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Chikungunya fever is an acute infectious disease that is mediated by the mosquito-
transmitted chikungunya virus (CHIKV), for which no licensed vaccines are currently
available. Here, we explored several immunization protocols and investigated their
immunity and protective effects in mice, with DNA- and virus-like particle (VLP)-
vaccines, both alone and in combination. Both DNA and VLP vaccine candidates were
developed and characterized, which express CHIKV structural genes (C-E3-E2-6K-E1).
Mice were immunized twice, with different protocols, followed by immunological detection
and CHIKV Ross challenge. The highest antigen-specific IgG and neutralizing activity were
induced by DNA and VLP co-immunization, while the highest cellular immunity was
induced by DNA vaccination alone. Although all vaccine groups could protect mice from
lethal CHIKV challenge, demonstrated as reduced viral load in various tissues, without
weight loss, mice co-immunized with DNA and VLP exhibited the mildest
histopathological changes and lowest International Harmonization of Nomenclature and
Diagnostic Criteria (INHAND) scores, in comparison to mice with either DNA or VLP
vaccination alone. We concluded that co-immunization with DNA and VLP is a promising
strategy to inducing better protective immunity against CHIKV infection.

Keywords: immunity, virus-like particle, DNA vaccine, chikungunya virus, co-immunization
INTRODUCTION

Chikungunya fever (CHIKF) is a recurrent infectious disease caused by the chikungunya virus
(CHIKV), which belongs to the genus Alphavirus of the Togaviridae family (1, 2). First documented
in Tanzania in 1952, this virus has caused several CHIKF outbreaks, mainly in Africa and Asia.
Widespread outbreak of CHIKF in recent years has made it a global public health problem (3).
org March 2021 | Volume 12 | Article 6557431

https://www.frontiersin.org/articles/10.3389/fimmu.2021.655743/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.655743/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.655743/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.655743/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:tanwj28@163.com
https://doi.org/10.3389/fimmu.2021.655743
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.655743
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.655743&domain=pdf&date_stamp=2021-03-24


Zhao et al. Co-Immunization With CHIKV VLP and DNA Vaccines
CHIKV is a positive-stranded RNA virus that encodes six
structural (C-E3-E2-6K/TF-E1) and four non-structural (nsP1,
helicase nsP2, nsP3, and polymerase nsP4) proteins (4). The two
alphavirus envelope glycoproteins E1 and E2, each containing a
single transmembrane domain, are responsible for mediating
viral attachment (E2) and membrane fusion (E1) (5, 6). The
prefusion E1/E2 heterodimer is arranged in 80 trimeric spikes,
resulting in a viral particle with an icosahedral structure (7, 8).

Currently, there are no licensed CHIKV vaccines available for
use; however, potential vaccine candidates are classified into seven
types: inactivated vaccines, subunit vaccines, live-attenuated
vaccines, recombinant virus-vectored vaccines, virus-like particle
vaccines, chimeric vaccines, and nucleic acid vaccines (9, 10).
Virus-like particles (VLPs) are generated by expression of the
CHIKV structural cassette from a DNA expression plasmid
transfected into human cells. The expressed structural proteins
form particles that are indistinguishable from intact virions, but
are replication-incompetent because they lack genomic viral RNA.
Recently, a VLP vaccine, expressing by the measles virus vector,
entered phase 2 clinical trials (11, 12). While this vaccine has
demonstrated good safety and tolerability, it must be administered
at least twice to reach 100% seroconversion and induce the
production of sufficient levels of neutralizing antibodies.
Importantly, an antibody-dependent enhanced infection (ADE)
was reported during the infection process of CHIKV (13), and the
severity of CHIKV infection increased in the presence of a
subdominant immune response after immunization in mice (14,
15). Therefore, the impact of ADE on vaccination should also be
considered during vaccine design.

