptional control of the
Ang2-Tie2 signaling axis, TIE2+ TMEM macrophages can
locally release large quantities of proangiogenic factors, most
prominently VEGFA, which is critical for both eliciting an
angiogenesis program and sustaining TMEM function and
TMEM-mediated cancer cell dissemination (128, 188–190).
Importantly, VEGFA regulates blood vessel wall permeability
via a variety of mechanisms, for instance via increasing
endothelial cell fenestration at lower concentrations, or via
breaking down and dissolving the endothelial cell adherens
and tight junctions at higher concentrations (191–197). The
latter is especially critical in the process of metastasis because it
provides an effective paracellular passageway for the disseminating
cancer cell subpopulation into the blood circulation (128). Indeed,
the conditional ablation of the VEGFA gene via targeted expression
of Cre recombinase under the control of the macrophage-specific
promoter that regulates transcription of the colony stimulated
factor-1 receptor (CSF1R) in a mouse model of breast carcinoma
results in successful assembly of TMEM-doorways, which are
otherwise entirely incapable of breaking down endothelial
junctions and facilitating cancer cell transendothelial migration
and intravasation (128). Overall, these data suggest that TMEM
April 2021 | Volume 12 | Article 654877
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doorways within the dissemination trajectories reflect to TMEs
with high VEGFA expression and activity, suggesting that they
function as candidate beacons of endothelial anergy within the
tumor microenvironment.

TMEM doorways are functionally regulated by M2-like TAMs,
which represent a prominent source of angiogenic molecules in
the perivascular niche (47, 51, 75, 189, 190, 198–201). Besides the
well documented VEGFA, TAMs release a plethora of other
proangiogenic factors, such as tumor necrosis factor-a, basic
fibroblast growth factor, thymidine phosphorylase, urokinase-
type plasminogen activator, adrenomedullin, and semaphorin-
4D (47, 189, 190, 201–205). These proangiogenic factors are
known to downregulate the expression of adhesion molecules
(ICAMs, VCAMs, and selectins), which are actively involved in
lymphocyte trafficking, thus resulting in endothelial anergy and
lymphocyte tolerance (9, 172).

In summary (Figure 3A), TMEM doorways likely serve as
proponent components of endothelial anergy in the tumor
microenvironment, subduing intratumoral recruitment of
CD8+ T cells. Possible contributors of endothelial anergy at
TMEM doorways are the reported defects in pericyte coverage,
as well as the localized, high concentration of VEGFA and other
proangiogenic molecules secreted by the TMEM macrophage.
These mechanisms may together prompt a highly permeable
vasculature at TMEM doorways, which is otherwise unable to
support T cell trafficking due to the lack of characteristic
molecular signatures for lymphocyte diapedesis.

(b) Dissemination Trajectories as
Crossroads for Lymphocyte Exclusion
Among the critical mechanisms leading to inadequate T cell
trafficking into solid tumors are those culminating in mismatching
between bioavailable chemokines in the tumor microenvironment
and chemokine receptors expressed on the surface of cytotoxic T
cells (206). The disruption of the immunosuppressive chemokine/
cytokine network either pharmacologically or via genetic
manipulations in animal models can therefore reliably covert the
tumor microenvironment into a receptive niche for T cell
trafficking and further sensitize tumors to immunotherapy (207).
The dissemination trajectories are functionally and contextually
associated with distinct macrophage subtypes, which represent a
prominent source of immunosuppressive cytokines and
chemokines in the tumor microenvironment (47, 73–75, 206). As
mentioned, perivascular TMEM doorway macrophages, express
high levels of the tyrosine kinase receptor TIE2 (also known as
CD202b), and the mannose receptor MRC1 (also known as
CD206), suggesting that they are skewed towards an M2 (or M2-
like) phenotype according to the traditional macrophage
polarization spectrum (47, 119, 208, 209). In this perspective, we
support the working model that M2-like macrophages within
dissemination trajectories represent the major orchestrators of
chemokine/chemokine receptor mismatching that leads to
inadequate CD8+ T cell trafficking (206).

