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We aimed to investigate the mechanisms of humoral immune activation in ABMR using a
MHC-mismatched rat kidney transplant model. We applied low dose cyclosporine A
(loCNI) to allow donor-specific antibody (DSA) formation and rejection and high dose
cyclosporine A (hiCNI) for non-rejection. DSA and leukocyte subsets were measured by
flow cytometry. Germinal centers (GC), T follicular helper cells (Tfh), plasma cells and
interleukin-21 (IL-21) expression were analyzed by immunofluorescence microscopy.
Expression of important costimulatory molecules and cytokines was measured by qRT-
PCR. Allograft rejection was evaluated by a nephropathologist. We found that DSA
formation correlated with GC frequency and expansion, and that GC size was linked to the
number of activated Tfh. In hiCNI, GC and activated Tfh were virtually absent, resulting in
fewer plasma cells and no DSA or ABMR. Expression of B cell activating T cell cytokine
IL-21 was substantially inhibited in hiCNI, but not in loCNI. In addition, hiCNI showed lower
expression of ICOS ligand and IL-6, which stimulate Tfh differentiation and maintenance.
Overall, Tfh:B cell crosstalk was controlled only by hiCNI treatment, preventing the
development of DSA and ABMR. Additional strategies targeting Tfh:B cell interactions
are needed for preventing alloantibody formation and ABMR.

Keywords: antibody-mediated rejection, donor-specific antibodies, kidney transplantation, T follicular helper cells,
B cell activation, calcineurin inhibitor
INTRODUCTION

Antibody-mediated rejection (ABMR) is a major cause of allograft failure in kidney transplantation
(Ktx) (1). Donor-specific antibodies (DSA) are responsible for initiating ABMR and their serological
presence, whether pre-existing or formed after transplantation (“de novo”), is associated with poorer
graft survival (2–6). We aimed to examine the mechanisms of humoral immune activation in a
clinically relevant model of chronic kidney allograft rejection in order to identify novel strategies for
immunosuppressive intervention.
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High affinity antibodies arise from the germinal center (GC)
reaction. GC are transient structures that form in the follicles
of secondary lymphoid organs (SLO). Here, antigen-specific B
cells undergo somatic hypermutation (SHM) of their
immunoglobulin (Ig) genes and perform class switch
recombination (CSR) to generate affinity-matured antibodies
with specific effector functions (7). As a result, highly specific
long-lived plasma cells and memory B cells are generated (8).
Beyond this, certain clinical observations suggest that processes
integral to the GC reaction control the development of ABMR.
For instance, the mean fluorescence intensity (MFI) of DSA,
which reflects alloantibody affinity and concentration, affects
ABMR risk in Ktx patients (9–12). Furthermore, the IgG subclass
of DSA has been linked to the phenotype and clinical course of
ABMR (13). Thus, the affinity maturation and Ig (sub-) class
switch of DSA, which are regulated in the GC reaction, impact
the development and course of ABMR.

T follicular helper cells (Tfh) are a specialized T helper cell
subset with the primary function of activating cognate B cells, as
reviewed by Vinuesa et al. (14). The expression of the B cell
chemokine receptor CXCR5 guides them to the B cell follicle,
where they provide essential signals driving the GC reaction. Tfh
expression of CD40 ligand and interleukin-21 (IL-21) stimulate
B cell proliferation, SHM and CSR (15). Excessive Tfh activation
occurs in autoimmune diseases (16). In Ktx, Tfh involvement has
been implicated by reports linking circulating Tfh (cTfh) to pre-
sensitization and rejection (17, 18). Moreover, a recent study
showed IL-21, the canonical Tfh cytokine, is able to induce B cell
differentiation and alloantibody formation in peripheral blood
cells from Ktx patients (19). Other studies linked IL-21
expression to allograft rejection in Ktx patients (20, 21) and
Htx patients (22). However, it is uncertain to what extent cTfh
reflect ongoing processes in the SLO. A number of studies
suggest that cTfh represent memory Tfh (23, 24), but some
cTfh may represent pre-GC Tfh (25), raising questions about
observations based on cTfh. Direct evidence of Tfh involvement
in SLO in Ktx patients is lacking.