Previous studies have shown that both CHIKV VLP and
DNA vaccines can elicit specific immunity and protect mice
from a lethal CHIKV threat (16, 17). Recently, a study
demonstrated that co-immunization with different vaccine
candidates could improve adaptive immunity (18). Co-
immunization with both West Nile DNA and inactivated
vaccines provide a synergistic increase in immunogenicity of
mice (19). In addition, co-immunization with virus-like particles
and DNA vaccines induce protection against respiratory
syncytial virus infection and bronchiolitis (20). To date, a
limited number of studies have investigated the efficacy of
CHIKV vaccines, specifically the development of immunity by
using DNA and VLP vaccines alone, or in combination. This
study provides a comprehensive analysis of the immunogenicity
and efficacy of CHIKV DNA and VLP vaccines, administered
both individually and in combination, in mice.
METHODS

Cell Lines and Viruses
African green monkey Vero cells and human embryonic kidney
293T cells were grown in Dulbecco’s modified Eagle’s medium
(DMEM) (Hyclone, South Logan, UT, USA), supplemented with
10% fetal bovine serum (FBS) (Gibco, NY, USA) and 1%
penicillin-streptomycin (Gibco, NY, USA). The live attenuated
vaccine, CHIKV 181/clone25 strain (Asian), was obtained from
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Terence Dermody through Add gene (pSinRep5-181/25ic,
plasmid 60078) (21, 22). The CHIKV Ross infectious clone was
provided by Dr. Ping Zhao (23). CHIKV 181/clone25 and
CHIKV Ross infectious clone viruses were propagated and
tittered in Vero cells.

Construction of DNA-Based CHIKV
Vaccine
The full-length gene encoding CHIKV structural poly protein (C-
E3-E2-6K-E1) was amplified by polymerase chain reaction from
CHIKV 181/25 with the following primers: CHIKV-forw 5’-
ATCGCCACCATGGAGTTTATCCCAACCC-3’ and CHIKV-
rev 5’-CGGGATCCTTAGTGCCTGCTAAACGAC-3’. The
products of the CHIKV structural genes were digested with
EcoRV and BamHI, and cloned into the expression plasmid
VRC-8301, under the control of the cytomegalovirus (CMV)
immediate-early gene promoter (provided by Dr. Gary Nabel,
NIH) (24). The final expression construct was named pVRC-
CHIKV (DNA-based CHIKV vaccine) and screened using PCR
and double restriction enzyme digestion. It was confirmed via
sequencing in both directions to ensure fidelity (Figure 1A).

Indirect Immunofluorescence Assay
Briefly, 293T cells were transfected with pVRC-CHIKV and the
VRC-8301 empty vector (mock)using PEI (Polyethylenimine)
for 24 h , fo l lowed by fixing with pre-coo led 4%
paraformaldehyde, mobilizing in 0.2% Triton X-100, and
blocking in 10% goat serum in PBS. Subsequently, the cells
were incubated with rabbit polyclonal antibodies (Alpha
Diagnostic Intl Inc, USA) against the CHIKV Capsid and E2
proteins, at 37°C for 2 h. After washing with PBS, the cells were
stained with secondary antibodies (FITC-labeled goat anti-rabbit
IgG) and 0.1% DAPI at 37°C for 1 h. Images of cells were
acquired using a Leica TCS SP8 confocal microscope with LAS
software (Leica Biosystems, Wetzlar, Germany)