Peripheral monocytes are usually recruited within tumors via
the CCL2/CCR2 chemokine pathway and transdifferentiate into
M2-like macrophages under the regulation of the CSF1/CSF1R
Frontiers in Immunology | www.frontiersin.org 7
pathway (210). It is now strongly documented that CSF1-
dependent macrophage polarization into M2-like phenotype
leads to the acquisition of an immunosuppressive macrophage
subtype, characterized by T cell exclusion (145, 206, 211–213).
Indeed, the depletion of tumor-associated macrophages via
inhibiting either CSF1/CSF1R or CCL2/CCR2, are both
capable of overcoming T cell exclusion within tumors (145,
214). There is sufficient evidence that M2-like macrophage
functions are antagonistic to Th1 immunological responses,
which would theoretically favor antitumoral immunity.
Specifically, M2-like macrophages may suppress the interferon-
gamma (IFN)-mediated responses that culminate in the
induction of CXCL9 and CXCL10 chemokines, which, in turn,
are able to attract CXCR3+CD8+ memory T cells (215). The
critical association between CXCR3-binding ligands CXCL9/10
and CD8+ T cell trafficking has been well documented (216–220).
Although the dominance of M2-like macrophages within the
dissemination trajectories can by itself account for the suppression
of such favorable Th1 immunological responses, several
macrophage-independent mechanisms of Th1 suppression have
also been reported in this context. For example, certain tumors
(e.g. ovarian carcinomas) can use epigenetic mechanisms to
silence the expression of CXCL9 and CXCL10. Moreover,
nitrosylation by reactive oxygen species (ROS) in the tumor
microenvironment may result in altered proteolytic processing
of CXCL11, another chemoattractant of CD8+ T cells (221), which
incapacitates its binding-induced signaling (222).

It has been demonstrated that once homed in tumors under
the control of CCL2/CCR2 and CSF1/CSF1R pathways, M2-like
macrophages begin to also express the chemokine receptor
CXCR4, possibly under the control of the pleiotropic cytokine
TGFb (210). The de novo expression of CXCR4 may force
prometastatic macrophages into a unidirectional migration
toward the perivascular niche where CXCL12, the chemokine
ligand of CXCR4 is abundantly expressed, and where they
eventually assemble TMEM doorways (210). Although many
sources of TGFb within the tumor microenvironment have been
reported (223–225), human monocytes and macrophages can
also activate TGFb via the expression of integrin avb (226).
TGFb has been previously documented as among the strongest
immunosuppressive cytokines, capable of excluding T cells from
human and murine tumors (227, 228). These observations
collectively suggest that TGFb expression within dissemination
trajectories represent a critical mechanism of lymphocyte
exclusion as a result of cytokine/cytokine receptor mismatching.

As mentioned, CXCR4+ macrophages within dissemination
trajectories can chemotactically respond to the presence of the
CXCL12 ligand at the perivascular niche (210). Prior evidence
suggests that mesenchymal stromal cells, such as cancer-
associated fibroblasts (CAFs) and possibly mural cells coating
the blood vasculature, serve as the primary source of CXCL12
production and secretion (229–234). In a recent model of
cancer cell dissemination, the chemotactic migration of
CXCR4+ macrophages with their partnering MENAINV+ tumor
cells, has been rendered as the possible driving force for the
observed streaming migratory behavior within dissemination
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Asiry et al. Mechanisms of Immunosuppression in the Tumor Microenvironment
trajectories (210). Moreover, a concrete body of evidence supports
that intratumoral distribution of CXCL12 inversely correlates
with the presence of T cells (235), although it is not yet clear
whether the CXCL12/CXCR4 pathway can directly suppress T
cell trafficking into CXCL12-enriched microenvironments (230,
236). Indeed, pharmacological inhibition of the CXCL12/CXCR4
pathway alleviates the tumor microenvironment from the
lymphocyte exclusion phenotype (236). On one hand, CXCL12
appears to be a critical chemokine for cancer cell dissemination
Frontiers in Immunology | www.frontiersin.org 8
(231, 233, 237, 238); still, it may comprise a major chemokine/
chemokine receptor mismatching mechanism for the trafficking
of T cells into dissemination trajectories.