Since SLO tissue from Ktx patients is not easily accessible,
animal models may provide important mechanistic insights.
Previous models of ABMR in Ktx have been based on pre-
sensitization and pre-formed alloantibodies (26, 27) and have
thus been inappropriate to study the role of GC and Tfh in de
novo allosensitization and ABMR. To study the role of GC and
Tfh:B cell interactions in this setting, we used a unique model of
ABMR in rats based on generation of de novo DSA due to under-
immunosuppression. Using this model closely resembling
clinical Ktx, we examined the generation of DSA, B cell
activation in GC, the activation of Tfh in SLO, as well as
molecules involved in Tfh:B cell crosstalk.
MATERIALS AND METHODS

Rat Kidney Transplantation (Ktx) Model
Animal experiments were approved by local authorities
(Regierung von Unterfranken) and performed according to
Frontiers in Immunology | www.frontiersin.org 2
animal protection laws. MHC-mismatched allogeneic Ktx was
performed using Brown Norway rats (BN) as donors and Lewis
rats (LEW) as recipients (Charles River Laboratories, Sulzfeld,
Germany, 200–250 g), as previously described (28–30). In brief,
BN kidneys were explanted, flushed with cold saline and
transplanted orthotopically. Cold and warm ischemia times
were approximately 35 and 30 min, respectively. Nephrectomy
of the remaining recipient kidney was performed at the end of
the surgery.

Experimental Rat Treatments
To allow DSA formation and chronic rejection, rats were treated
with low dose cyclosporine A (CsA 5 mg/kg/d, “loCNI”). The
non-rejecting group received high dose CsA (10 mg/kg/d,
“hiCNI”). CsA was administered orally by daily gavage for 28
days, beginning on the day of Ktx. CsA trough levels were
measured by routine testing in the onsite clinical chemistry
department by liquid chromatography coupled with tandem
mass spectrometry. Untreated LEW rats served as controls.
Rats were sacrificed 28 days after Ktx, when spleen and kidney
allografts were removed and divided into sections for flow
cytometry, fixed in paraffin, or snap-frozen in N2 and stored at
-80 °C. Figure 1A shows the experimental treatments. Table 1
shows the experimental groups.

Allograft Histology, Rejection and Fibrosis
Paraffin sections were prepared as previously described (31).
After staining with hematoxylin and eosin (HE) and periodic
acid schiff (PAS), the histomorphological alterations were
classified according to the Banff classification 2017 (32) by an
experienced nephropathologist in a blinded manner. C4d
staining was performed using rabbit anti-rat C4d antibody
(Hycultec HP8034, Beutelsbach, Germany) as previously
described (28). Trichrome staining was performed as
previously described (28).

Donor-Specific Antibodies
DSAwere measured by flow crossmatch as previously described (30).
Briefly, donor BN splenocytes were incubated with heat-inactivated
recipient serum for 30 minutes at 4°C and then washed. Cells were
then stained using mouse anti-rat IgM-PE (ThermoFisher, 12-0990,
Waltham, USA), chicken anti-rat IgG-Alexa Fluor647 antibody
(ThermoFisher, A21472), anti-rat IgG1-APC (ThermoFisher 17-
4812), mouse anti-rat IgG2a-PE Cy7 (ThermoFisher 25-4817),
mouse anti-rat IgG2b-PE (ThemoFisher 12-4815), or mouse anti-
rat IgG2c-biotin (BD 553909, Heidelberg, Germany) and
streptavidin-BV421 (Biolegend 405226, San Diego, USA). Finally,
cells were stained for CD3-FITC (ThermoFisher 11-0030) and
measured by flow cytometry. Data is shown for CD3+-gated cells,
to exclude unspecific binding of antibodies by Fc-receptors, and is
restricted to DSA against MHC class I since MHC class II is not
expressed on T cells.

Flow Cytometry
Rat spleens were macerated and spleen cell suspensions
separated by ficoll gradient centrifugation, as described before
(30). Cells were blocked using 10% BSA PBS and stained with
May 2021 | Volume 12 | Article 657894

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Steines et al. Tfh:B Cell Crosstalk in ABMR
mouse anti-rat CD45R-PE-Cy7 (ThermoFisher 25-0460), mouse
anti-rat CD11b/c-PE (ThermoFisher 12-0110-82), mouse anti-
rat CD3-APC (ThermoFisher 17-0030-82) and hamster anti-
mouse CD27-biotin (Serotec/Biorad MCA-4701B, Puchheim,
Germany) and Streptavidin-APC (BD, 554067).