Preparation and Purification of CHIK VLPs
For the preparation of CHIK VLPs, sub-confluent 293T cell
cultures in 225 cm2 tissue culture flasks were transfected with
45 mg of pVRC-CHIKV by using PEI. At 72 h post transfection,
the culture media was collected, centrifuged at 4,000 rpm for
30 min at 4°C, and filtered through a 0.22 mm filter to remove cell
debris. The VLPs were pelleted through a 20% sucrose cushion at
24,000 rpm for 4 h at 4°C, using a Beckman SW32 rotor. Pellets
were re-suspended in TNE buffer containing 100 mM NaCl, 50
mM Tris-HCl, pH 7.2, 1 mM EDTA (Sigma, USA) and loaded on
a discontinuous 60% and 20% sucrose gradient in TNE. Sucrose
gradients were centrifuged at 24,000 rpm for 4 h at 4°C using a
Beckman SW41 rotor. The VLPs at the interface of 20-60%
sucrose were collected, diluted, and pelleted through a 20%
sucrose cushion at 24,000 rpm for 4 h at 4°C. The pellets were
suspended in TNE buffer and stored at -80°C, until further use.
The VLPs were analyzed by SDS-PAGE for the presence of
CHIKV structural polyprotein (Figure 2). VLPs were quantified
based on specific E2 protein content, which was determined by
SDS-PAGE and calculated using ImageJ software.
March 2021 | Volume 12 | Article 655743
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Transmission Electron Microscopy
The purified CHIK-VLPs were negatively stained with 1%
phosphotungstic acid (Ph 6.8). Briefly, 5 mL of the VLPs were
placed on a carbon-Formvar coated copper grid for 1 min. Then
grid was washed thrice in sterile triple-distilled water by floating
the grid on water droplets for 45 s, to remove excess sample and
sucrose. Finally, the samples were stained with PTA solution for
1 min. The air-dried grid was examined using a Tecnai12
transmission electron microscope (FEI, Eindhoven,
Netherlands) at 120 kV and recorded with a CCD camera.
Immunizations and Challenge
Female C57BL/6 mice, aged 6 to 7 weeks, were purchased from
the Beijing Vital River Laboratory Animal Technology. All
experiments were approved by the Committee on the Ethics of
Frontiers in Immunology | www.frontiersin.org 3
Animal Experiments of the Chinese Center for Disease Control
and Prevention (China CDC).

Mice were immunized (Figure 3) with DNA alone or co-
immunized with DNA and VLP (hereafter DNA&VLP), on day 0
and day 21, via intramuscular injection plus electroporation
(i.m.+Ep), and with VLP alone or the mock vector, by
subcutaneous injection. Samples were taken for immunological
detection on days 14 and 35, post-vaccination.

Mice were challenged with 1.7×107 TCID50 of the CHIKV
Ross, which belongs to the East Central South Africa lineage
(ECSA), in a total volume of 50 mL by intranasal infection. The
body weight and survival rate of mice were monitored daily.
Animals were sacrificed either 14 days post-infection, or earlier if
weight loss of more than 20% was observed. The heart, liver,
spleen, lung, kidney, brain, and hind limbs of mice were
harvested after sacrifice (3 mice per group). Half of the tissues
A

B

C

FIGURE 1 | Construction and antigen expression analysis of recombinant DNA-based CHIKV vaccine candidate. Schematic diagrams of the recombinant DNA-
based vaccine encoding CHIKV structural genes. The flanking enzyme sites used for cloning, Kozak expression element and CHIKV structural genes (C-E3-E2-6K-
E1) are indicated and were cloned into the VRC-8301 vector (A). Immunofluorescence staining images showing the 293T cells transiently transfected with the pVRC-
CHIKV or VRC-8301 (mock) at 24 h post-transfection. The capsid and E2 protein (FITC) and cell nuclei (DAPI) were stained in green and blue, respectively. Scale
bars, 50 µm (B). Expression of pVRC-CHIKV constructs was confirmed in vitro using CHIKV Capsid and E2 rabbit polyclonal antibodies for the Western blot of
CHIKV Capsid (left) and E2 (right) proteins expressed in 293T cells by Western blotting (C).
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were used for the determination of viral load, and the other half
were fixed in a 4% formalin solution and sent to Beijing
Zhongkewanbang Biotechnology Co., Ltd., for the preparation
of hematoxylin and eosin (H&E) stained sections, and
pathological evaluation.

Enzyme-Linked Immunosorbent Assay
96-well plates (Thermo Fisher Scientific, USA) were coated with
E1 (50 ng/well), E2 (50 ng/well), and VLPs (100 ng/well),
followed by blocking with 200 mL of 10% goat serum in PBS at
37°C for 2 h. The plates were washed five times with PBST,
followed by incubation with serially diluted post-vaccinated sera,
including mock sera, at 37°C for 1 h, followed by five washes with
PBST. HRP-labeled goat anti-mouse IgG [1:5000], IgG1 [1:1500],
and IgG2c [1:1500] antibodies were added at 37°C for 1 h. After
washing (as described above), 100 mL of TMB was added to each
Frontiers in Immunology | www.frontiersin.org 4
well, incubated for 2 min, and then quenched with 50 mL of 2M
H2SO4. Optical density values were measured using SPECTR
Ostar Nano (BIO-GENE, China) at a wavelength of 450 nm. The
IgG2c/IgG1 ratios were calculated to define the T cell phenotype
induced by vaccination since IgG2c and IgG1 levels are indicative
of Th1 and Th2 responses, respectively (17).