In summary (Figure 3B), the immunosuppressive M2-like
macrophages may orchestrate the expansion of a cytokine/
chemokine network, which excludes T cells from the
dissemination trajectories. Foremost, M2-like macrophages
seem to directly suppress the expression of the CXCR3-binding
ligands CXCL9 and CXCL10, which are the primary chemokine
A B

C D

FIGURE 3 | Proposed Mechanisms for the Induction and Maintenance of an Immunosuppressive Microenvironment within the Dissemination Trajectory.
(A) Dissemination trajectories as beacons of endothelial anergy. Perivascular (TMEM doorway) macrophages secrete a number of proangiogenic factors (e.g. VEGFA)
in the peri-TMEM area, which downregulate cell adhesion molecules in endothelial cells critical for lymphocyte diapedesis, thus resulting in “locally” anergic
endothelium. (B) Dissemination trajectories as crossroads for T cell exclusion. Cytokine/cytokine receptor mismatching mechanisms within the dissemination
trajectories result in the exclusion of T cells. For example, prometastatic macrophages suppress the expression CXCL9/10 within the dissemination trajectories,
which function as the primary chemoattractants for T cells. Instead, dissemination trajectories are characterized by the expression of other cytokines/chemokines, like
TGF-beta and CXCL12, which act as repellents for T cells. (C) Dissemination trajectories as primers for metabolic burdening of T cells. Highly migratory tumor cells
within the dissemination trajectories tend to upregulate glucose transporters (e.g., GLUT1), which on one hand reduces the bioavailable energy resources
(i.e., glucose), while on the other hand, may produce metabolites. This metabolic landscape is burdensome for immune cells, resulting in T cell exclusion and
exhaustion. (D) Dissemination trajectories as checkpoints for T cell exhaustion. Chronic TCR signaling within the dissemination trajectory along with overexpression
of inhibitory ligands (e.g., PDL1) by the prometastatic macrophages may result in T-regulatory (Treg) cell expansion and CD8+ T cell inactivation/exhaustion.
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attractants for CD8+ T cells. Moreover, the reciprocal interactions
among disparate cells within dissemination trajectories seem to be
highly dependent on the induction and contextual expression of
several cytokines and chemokines, including but not limited to
CXCL12 and TGFb, which may disrupt lymphocyte trafficking
and exclude CD8+ T cells from the landscape.

(c) Dissemination Trajectories as Primers
for Metabolic Burdening of Lymphocytes
In general, sugars, amino acids, and fatty acids are the major fuel
sources utilized by eukaryotic cells, but rapidly proliferating tumor
cells tend to exhaust them, thus subjecting both tumor and
immune cells to nutrient-deficient microenvironments and
imposing considerable bioenergetic constraints on their
functions (76, 151, 239–242). Cancer cells tend to upregulate the
expression of glucose transporters, such as GLUT1 (243, 244),
amino acid transporters, such as ASCT2 and LAT1 (245–247), and
fatty acid elongation enzymes, such as FAS (248–250), to facilitate
their adaptation to energy-deficient microenvironments. This
metabolic reprogramming does not only limit nutrient
availability for cytotoxic CD8+ T cells, but may also generate
metabolic byproducts that may overwhelm T cell function,
survival, and expansion (151). In this chapter, we briefly explore
certain mechanisms, via which the metabolic landscape within
dissemination trajectories may interfere with lymphocyte
trafficking and function.