Immunofluorescence Microscopy
3 mm formalin-fixed, paraffin-embedded sections were prepared
and stained, as previously described (28). Cell nuclei were stained
with DAPI (Hoechst 33342, Molecular Probes H-1399,
Netherlands). Primary antibodies used were anti-rat IgG-Alexa
Fluor 647 (ThermoFisher, A21472) for plasma cells, anti-IL-21
(Bioss bs-2621R-a350, Boston, USA), anti-CD20 (Santacruz sc-
393894, Dallas, USA) for B cells, anti-Ki67-Fitc (ThermoFisher
11-5698) for proliferating GC cells, and anti-CD3 (Abcam 5690,
Frontiers in Immunology | www.frontiersin.org 3
Cambridge, UK) for Tfh, which were counted within Ki67+ GC
(activated Tfh) and the MZ (resting Tfh) regions as
demonstrated in Figure 4A. Secondary antibodies used were
donkey anti-rabbit-biotin (Dianova, 711-065-152, Hamburg,
Germany) and AlexaFluor594 Tyramide SuperBoost Kit,
strepavidin (ThermoFisher B40935) for anti-IL-21, goat anti-
mouse-IgM-Cy3 (Dianova 115-166-075) for anti-CD20 and
donkey anti-rabbit-Cy5 (Dianova 711-175-152) for anti-CD3.
Digital pictures were assessed using Histoquest® software.

Real-Time Quantitative PCR (qPCR)
QPCR was performed as previously described (28). Briefly, total
RNA was extracted from homogenized frozen tissue using
Nucleo Spin RNA Plus Kit® (Macharey Nagel 740984.250,
Düren, Germany). DNase was added to remove genomic DNA.
Total RNA was reverse transcribed into cDNA. RT-PCR was
performed on ViiA7 detection system (Applied Biosystems,
Darmstadt, Germany) using QuantiTect SYBR Green PCR Kit
(Qiagen, Hilden, Germany). All water controls were negative for
target and housekeeper. Table S1 (Supplementary Material)
contains primer sequences. Target gene copy numbers were
normal ized to house-keeper hypoxanthine-guanine
A B

D

E

C

FIGURE 1 | Experimental treatments, rejection, fibrosis and DSA formation after Ktx. (A) Ktx groups and CsA treatment, (B) allograft histology showing peritubular
capillaritis (ptc, arrow) and glomerulitis (arrow) in HE and PAS staining. (C) allograft fibrosis assessed by trichrome staining in control BN kidneys (n=3), and hiCNI
(n=6) and loCNI (n=8) allografts (D) Representative flow cytometry data of DSA IgM, IgG and IgG subclasses measured by flow crossmatch and (E) DSA shown as
MFI values in serum from controls (n=6), hiCNI (n=6) and loCNI (n=8). Data is shown as mean and individual data points; statistical significance between groups is
shown as *p ≤ 0.05, **p<0.01, ***p<0.001. For DSA IgG subclasses, data is shown as mean ± SEM; *p ≤ 0.05, **p<0.01, and ***p<0.001 for loCNI vs. hiCNI and
##p<0.01, and ###p<0.001 for loCNI vs. control.
TABLE 1 | Experimental groups.

Group Abbreviation (n=)

Untreated Lewis rats control 5-9
Ktx CsA 10mg/kg/d d28 hiCNI 6
Ktx CsA 5 mg/kg/d d28 loCNI 8
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phosphoribosyl-transferase (HPRT) and expressed by
calculating delta CT values.

Interleukin-21 Immunoassay
SerumIL-21 concentrationsweremeasuredusing a commercial anti-
rat IL-21 chemiluminescent immunoassay (Cloud clone SCB688Ra,
Houston, USA) according to the manufacturer’s instructions.

Statistical Analysis
Data is shown as individual values and mean or mean ± SEM.
Statistical analysis was performed using GraphPad Prism
(Version 8.0, San Diego). Mann-Whitney U-test was used and
p ≤ 0.05 was considered to be statistically significant.
RESULTS

Development of Allograft Rejection,
Fibrosis and DSA
We used low dose CsA treatment (loCNI) to prevent fatal
allograft failure due to acute rejection, but allow DSA
formation. High dose CsA treatment (hiCNI) was used to
suppress alloimmune functions in a non-rejecting group. An
overview of experimental treatments is shown in Figure 1A.
Mean CsA trough levels in CsA treated rats were 93 ± 34 ng/ml
with 5mg/kg/d and 733 ± 135 ng/ml with 10 mg/kg/d. HiCNI
treatment prevented cellular rejection (TCMR) and ABMR
(Table 2). In contrast, 6 of 8 loCNI rats developed borderline
rejection, one showed Banff IB TCMR and one showed no
rejection. A portion of loCNI rats (3/8) also showed signs of
active and chronic ABMR, including peritubular capillaritis,
transplant glomerulitis, chronic transplant glomerulopathy and
acute tubular necrosis, scored using Banff lesion criteria (Table 2,
Figure 1B). C4d staining was negative in all sections
(not shown).