Neutralizing Antibodies
Sera were heat-inactivated for 30 min at 56°C, diluted 2-fold
from a starting dilution of 1:40, and mixed with an equal volume
(10–15 pfu/well) of CHIKV Ross for 1 h at 37°C. Virus dilutions
without sera were prepared as controls. After 1 h of incubation,
virus dilutions were applied to Vero cell monolayers for 1 h at
37°C, and then overlaid with 4% methylcellulose. Plates were
incubated for 3 days at 37°C and 5% CO2. The overlay was then
removed, and monolayers were stained with 1% crystal violet.
A B

FIGURE 2 | Purification and characterization of CHIK-VLPs. CHIK-VLPs separated at the 20-60% sucrose density gradient interface, SDS-PAGE followed by
Coomassie blue staining (A). Electron microscopy of negatively stained CHIK-VLPs purified by sucrose gradient (B).
FIGURE 3 | Immunization and challenging schema of CHIKV vaccines. Mice (n=14 per group) were either mock immunized with PBS or vaccinated with DNA, VLP or
DNA+VLP. Blood (n=10) was collected for humoral immune response detection at day14 and 35 by ELISA and plaque reduction neutralization assays at day 35. 14 days
after the prime and boost immunization, mice (n=4) were sacrificed and cellular immune responses were analyzed in splenocytes. Mice (n=6) were challenged with
1.7×107 TCID50 of the CHIKV Ross by intranasal infection at day 49. Body weight, survival rate, tissue viral load, and histopathological changes were evaluated.
March 2021 | Volume 12 | Article 655743
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Plaques were counted, and the neutralization titer was defined as
the highest dilution resulting in a 50% reduction in plaque
number (24, 25).

IFN-g ELISpot Assay
ELISpot assays were performed as previously reported (26).
Briefly, 96-well ELISpot plates were coated with a purified anti-
mouse IFN-g capture antibody (BD ELISPOT Set, USA) and
incubated overnight at 4°C. The following day, 6×106 splenocyte
suspensions from each group were stimulated with 8 mg/mL of
either C (ACLVGDKVM), E1 (HSMTNAVTI), E2 (IILYYYELY)
dominant single peptides (27, 28), or Con A (positive control), in
the presence of a positive control. The plates were then incubated
at 37°C in 5% CO2 for 20–24 h. The next steps were performed
according to the manufacturer’s instructions (BD ELISPOT Set,
USA). A spot forming unit (SFU) was used to represent a T cell-
secreting IFN-g. The plates were then detected using an ELISpot
plate reader (Biosys, So. Pasadena, CA).

Determination of Viral Load
To quantify the relative amount of viral RNA in the respective
tissues, viral RNA was extracted from the heart, liver, spleen, lung,
kidney, andbrain samples using the automatedMagnaPuremethod
and a Total Nucleic Acid Kit (Roche Diagnostics), following the
manufacturer’s instructions. CHIKV RNA was detected with
specific TaqMan probes by using one-step RT-PCR (Master RNA
hybridization probes, Roche), performed on a Chromo 4 machine
(Bio-Rad). The primers and probes used for CHIKV RNA
quantification were CHIKV-forw AAGCTCCGCGTCCTTTA
CCAAG; CHIKV-rev CCAAATTGTCCTGGTCTTCCT; and
Probe: Fam-CCAATGTCTTCAGCCTGGACACCTTT-BHQ1
(29). For absolute quantification, standard curves were generated
using 10-fold dilutions of CHIKV Ross RNA templates of known
concentration (tittered in Vero cells by TCID50). Based on repeated
standard curves, the formula was obtained: y=-3.641x+31.76 (y
means CT, x means index). The extracted viral RNA from tissues
were used to obtain theCTnumber using qRT-PCR.Weight of each
tissue wasmeasured prior to extraction. From these known data, the
results were calculated and expressed as TCID50 per gram of
tissue (30).