Foremost, the metabolic machinery of MENAINV+ tumor
cells within dissemination trajectories remains poorly
understood. However, it is generally known that fatty acids are
primarily required by rapidly dividing tumor cells to form new
plasma membrane lipid bilayers, thus explaining why most
tumors overexpress FAS and malignant transformation
depends on lipogenesis (251). However, neither migratory
tumor cells nor effector T cells seem to heavily depend on fatty
acid oxidation, although the development of antitumor memory
T cells is affected (252–254), suggesting that such pathways may
not be as immunocompromising within the dissemination
trajectories. On the other hand, there are certain lines of
evidence suggesting that the highly migratory/invasive cells
that have undergone EMT tend to express high levels of the
glucose transporter GLUT1, which partially supports high
energy demands for the active process of invasion and
migration (255, 256). Accordingly, it has been shown that
proteolytic modifications of the extracellular matrix by highly
migratory cells per se can also promote GLUT1 expression and
aerobic glycolysis (257). Concomitantly, GLUT1 overexpression
has been associated with low T cell trafficking in renal cell and
squamous cell carcinomas (258, 259), suggesting that
dissemination trajectories could potentially limit both T cell
trafficking and their functional capacity in a GLUT1-
dependent manner.

The metabolic landscape within dissemination trajectories may
also impair T cell functions through generation of immuno-
suppressive metabolites and byproducts, not only via the direct
competition for energy resource availability. For example,
indoleamine 2,3-dioxygenase (IDO), an enzyme that converts
Frontiers in Immunology | www.frontiersin.org 9
tryptophan into kyunerines (260), is a well-established suppressor
of CD8+ T cell infiltration into tumors and most of the associated
antitumor T cell responses (132, 261). In addition, diminished
tryptophan deposits in IDOHigh tumor microenvironments can
prevent T cell proliferation, while kyunerines can promote T cell
death and interference with TCR signaling (132, 261, 262). Despite
that dendritic cells have been identified as major inducers of IDO
within the immune microenvironment (261), TAMs can also
participate in IDO-mediated tryptophan metabolism under
certain contexts (263–265), suggesting that dissemination
trajectories may be characterized by the accumulation of
immunosuppressive metabolites.

In summary (Figure 3C), dissemination trajectories are
associated with a metabolic landscape that results in diminished
T cell trafficking into tumors and associated antitumor T cell
functions. On one side, highly migratory tumor cells within the
dissemination trajectories may successfully outcompete TILs for
the scant availability of energy resources, such as glucose, because
they tend to upregulate corresponding transporters (e.g., GLUT1).
On the other hand, TAMs within the dissemination trajectories
may be engaged in metabolic pathways that not only deplete
essential elements (e.g., tryptophan), but also produce
immunosuppressive metabolites along the process (e.g., IDO-
induced kyunerines).

(d) Dissemination Trajectories as
Checkpoints for Lymphocyte Exhaustion
In recent years, it has been suggested that effector T cells (CD4+

and CD8+), which infiltrate tumors tend to exhibit impaired
functional and proliferating capacity, characterized by
progressive loss of their ability to produce their characteristic
effector cytokines (i.e., TNF-a, IFN-g, IL-2) and lyse tumor cells,
a state described as lymphocyte exhaustion (45, 151, 207, 266–
269). The existence of this particular phenotype is further
corroborated through experimental evidence showing that
certain cancer immunotherapies, such as those that specifically
target immune checkpoint pathways, may alleviate T cell
exhaustion, and restore the ability to eradicate cancer cells
(270). In this section, we propose that dissemination
trajectories rich in M2-like immunosuppressive macrophages
can yield a contextual milieu that promotes T cell exhaustion,
potentially accounting for the lack of treatment response seen in
many patients following checkpoint therapies.