In addition, we observed a significant increase of fibrosis in
kidneys after loCNI treatment compared to hiCNI treatment
(1.9 ± 0.1% vs. 1.4 ± 0.1%, p=0.01) and controls (1.9 ± 0.1% vs.
0.6 ± 0.2%, p=0.01). HiCNI kidneys also showed more fibrosis
than controls (p=0.048) (Figure 1C).

Furthermore, MFI of both IgM and IgG DSA were
significantly elevated in loCNI compared to hiCNI (IgM 23.7 ±
2.1 vs. 11.9 ± 0.8, p=0.0027; IgG 59.0 ± 11.6 vs. 8.3 ± 0.5,
p=0.0007) and controls (Figures 1D, E). The analysis of DSA
Frontiers in Immunology | www.frontiersin.org 4
IgG subclasses showed that IgG2b DSA were most prominent,
followed by IgG1 (Figures 1D, E). In hiCNI, DSA MFI did not
exceed unspecific background levels of the control group in any
DSA analysis (Figures 1D, E). A limitation in our methodology
is that only DSA against MHC class I were measured; therefore
conclusions about the development and effect of MHC class II
DSA cannot be drawn in our study.

T Cell, but Not B Cell, Frequency
Is Reduced in hiCNI
Since DSA formation was strongly inhibited by hiCNI treatment,
we first examined how B cell, T cell and mononuclear phagocyte
(MP) populations in the SLO were affected by experimental
treatments. The frequency of B cells was not altered by CNI
treatment and transplantation (Figures 2A, B); however, the
frequency of splenic T cells was significantly reduced in hiCNI
compared to loCNI (36.0% ± 2.7% vs. 48.8% ± 2.0%, p=0.0007)
and controls (36.0% ± 2.7% vs. 51% ± 1.1%, p=0.0004) (Figures
2A, B). Both hiCNI and loCNI showed an increased proportion
of MP compared to controls (loCNI vs. control: 16.9% ± 1.3% vs.
13.0% ± 0.4%, p=0.006; hiCNI vs. control: 22.9% ± 3.4% vs.
13.0% ± 0.4%, p=0.0016). There was no significant difference in
the absolute numbers of splenic B or T cells or MP (Figure 2B).
Within allografts, the frequencies and absolute numbers of both
B and T cells were increased in loCNI compared to controls (B
cells p=0.029 and T cells p=0.0007) (Figure 2C). T cell frequency
was also increased in loCNI compared to hiCNI (p=0.0007),
while MP frequency was decreased in loCNI compared to hiCNI
(p=0.003) (Figure 2C).

Germinal Centers Correlate With DSA
Since B cell frequency was not affected, we examined B cell
activation in GC. We analyzed splenic foll ic les by
immunofluorescence microscopy, and determined the
frequency and size of GC (Figures 3A, B). The follicular area
and mantle zone (MZ) area were unchanged in transplanted rats
compared to untreated controls, regardless of CNI treatment
(Supplementary Material Figure S1A, B); however, GC
frequency and area were almost completely diminished in
hiCNI treated rats compared to loCNI rats (GC frequency:
0.04 ± 0.02 vs. 0.37 ± 0.09, p=0.013; GC size: 0.0003 ± 0.0008
mm2 vs. 0.0037 ± 0.001mm2, p=0.018) and controls (GC frequency:
0.04 ± 0.02 vs. 0.36 ± 0.09, p=0.028; GC size: 0.0003 ± 0.0008 mm2

vs. 0.004 ± 0.001 mm2, p=0.015) (Figure 3B). In line with this,
TABLE 2 | Histopathological evaluation of allograft sections in analogy to Banff classification 2017.