Statistical Analysis
The treatment groups were compared by two-way analysis of
variance (ANOVA) and Tukey multiple comparison tests (31).
Data are shown as the mean ± the standard error of the mean
(SEM). Additional data were analyzed using GraphPad Prism
version 7 (GraphPad Software LLC). A P value of <0.05 was
considered significant.
RESULTS

Characterization of DNA and VLP
Vaccines
To verify the expression of the CHIKV structural polyprotein, a
western blot and an indirect immune fluorescence assay of
Frontiers in Immunology | www.frontiersin.org 5
pVRC-CHIKV transfected cells were performed using rabbit
anti-CHIKV Capsid (C) and E2 antibodies , which
demonstrated the expression of the capsid protein and
envelope E2, as expected (Figures 1B, C). No expression was
detected in mock-transfected cells.

CHIK VLPs were produced by pVRC-CHIKV transfected
293T cells and purified by 20-60% discontinuous sucrose density
gradients (Figure 2A). The purified particles were analyzed by
SDS-PAGE, in which E1 and E2 glycoproteins migrated together
and formed a single band at ~47.3 kDa, while the precursor
E3E2, was observed as a higher molecular weight band at
approximately ~54.6 kDa. The capsid protein formed a distinct
band at ~36 kDa (Figure 2B). Electron microscopy was used to
further examine the formation of CHIK VLPs. The observed
VLPs had diameters of about ~65-70 nm, showing
morphological characteristics similar to those of standard
CHIK VLPs (Figure 2C) (7, 16).

Co-Immunization With DNA and VLP
Elicits Highest Humoral Immunity
In this study, we tested whether co-immunization with
CHIKV VLP and DNA vaccines would increase the
immunogenicity of either VLP or DNA immunization alone,
in mice. It was found that co-immunization using DNA and
VLP vaccines induced significantly stronger VLP-, E1-, and
E2- specific antibody responses, in comparison to DNA or
VLP immunization alone (p<0.001 or p<0.0001, respectively)
(Figures 4A–C). Mice in the DNA&VLP group clearly
produced robust VLP- and E1-specific antibodies after the
first injection (p<0.001), which was higher than those of mice
in the DNA or VLP only group (p<0.0.001). When comparing
the specific titers of mice against E2 proteins in each
immunized group, it was found that the highest levels of
anti-E2 antibodies were observed in the DNA&VLP group,
after boost immunization, followed by the VLP only and DNA
only groups (Figure 4B). From the previous study results, we
know that IgG1 and IgG2c isotypes were the main IgG
subclasses induced after DNA or VLP immunization (7, 17).
To further characterize the immune response generated, VLP-
specific antibody subtypes were characterized. Co-
immunization with DNA and VLP could induce both IgG1
and IgG2c antibodies, with significantly higher IgG1 antibody
levels in comparison to IgG2c antibody levels, while the DNA
or VLP only immunization groups mainly induced IgG2c
antibodies (Figure 4B).