Similar to the case of chronic viral infections, the most
prominent hallmark of T cell exhaustion in the tumor
microenvironment is the co-expression of a wide range of
immune checkpoint receptors by the T cells (271, 272). These
inhibitory receptors primarily include programmed cell death
protein 1 (PD1), lymphocyte activation gene 3 protein (LAG3),
T-cell immunoglobulin domain and mucin domain protein 3
(TIM3), cytotoxic T lymphocyte antigen-4 (CTLA4), band T
lymphocyte attenuator (BTLA) and T-cell immunoglobulin and
immunoreceptor tyrosine-based inhibitory motif domain
(TIGIT) (273). Although it is beyond the scope of the current
perspective to delineate the detailed biology of these immune
checkpoint pathways, it should be mentioned that intracellular
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signaling via these receptors in T cells can generally lead to
functional deficiencies characteristic of the lymphocyte
exhaustion phenotype (274–279). However, in a certain
context, PD1+TIM3+ tumor-infiltrating T cells were functional
despite the co-expression of both immune checkpoint receptors,
suggesting that certain competitive intracellular pathways to
unruly T cell exhaustion may also exist (280). It has been
generally known that TAMs are prominent inducers of T cell
exhaustion in the tumor microenvironment through interference
with immune checkpoint control. For example, TAMs from
renal cell carcinoma patients induce the skewing of autologous
blood derived CD4+ T cells towards an exhausted phenotype,
with decreased production of effector cytokines and enhanced
expression of PD1 and TIM3 (281). Of all immune checkpoint
pathways mentioned above, the prominent expression of PDL1, a
ligand for PD1, and B7-H4, a ligand for CTLA4, are perhaps the
most well-known immunosuppressive mechanisms leading to
macrophage-driven T cell exhaustion (282–286). Of particular
interest is the fact that ligands for immune checkpoint receptors
are mostly expressed by M2-like macrophages, which are also
integral components of TMEM doorways, providing another
attractive theory for immune evasion by the migratory/invasive
cancer cell subpopulation within the dissemination trajectories.

Prior research has suggested that chronic T cell receptor
(TCR) signaling in functional T cells can normally lead to
elevated expression of inhibitory receptors, such as PD1,
TIGIT and CTLA4 (271, 287). This observation further
postulates that increased expression of these inhibitory
receptors in TILs may accordingly be the result of chronic
exposure to neoantigens and/or persisting tumor antigens (151,
268). However, the expression of inhibitory receptors in TILs is
markedly higher compared to those in functional T cell states,
suggesting that other factors, possibly microenvironmental ones,
may be responsible for increased immune checkpoint control
and lymphocyte exhaustion (151). In accordance with these
observations, prior experimental evidence has demonstrated
that certain cytokines, often expressed in the tumor
microenvironment (tumor cells, cancer-associated fibroblasts,
immune cells, adipocytes), such as angiopoietin-2 (ANG2),
interleukin-10 (IL10), and transforming growth factor-b
(TGFb), are sufficient for T cell exhaustion and suppression of
anticancer immunity (288–291). Although, this cytokine
network leads to lymphocyte exhaustion through a variety of
mechanistic pathways, both direct and indirect via the expansion
of CD4+CD25highFOXP3+ T-regulatory (Treg) cells, have been
suggested (270, 272, 273, 292). Certain of these cytokines,
especially TGFb, have been discussed in prior chapters with
regards to their functional relevance within dissemination
trajectories. Others, like ANG2, are also critical for cancer cell
dissemination, as ANG2-dependent activation of TIE2 receptor
in the TMEM macrophage leads to the localized production and
secretion of VEGF, which in turn, is critical for TMEM-
associated vascular opening and the transendothelial migration
of MENAINV+ tumor cells (75, 98). Therefore, it seems that
dissemination trajectories are enriched in cytokines that not only
promote lymphocyte exclusion, but also lymphocyte exhaustion.
Frontiers in Immunology | www.frontiersin.org 10
In summary (Figure 3D), T cells that are not excluded from
and manage to eventually infiltrate dissemination trajectories have
acquired an “exhausted” phenotype rendering them unable to
produce effector cytokines and successfully target tumor cells. This
phenotype is regulated by an abnormally high expression of
immune checkpoint receptors, such as PD1, CTLA4 and TIM3,
at their surface. Among other cells, M2-like immunosuppressive
TAMs within dissemination trajectories express a spectrum of
corresponding ligands for these inhibitory receptors, thus offering
immunosuppressive “sanctuaries” around the exhausted CD8+ T
cells. Furthermore, the cytokine network within the dissemination
trajectory, including primarily TGFb and ANG2, among other
factors, serves as a critical driver of Treg expansion and inhibitory
receptor overexpression, thus maintaining and perpetuating the
dysfunctional T cell states.
CONCLUSIONS AND FUTURE
PERSPECTIVES