Group no rejection TCMR ABMR ABMR lesion scores

Borderline Banff IB ptc g cg MVI# ATN

hiCNI 6/6 – – 0 ± 0 0 ± 0* 0 ± 0* 0 ± 0* 0.13 ± 0.1°
loCNI 1/8 6/8 1/8 3/8 0.5 ± 0.26 0.25 ± 0.16 0.25 ± 0.25 0.75 ± 0.4 0.63 ± 0.3
May 2021
 | Volume 12 | Art
TCMR, t cell mediated rejection; ABMR, antibody mediated rejection; ptc, peritubular capillaritis; g, glomerulitis; cg, glomerulopathy; MVI, microvascular inflammation; ATN, acute tubular
necrosis; n.a., not assessed.
*1 of 6 Ktx sections from this group did not contain glomeruli.
°1 section with ATN contained parenchymal necrosis, interstitial edema, subcapsular hemorrhage and signs of vascular congestion.
#MVI (microvascular inflammation) score = sum of ptc and g scores.
icle 657894
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splenic mRNA expression of AID (activation-induced cytidine
deaminase), an essential enzyme for germinal center B cells, was
also diminished in hiCNI compared to loCNI (0.0008 ± 0.0003 vs.
0.004 ± 0.0007, p=0.003) and controls (0.0008 ± 0.0003 vs. 0.003 ±
0.0008, p=0.017) (Figure 3C). We were interested in the
relationship between DSA formation and GC frequency and
expansion. We found that within the loCNI group, GC frequency
correlated with both IgG and IgG2b DSA MFI, and that GC area
correlated with IgG DSA MFI (p=0.05, R2 = 0.49) (Figure 3D).

Activated Tfh Act as Drivers of GC
Formation
Since GC formation was inhibited by hiCNI treatment, we
investigated the signals necessary for B cell activation. In vivo
tracking studies by Suan et al. demonstrated that Tfh within the
GC have an activated phenotype, while Tfh in the mantle zone
(MZ) have a resting memory Tfh phenotype (33). We found that
the number of activated GC Tfh was substantially reduced in the
hiCNI group compared to loCNI (4.1 ± 2.0 vs. 12.3 ± 2.4 CD3+

cells/GC, p=0.031) and controls (4.1 ± 2.0 vs. 14.3 ± 3.8 CD3+

cells/GC, p=0.028) (Figure 4B), while the number of resting Tfh
localized within the MZ was not affected by treatments (Figure
4B). Since Tfh activate B cell proliferation, we were interested in
the relationship between Tfh and GC expansion. We found that in
loCNI, the number of activated Tfh determined the size of GC
(Figure 4C).
Frontiers in Immunology | www.frontiersin.org 5
Plasma cells and memory B cells are the products of the GC
reaction. As a consequence of inhibited GC formation in hiCNI,
the number of splenic plasma cells was also lower in hiCNI
compared to loCNI (160 ± 15 cells/mm2 vs. 169 ± 11 cells/mm2,
p=0.04) (Figure 4D). The number of splenic memory B cells was
non-significantly reduced in hiCNI compared to loCNI (6.4x105 ±
4.2x105 vs. 13.3x105 ± 4.7x105, p=0.47) (Figure 4E).

HiCNI Inhibits Markers of Tfh
Differentiation and Function
Tfh arise after activation of naïve T cells, which was inhibited in
hiCNI, as demonstrated by a substantially reduced expression of
markers associated with T cell activation, PD-1 (programmed
cell death protein 1) and ICOS (inducible T cell costimulator) in
hiCNI compared to loCNI (PD-1: 0.005 ± 0.001 vs. 0.018 ± 0.002,
p=0.0007; ICOS: 0.08 ± 0.014 vs. 0.18 ± 0.02, p=0.005) and
controls (PD-1: 0.005 ± 0.001 vs. 0.017 ± 0.001, p=0.004; ICOS:
0.08 ± 0.001 vs. 0.20 ± 0.02, p=0.004) (Figure 5A).
Correspondingly, mRNA expression of the T cell costimulatory
receptor CD28 and Th lineage transcription factors GATA3
(GATA binding protein 3) and Foxp3 (forkhead box protein
P3) was also significantly lower in hiCNI compared to loCNI
(Supplementary Material Figure S2A).

Signals from B cells, such as ICOS ligand, are required to
promote Tfh differentiation and maintenance (34, 35). We found
that mRNA expression of ICOS ligand was significantly diminished
A B C

FIGURE 2 | Frequency and absolute numbers of leukocyte subsets in spleens and allografts. Representative flow cytometry data (A), frequency and absolute
numbers of B cells (CD45R+), T cells (CD3+) and mononuclear phagocytes (MP, CD11b/c+) in spleen (B) and allografts (C) measured by flow cytometry and shown
as percentages of leukocytes or absolute numbers per weight. Means and individual data points are shown from controls (LEW spleen n=9, BN kidneys n=6), hiCNI
(n=6) and loCNI (n=8); statistical significance between groups is shown as *p≤ 0.05, **p<0.01 and ***p<0.001.
May 2021 | Volume 12 | Article 657894
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in hiCNI compared to loCNI (0.063 ± 0.014 vs. 0.15 ± 0.01,
p=0.003) and compared to controls (0.063 ± 0.014 vs. 0.16 ±
0.015, p=0.008) (Figure 5B).