Neutralizing antibodies play an important role in the process
of CHIKV infection and viral clearance. In comparison to the
mock group, all immunized groups were observed to induce
neutralizing antibodies in mice after the booster injection, which
could cross-neutralize the heterologous CHIKV Ross strain.
Among them, the DNA or VLP only immunized group induced
lower neutralizing antibody titers, while co-immunization
significantly increased neutralizing antibody titers (Figures 4C,
D). Taken together, co-immunization induced higher levels of
humoral immunity (IgG and neutralizing antibodies) than either
DNA or VLP immunization alone.
March 2021 | Volume 12 | Article 655743
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Co-Immunization With DNA and VLP
Suppresses T Cell-Mediated Inflammation
Responses in Mice
To better understand immunity induced by different
immunization protocols, we determined the induction of
IFN-g-producing C-, E1-, and E2-specific T cells in the
spleens of mice after the vaccination. Upon in vitro
stimulation of spleen cells with C, E1, and E2peptides, we
measured IFN-g-producing cell spots to evaluate the T cell
response. We found that the DNA-immunized group induced
the highest level of IFN-g secretion after immunization. Co-
immunization did not increase the induction of IFN-g secretion
which was found to be lower than that of either the DNA or
VLP only groups (Figure 5). These results confirmed that the
combination of DNA and VLP induced robust Th2-polarized
VLP-specific immunity and suppressed T cell-mediated
immunity in mice.
Frontiers in Immunology | www.frontiersin.org 6
Co-Immunization Can Protect Mice From
Lethal CHIKV Threat
To determine whether there was enhanced protection against
CHIKV threat in DNA and VLP co-immunized mice, in
comparison to groups immunized with DNA or VLP alone,
immunized mice were challenged with 1.7×106 TCID50 CHIKV
Ross through intranasal infection 3 weeks after boost
immunization. Body weight, survival rate, tissue viral load, and
histopathological changes were evaluated (Figure 6). We found
that none of the vaccinated mice suffered from disease or death
(Figure 6B), and their body weight did not significantly decrease
(Figure 6A). In contrast, mice in the control group started to
gradually lose weight 3 days after challenge (Figure 6A), with
hind limb paralysis or death occurring by the 6th day, and all
control mice died by the 9th day (Figure 6B). Tissue viral load
analysis revealed no viral nucleic acid traces in the heart, liver,
spleen, and kidney tissues of the immunized groups. Only very
A

B

C D

FIGURE 4 | Co-immunization-induced broad CHIKV antigen-specific IgG antibody responses and high cross-neutralization antibody response in mice. Anti CHIKV
VLP, E1 and E2 antibody measurement by ELISA. Sera were collected at day 14 and 35 after the prime and boost immunization and total IgG produced was
measured in each group (A). IgG subtype ELISA analysis. The graph shows VLP specific IgG1 and IgG2c antibody levels in mice, IgG2c/IgG1 binding ratios are
shown for mice immunized with DNA, VLP or DNA+VLP (B). Neutralizing antibody titers against CHIKV Ross were determined by plaque reduction neutralization
assays at day 35 (C). Representative results of the plaque reduction neutralization (PRNT) assay for the detection of neutralization activity in the sera of mice (D).
Approximately 10-15 pfu of the virus stock (CHIKV Ross) was used to infect Vero cells in 12-well plates with heat-inactivated sera from immunized mice 14 days
after the boost immunization. PRNT50 was calculated after the plaques were counted. Data are from one experiment of three independent experiments and
presented as the mean ± SEM (n=10). The statistical analysis among groups analyzed by two-way analysis of variance (ANOVA) and Tukey multiple comparison
tests, ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.
March 2021 | Volume 12 | Article 655743

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. Co-Immunization With CHIKV VLP and DNA Vaccines
low levels of viral RNA were detected in the lung and brain of the
immunized groups, in comparison to the mock group
(Figure 6C).

We performed a histological examination of mouse tissue
obtained on the 9th day, and the results of H&E staining are
shown in Figure 6D. In lung tissue sections, it was found that
mock and DNA-or VLP-immunized mice exhibited a widened
alveolar septum, infi ltrated blood vessels, bronchial
inflammatory reaction, trocar formed around blood vessels,
Frontiers in Immunology | www.frontiersin.org 7
and a homogeneous powder was found in the bronchial and
bronchiolar cavities. In contrast, mice in the DNA&VLP group
showed only mild local alveolar space widening and a small
amount of inflammatory cell infiltration (Figure 6D). Although
viral nucleic acid was detected in the brain tissue of immunized
mice, no obvious lesions were observed in brain tissue sections
(Figure 6D). We observed severe lesions in kidney tissue, and
minor lesions in spleen and liver tissue, of mice vaccinated with
either DNA or VLP, while co-immunized mice did not show
FIGURE 5 | Enzyme-linked immunospot assays of IFN-g secretion in immunized mice. Splenocytes were isolated from mice (n=4) and stimulated with CHIKV C, E1,
and E2 peptides at day 14 and 35 after the prime and boost immunization. Splenocytes secreting IFN-g were quantified using ELISpot assays. The data represent
the mean ± standard error [SEM], with units of SFCs per million splenocytes.
A B