In recent years, the molecular/cellular investigation of the
immune tumor microenvironment and the comprehensive
studying of the immunosuppressive mechanisms harbored
therein have been at the frontier of cancer research, as
an attempt to improve the already promising landscape of
cancer immunotherapy (1, 86, 132, 135, 151). In this regard,
we offer a fresh perspective on the topic by distinguishing
disparate sets of immunosuppressive mechanisms in different
tumor microenvironments. In particular, here we focused
on analyzing multiple layers of immunosuppression,
which involve mechanisms preventing T cell trafficking and
mechanisms promoting T cell exhaustion within the specialized
microenvironments dedicated to cancer cell dissemination (i.e.,
dissemination trajectories). This unique distinction serves a dual
purpose: First, it offers an attractive explanation on why most
immunotherapies do not target the migratory/invasive tumor cell
subpopulation but instead are primarily restricted in promoting
antitumor immunity within the more proliferative - less
migratory tumor compartment. Second, it provides a rational
framework on thinking the diverse immunosuppressive
mechanisms as a multilayered obstacle against antitumor
immunity, clearly suggesting that we should focus on targeting
the immunosuppressive “network” rather than a “pathway” to be
able to either restore the natural or orchestrate an engineered
antitumor immunity. This perspective certainly does not aim at
understating the importance of studying mechanisms of T cell
exclusion and exhaustion in the proliferative and/or the
cancer stem cell niches of the tumor microenvironment, given
that targeting these microenvironments is also critical for
establishing efficient anticancer immunity. However, this
perspective aims at drawing significant attention to the
frequently neglected concept of cancer cell dissemination, which
may lead to a significant burden of dormant tumor cells in the
distant metastatic sites, which may eventually grow into overt
once they have found a way to avoid immunological detection and
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acquired resistance to immunotherapy or other therapeutic
modalities (293). Therefore, the rational targeting of
immunosuppressive mechanisms within the dissemination
trajectories would serve as a promising antimetastatic therapy,
given that its purpose would be to improve T cell trafficking and
to alleviate T cell exhaustion, thus rallying an immunological
attack against the migratory/invasive cancer cell population while
in the act of departure from the primary tumor.

In pursuit of understanding the escape of migratory/invasive
(MENAINV+) cells from antitumor immunity, here, we
propose a unified model with at least four distinct layers of
immunosuppression. Foremost, we propose that endothelial
anergy and cytokine/cytokine receptor mismatching
mechanisms do not allow for robust T cell trafficking within
dissemination trajectories, and, in case that these mechanisms are
somehow breached, alternative mechanisms promoting T cell
exhaustion from either metabolic burdening or immune
checkpoint control may become dominant (Figure 1). It should
be noted that all these individual mechanisms are strictly context-
dependent and may occur simultaneously within dissemination
trajectories, not in tandem. As a consequence, therapeutic
targeting of these mechanisms for purposes of improving
cancer chemotherapy and/or immunotherapy should consider
all the aforementioned categories of immunosuppression,
because counteracting a single one would likely be inadequate.
Fortunately, therapeutic strategies that target each individual
immunosuppressive layer in our model (Figure 1) are in
development. Therefore, the greatest challenge for the next
decade will fall back to eliciting the most appropriate
combinations to successfully cripple the immunosuppressive
niche within the tumor microenvironment, including within
the dissemination trajectory. For example, prior reported
antiangiogenic approaches aimed at promoting blood vessel
normalization were shown to concurrently disrupt endothelial
anergy, resulting in (re)sensitizing tumor blood vessels to
lymphocyte diapedesis and improved T cell trafficking (294).
Furthermore, immune checkpoint receptor/ligand blockade
(primarily of CTLA4, PD1, and PDL1) with monoclonal
antibodies has emerged as a successful therapy against
intratumoral T cell exhaustion in human patients (1, 69, 291,
295, 296). Combining such antiangiogenic therapies with
immune checkpoint blockade could represent the most
attractive strategy to counteract immunosuppression and
render cancer immunotherapy more successful (297).