Next, we were interested in the expression of molecules
associated with Tfh effector function. Although CD40 ligand
mRNA expression was significantly lower in hiCNI than in
loCNI (0.07 ± 0.006 vs. 0.13 ± 0.014, p=0.005), it was not
suppressed by hiCNI treatment in comparison to controls
(Figure 5C). Splenic IL-21 mRNA expression, on the other
hand, was potently inhibited by hiCNI treatment compared to
loCNI (0.0002 ± 0.000002 vs. 0.0013 ± 0.0002, p=0.0007) and
controls (0.0002 ± 0.000002 vs. 0.001 ± 0.0002, p=0.009).
Interestingly, the mRNA expression of the IL-21 receptor
was also lower in hiCNI treatment compared to loCNI (0.69 ±
0.07 vs. 0.89 ± 0.02, p=0.029) (Figure 5D) . Using
immunofluorescence microscopy, we showed that follicular IL-21
expression was significantly less prominent in hiCNI compared to
loCNI or controls (IL-21+ area in hiCNI vs. loCNI: 0.19 ± 0.18 mm2

vs. 0.9 ± 0.34 mm2, p=0.04) (hiCNI vs. control: 0.19 ± 0.18 mm2 vs.
1.5 ± 0.31 mm2, p=0.013) (Figure 5E). In serum, there was no
Frontiers in Immunology | www.frontiersin.org 6
significant difference in IL-21 concentrations between hiCNI vs.
loCNI, but a decrease in IL-21 levels was noted in both CNI groups
after transplantation (d14), possibly mediated by CsA treatment
(Figure 5F). Surprisingly, splenic mRNA expression of cytokines
associated with T helper cell subsets, IL-2, IFN-g (interferon-g), IL-4
and TGF-b (transforming growth factor-b), was not reduced by
hiCNI treatment (Supplementary Material Figure S2).

Other Axes Involved in T:B Crosstalk and
Humoral Immune Activation
Wewere interested in other important axes that activate humoral
immunity. Interleukin(IL)-6 is secreted by B cells and supports
Tfh maintenance. We found that IL-6 was elevated in loCNI
compared to hiCNI (0.052 ± 0.002 vs. 0.038 ± 0.006, p=0.02) and
controls (0.052 ± 0.002 vs. 0.033 ± 0.003, p=0.002), but its
expression was not inhibited by hiCNI compared to controls
(Figure 5G). BAFF (B cell activating factor), its homolog APRIL
(a proliferation inducing ligand) are both drivers of humoral
immunity. We measured expression of BAFF, APRIL and their
receptors BAFF-R (BAFF receptor), BCMA (B cell maturation
A

B

D

C

FIGURE 3 | Germinal center formation. (A) immunofluorescence staining of splenic follicles with T cell zone (CD3+, red), B cell follicle (CD20+, yellow) and GC (Ki67+,
green) and (B) average frequency and area of GC per follicle from controls (n=6), hiCNI (n=6) and loCNI (n=8). (C) splenic AID mRNA expression measured by qPCR
in controls (n=5), hiCNI (n=6) and loCNI (n=8), normalized to house-keeping gene HPRT and expressed as delta CT (AU). Means and individual data points are
shown; statistical significance between groups is shown as *p≤ 0.05 and **p<0.01. (D) Correlation of GC frequency or area with IgG and IgG2b DSA MFI within the
loCNI group.
May 2021 | Volume 12 | Article 657894
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antigen) and TACI (transmembrane activator and calcium
modulator and cyclophilin ligand interactor), and found that
expression of TACI, but not BAFF, APRIL, BAFF-R or BCMA,
was significantly reduced in hiCNI compared to loCNI (p=0.005)
or control (p=0.004) (Figure 5H).
DISCUSSION

We used a unique model of ABMR based on de novo
sensitization to study the mechanisms of humoral alloimmune
activation in vivo. Using this model closely resembling human
Ktx, we investigated the relationship between GC, Tfh and DSA
formation in SLO and the effects of CNI dose variation on key
effector cells and molecules. We found that DSA formation and
ABMR development were prevented in rats treated with hiCNI,
while loCNI treatment did not hinder DSA formation and only
partially prevented ABMR. GC formation was inhibited in
hiCNI, but permitted in loCNI. As a result, plasma cell output
Frontiers in Immunology | www.frontiersin.org 7
from GC was reduced in hiCNI compared to loCNI. Fittingly, the
number of activated Tfh was significantly reduced in hiCNI. In
addition, we found that expression of Tfh maturation and
maintenance factors ICOS ligand and IL-21 was also lower in
hiCNI compared to loCNI. Follicular expression of the Tfh
effector cytokine IL-21 was substantially inhibited in hiCNI. In
summary, our results highlight the role of Tfh and GC in the
development of de novo DSA and show that ABMR is prevented
when Tfh:B cell crosstalk is disrupted.