D E

C

FIGURE 6 | Co-immunization protects mice from lethal CHIKV challenge. Mice infected with 1.7×107 TCID50 of the CHIKV Ross were monitored daily for body
weight (A) and survival (mean ± standard error [SEM], n=6) (B). Mice (n=3) sacrificed at day 9 post challenge. The heart, liver, spleen, lung, kidney, brain, and hind
limbs of mice were harvested after sacrificed. Tissue supernatants were analyzed for viral load by real-time qRT-PCR. Data represent three independent experiments
and are shown as the mean ± standard error [SEM]. The statistical analysis among groups analyzed by two-way ANOVA, ****p<0.0001, **p<0.01, *p<0.05. None
viral load detected in heart and hind limbs of each group (C). Histopathological analysis of tissues at day 9 after challenge. Section of different tissues were stained
with hematoxylin and eosin. Scale bar, 100 mm. The black arrowhead stood for lesions in tissue (D) (3 mice per group and 1 section per tissue). INHAND scores of
challenged mice organs, on a severity scale of 0–3 (none, mild, moderate, and severe) (E).
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obvious lesions in kidney, spleen, and liver tissue sections.
INHAND score analysis showed that the mock group had 14
points, the DNA or VLP group had 9 points, and the co-
immunized group had only 2 points, which was significantly
lower in comparison to that of the other groups (Figure 6E).
Taken together, DNA and VLP co-immunization provided the
best protection after CHIKV Ross challenge.
DISCUSSION

In this study, we developed novel CHIKVDNA and VLP vaccines,
and evaluated their immunological and protective effects in mice,
using different vaccination protocols. The results showed that all
vaccination protocols were effective in protecting mice from lethal
CHIKV challenge. Notably, co-immunization of mice with DNA
and VLP vaccines exhibited the mildest histopathological changes
and lowest INHAND scores, in comparison to mice with either
DNA or VLP vaccination alone. This promising protection
observed in mice co-immunized with DNA and VLP vaccines
may be associated with higher levels of humoral immunity (IgG
and neutralizing antibodies).

In a previous study, a DNA vaccine expressing E1-E2-C
CHIKV proteins mainly induced IgG1 subtype antibodies,
while a VLP vaccine induced a balanced IgG1/IgG2c antibody
response after immunization (17); however, IgG2c subtype
antibodies were mainly induced in our immunized groups. The
difference in vaccine outcomes between this previous report and
the present study may have resulted from differences in the target
antigens (the CHIKV full structure gene was used in this study)
and vaccination protocols were used. Of note, natural CHIKV
infection is dominated by IgG2c (32). Furthermore, we found
that the DNA&VLP group induced specific IgG antibodies that
recognized VLP, E1, and E2, in mice after the first immunization,
and the level of IgG antibodies significantly increased after
booster immunization. Co-immunization can also induce high
levels of IgG1 and IgG2c antibodies against VLP, in which the
Th2 response, represented by the presence of IgG1 antibody,
dominates. It has been found that mixing polypeptides, proteins,
inactivated viruses, or VLPs with DNA can synergistically
enhance humoral immune response, improve neutralizing
antibody levels, and produce a lasting immune protective effect
(33–35).