Most conclusions regarding the immunosuppressive cues
described in this review article have risen from literature
evidence on the immunosuppressive properties of M2-like
macrophages in general. The most critical aspect of the working
model of spatial immunosuppression (Figure 3) is the contextual
positioning of M2-like TAMs within the dissemination
trajectories, either those represent “streaming” or “TMEM-
doorway” macrophages. Therefore, the immunological
properties of all the distinct tumor compartments are attributed
to the topographical enrichment of M2-like macrophages within
the dissemination trajectories rather than to unique or specific
M2-like macrophage phenotypes.
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As mentioned earlier, TMEM doorways are also formed in
diverse metastatic sites, such as in the lungs and lymph nodes,
and such de novo dissemination machineries may participate in
the re-dissemination of cancer cells to tertiary sites, accelerating
metastatic burden (97, 99). Indeed, analysis of TMEM doorways
in secondary/metastatic sites suggests that their ensuing biology
can mimic to great extent the biological programming of cancer
cell dissemination observed in primary tumors (97, 99). It
would therefore be interesting to investigate in the future if
identical or similar immunosuppressive cues are recapitulated
in the metastatic microenvironments that assemble “re-
dissemination machineries”.

The deeper we delve into the complex circuitries involving
immune cells and their associated cytokine/chemokine
signatures in the tumor microenvironment, the necessity for
more sophisticated technologies to study the processes they are
involved with, will constantly emerge. Indeed, conclusions from
many studies included in this perspective would be impossible to
be drawn in the absence of high-throughput technologies for
multiplex imaging and/or single cell expression profiling. In
addition, high-resolution imaging (e.g., intravital fluorescence
microscopy and planar bioluminescence imaging) has yielded
important spatiotemporal data at single cell resolution,
furthering our understanding on the immunological pathways
supporting the active process of cancer cell dissemination (298–
300). To complement the aforementioned efforts, such emerging
technologies will additionally provide feasible tools for analyzing
mutation antigen profiles, gene signatures and epigenetic
modifications of both tumor and immune cells, the breadth of
antibody responses, as well as the magnitude, homing capacity,
cytotoxic function, and T cell receptor (TCR) repertoires of
tumor-infiltrating lymphocytes. Overall, we anticipate that new
technologies in this intriguing field of research will bring us a
step closer to achieving personalized medicine and more
promising immunotherapies.

In brief, here we describe an alternative perspective that tumor
microenvironments dedicated to cancer cell dissemination may
elicit strong immunosuppressive cues that prevent T cell
trafficking and promote T cell exhaustion, processes that
undeniably facilitate the initial steps of the metastatic cascade.
Interestingly, these mechanisms are primarily orchestrated by
certain well-recognized subsets of tumor-promoting TAMs (e.g.,
TIE2+ TAMs), and their corresponding cytokine/chemokine
network deployed around the cancer cell dissemination
machinery. This working model of compartmentalized
“immunosubversion” provides the groundwork for future
studies on alleviating the immunosuppressive milieu for more
optimal cancer immunotherapies.
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