In our model, low dose CNI-based immunosuppression was
administered to prevent fatal allograft rejection. All rats with
loCNI treatment, but none with hiCNI treatment, developed
DSA. In addition, loCNI led to borderline cellular rejection in
most rats and acute and/or chronic ABMR in a portion of rats.
Kidney fibrosis was increased by transplantation and was
potentiated by rejection in rats with loCNI. Therefore, our
model displayed many features of chronic rejection seen in
Ktx patients.

The activation of Tfh and B cells is intricately linked and
depends on T:B interactions within SLO. These interactions
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FIGURE 4 | Activated T follicular helper cells drive GC formation. (A) immunofluorescence staining of a splenic follicle with T cell zone (CD3+, red), GC (Ki67+, circled
green), B cell follicle (CD20+, yellow) with mantle zone (MZ, circled yellow) and Tfh (white arrows). (B) average number of activated Tfh (CD3+ cells in Ki67+ GC area)
and resting Tfh (CD3+ cells in CD20+ MZ area) in controls (n=6), hiCNI (n=6) and loCNI (n=8). (C) Correlation of the number of activated Tfh and GC expansion within
the loCNI group. (D) plasma cells measured as IgG+ cells in spleen sections from controls (n=6), hiCNI (n=6) and loCNI (n=8), and (E) CD45R+CD27+ memory B
cells measured by flow cytometry in controls (n=5), hiCNI (n=6) and loCNI (n=4). Means and individual data points are shown; statistical significance between groups
is shown as *p≤ 0.05.
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require the specific movements and spatial arrangements of T
and B cells within lymphoid follicles. We chose to examine
spleens as representative SLO to visualize T:B interactions, based
on previous data showing that allo-antigens from vascularized
allografts can be detected in higher amounts in spleen than in
draining lymph nodes (36). We found that B cell proliferation in
GC was virtually eliminated by hiCNI, but not loCNI treatment,
Frontiers in Immunology | www.frontiersin.org 8
which did not prevent GC formation. Moreover, we showed that
DSA MFI correlated with the frequency and size of GC. We also
observed GC formation in the untreated controls, but this is
common in healthy rats housed in conventional research
environments (37). Furthermore, we found a lower number of
splenic plasma cells in hiCNI compared to loCNI, which we
interpreted as a result of reduced output from GC. Our results
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FIGURE 5 | Markers associated with activation and function of T follicular helper cells. (A) splenic mRNA expression of PD-1 and ICOS, (B) ICOS ligand (C) CD40
ligand and (D) IL-21 and IL-21 receptor. From controls (n=5), hiCNI (n=6) and loCNI (n=8), (E) representative immunofluorescent staining of IL-21 within splenic
follicles. (F) Serum IL-21 concentrations of hiCNI and loCNI at d0 (hiCNI n=3, loCNI n=3), d14 (hiCNI n=2, loCNI n=8) and d28 (hiCNI n=6, loCNI n=8) post-Ktx.
Splenic mRNA expression of IL-6 (G) and TACI (H) from controls (n=5), hiCNI (n=6) and loCNI (n=8). Expression of mRNA was normalized to house-keeping gene
HPRT and expressed as delta CT (AU). Data is shown as mean and individual data points; statistical significance is denoted as *p≤ 0.05, **p<0.01 and ***p<0.001.
In (F), #p≤0.05 for loCNI, *p≤0.05 for hiCNI.
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point out the dependency of DSA generation on GC formation
and highlight the impact of CNI dose variation on GC formation.

Tfh are non-redundant drivers of GC formation (38, 39).
Since DSA did not form in the absence of GC, our data supports
a T-dependent mechanism of alloantibody formation via the GC.
In line with our observations, a recent report showed a
requirement for Tfh for humoral alloresponses in a murine
heart transplant model (40). In our study, activated Tfh were
virtually absent in hiCNI treated rats. Furthermore, we showed
that the number of activated Tfh determined the expansion of
GC. While the number of activated GC Tfh was substantially
diminished in hiCNI, we found that resting MZ Tfh cell numbers
were not affected by immunosuppressive treatment. Overall, our
data underline the important role of Tfh in the formation
of DSA.