Here, PRNT assays were applied to evaluate the cross-
neutralizing ability of immunized sera to CHIKV Ross. It was
found that co-immunization induced the highest level of cross-
neutralizing antibodies, which was significantly higher in
comparison to mice treated with either DNA or VLP vaccines
alone. This was consistent with a previous report where an HIV/
SIV DNA vaccine, combined with protein in a co-immunization
protocol, elicited the highest humoral responses to the viral
envelope in mice and macaques (36). In addition, previous
respiratory syncytial virus (RSV) vaccine studies have shown
that adding DNA to VLP to immunize mice, could provide long-
term protection against RSV infection, without the risk of lung
disease (20).
Frontiers in Immunology | www.frontiersin.org 8
In 2003, Wang et al. found that immunization with either a
DNA vaccine or a protein vaccine could activate T cells, while the
combination of DNA and protein inhibited T cell immunity (37).
In combined HIV DNA and protein immunization protocols, the
cellular immune response was enhanced, which led to an
increase in IFN-g, TNF-a and multi-functionality among
CD8+ T cells and dominance of Th1-polarized Ab-specific
antibodies (36). While DNA and protein combined
immunization in Alzheimer’s disease induced robust Th2-
polarized Ab-specific antibodies, suppressed or eliminated
unwanted adverse T cell-mediated immune responses. At the
same time, co-immunization reduced the production of
inflammatory cytokine IFN-g and increased the production of
IL-4 in CD4+ T cells, suggesting that an anti-inflammatory effect
was induced in the co-immunized mice (38). Here, we found that
the cellular immune response, upon treatment with individual
VLP or DNA vaccines, was stronger than that induced by co-
immunization with CHIKV DNA and VLP. In addition, the
combination of VLP and DNA failed to enhance the cellular
immune response. Therefore, we conclude that co-immunization
of CHIKV VLP with DNA vaccines inhibits cellular immunity,
which is otherwise increased by either DNA vaccination alone.

When mice were challenged with a lethal dose of CHIKV Ross,
we found that all immunized mice did not develop the disease or
die. Further analysis of histopathological sections revealed that the
mock group, as well as the VLP, or DNA immunization groups
had significant lung lesions, while mice in the DNA&VLP group
had only mild lung lesions. This may be related to the nasal
inoculation of CHIKV Ross. CHIKV Ross exhibited a certain
neurotoxicity (39). Previous studies have shown that infection
with CHIKV Ross can damage brain tissue in mice (40). Here,
only the mock group had significant brain lesions, while the brain
tissues of immunized mice were normal. However, it was found
that different degrees of pathological damage were observed in the
kidney, spleen, and liver of mice with either VLP or DNA
immunization, while co-immunization did not reveal any
pathological changes in these tissues. We suggest that co-
immunization has a better protective effect as compared to
treatment with DNA or VLP vaccines alone, especially with
respect to the production of neutralizing antibodies, which play
a vital role in the process of CHIKV infection and viral clearance
(41–43). Whether these differences in pathology due to humoral
response are more effective in protection against CHIKV infection
than the T cell mediated response remains to be elucidated. From
our results, we found that the T cell-mediated response was
significantly higher in the DNA only group than in the co-
immunization group, but it did not provide better protection
than co-immunization. No significant difference was found
between the VLP only group and the co-immunization group T
cell-mediated response, while co-immunization provided better
protection than the VLP only group. This may be because co-
immunization induced higher levels of humoral response than
VLP or DNA immunization. We found that the humoral response
is more effective in protection against CHIKV infection than the T
cell-mediated response. Therefore, future CHIKV vaccines should
focus on generating protective antibodies.
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Several limitations of the current study need to be examined.
CHIKV is an arthritogenic virus. Future studies will explore
whether the DNA&VLP vaccine strategy could be an excellent
strategy to reduce the joint footpad swelling and muscle pathology
in the well-defined footpad model. Second, in the DNA only
group, a T-cell mediated response was observed, which is very
likely a Th1 response (high IgG2c, low IgG1). Additional studies
should identify the role of these T cells. Lastly, we only observed
the DNA&VLP vaccine strategy in C57BL/6 mice. Future studies
should upgrade the vaccine production and explore protection
efficacy and related mechanisms in larger animals.

In summary, our data revealed that co-immunization with DNA
and VLP vaccines did not enhance the cellular immune response in
mice, but significantly enhanced humoral immunity and induced
higher levels of antibodies with cross-neutralizing activity, in
comparison to treatment with either component alone. After CHIKV
Ross challenge, co-immunization provided greater cross-protection in
mice.We concluded that theVLPandDNAco-immunizationmethod
developed here, might be a very promising strategy to improve
immunity and protection against CHIKV infection.
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