Tfh follow a distinctive differentiation pathway, requiring a
number of signals, as reviewed by Wali (41). Development of Tfh
is initiated by antigen-presentation and cytokine priming of
naïve T helper (Th) cells by dendritic cells. In our model, the
diminished number of activated Tfh in hiCNI may have resulted
from inhibition of naïve T cell activation or a deficit in Tfh
maturation or maintenance signals. We found reduced
expression of markers associated with T cell activation, PD-1
and ICOS, in hiCNI indicating inhibition of T cell activation. In
addition, expression of other Th cell subset lineage markers, such
as GATA3 and Foxp3, was also significantly reduced in hiCNI,
suggesting a common mechanism of inhibition of naïve T cell
activation by CNI, as previously described (42). Overall, our
results suggest that CNI treatment has an inhibitory effect on de
novo development of Tfh. Indeed, suppression of Tfh formation
by CNI has been shown in vitro (43, 44). Our results show that
Tfh lineage development was highly susceptible to high dose
CNI treatment.

However, hiCNI treatment also inhibited the expression of
Tfh maturation and maintenance signals. Pre-Tfh upregulate the
B-cell chemokine receptor CXCR5 (45), which guides them to
the T:B border in lymphoid follicles. Here, pre-Tfh receive
essential signals from B cells enabling full maturation of Tfh
(46). While ICOS is expressed during T cell activation, ICOS
ligand is induced in activated B cells and is required for Tfh
maturation into a fully functional state (46, 47). Our results
showed a significant inhibition of ICOS ligand expression.
Previous reports showed that CNI can inhibit naïve B cell
activation directly in vitro (43), making a B-cell mediated
indirect effect of hiCNI on Tfh differentiation a distinct
possibility. We show that Tfh:B cell crosstalk via the ICOS –
ICOS ligand axis is bilaterally disrupted by hiCNI treatment.

Tfh provide essential activation signals to cognate B cells via
costimulatory molecules and the secretion of cytokines. CD40
ligand and IL-21 are the key Tfh effector molecules required for B
cell activation. Interestingly, while IL-21 expression was potently
inhibited by hiCNI treatment, CD40 ligand expression was not.
IL-21 not only functions as a key B cell activating cytokine and
driver of GC formation, it also stimulates Tfh maturation in an
autocrine manner (48). We show for the first time a substantial
inhibition of IL-21 expression in SLO by hiCNI treatment
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in vivo, while IL-2 and IFN-g expression was not significantly
affected. Fittingly, the expression of the IL-21 receptor was also
reduced in hiCNI, reflecting a lack of autocrine Tfh stimulation
and abrogated B cell activation. Since Tfh generation depends on
IL-21, the shortage of IL-21 produced in hiCNI may have stifled
Tfh generation in our model.

Another important factor for Tfh maintenance is IL-6. IL-6 is
secreted by B cells and plasmablasts and acts as an amplifier of
Tfh-dependent B cell activation in a positive feedback loop (35).
We found that IL-6 expression in SLO was elevated in loCNI, but
was not inhibited by hiCNI below control levels. Our findings
suggest that prolonged alloimmune activation and inflammation
leads to IL-6 elevation, which can pathologically amplify the
humoral response. Tocilizumab, a monoclonal anti-IL-6
antibody, has recently shown promising initial results for the
treatment of chronic ABMR in Ktx patients (49). Our results
demonstrate that IL-6, an important amplifier of humoral
responses, is not targeted by CNI treatment.

Finally, we were interested in the involvement of the BAFF/
APRIL axis, which has been linked to pre-transplant
sensitization, DSA occurrence and ABMR in Ktx patients and
experimental Ktx (30, 50–53). We found no change in BAFF,
APRIL, BAFF-R or BCMA expression in SLO, but the expression
of the BAFF/APRIL receptor TACI was significantly reduced in
hiCNI. Our results demonstrate that the BAFF/APRIL axis is
only partially affected by CNI treatment via reduced
TACI expression.

In summary, our study highlights the important role of Tfh:B
cell crosstalk and the effects of CNI dose variation on humoral
alloimmune activation in vivo. Overall, our data supports
targeting Tfh or its effector molecules to prevent ABMR and
improve long-term outcomes in Ktx patients.
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