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SARS-COV-2 virus is responsible for the ongoing devastating pandemic. Since the early
phase of the pandemic, the “cytokine-storm” appeared a peculiar aspect of SARS-COV-2
infection which, at least in the severe cases, is responsible for respiratory treat damage
and subsequent multi-organ failure. The efforts made in the last few months elucidated
that the cytokine-storm results from a complex network involving cytokines/chemokines/
infiltrating-immune-cells which orchestrate the aberrant immune response in COVID-19.
Clinical and experimental studies aimed at depicting a potential “immune signature” of
SARS-COV-2, identified three main “actors,” namely the cytokine IL-6, the chemokine
CXCL10 and the infiltrating immune cell type macrophages. Although other cytokines,
chemokines and infiltrating immune cells are deeply involved and their role should not be
neglected, based on currently available data, IL-6, CXCL10, and infiltrating macrophages
could be considered prototype factors representing each component of the immune
system. It rapidly became clear that a strong and continuous interplay among the three
components of the immune response is mandatory in order to produce a severe clinical
course of the disease. Indeed, while IL-6, CXCL10 and macrophages alone would not be
able to fully drive the onset and maintenance of the cytokine-storm, the establishment of a
IL-6/CXCL10/macrophages axis is crucial in driving the sequence of events characterizing
this condition. The present review is specifically aimed at overviewing current evidences
provided by both in vitro and in vivo studies addressing the issue of the interplay among
IL-6, CXCL10 and macrophages in the onset and progression of cytokine storm. SARS-
COV-2 infection and the “cytokine storm.”

Keywords: COVID-19, macrophages, IL-6, CXCL10, cytokine-storm
INTRODUCTION

The devastating epidemic caused by SARS-COV-2 prompted the scientific community to
investigate the behavior of SARS-COV-2 by both in vitro and in vivo studies. In these last
months we have progressively accumulated more and more information regarding SARS-COV-2
biological behavior. In particular, it is now known, that it is a RNA virus which interacts with the
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ACE-2 receptor expressed in several human tissues (1–7). This
binding is followed by a cleavage of the S spike protein of the
virus by the two proteases Furin and TMRPRLS leading to the
entering of SARS-COV2 through the membrane of the host cell,
in which it replicates. The virus not only infects the upper
respiratory tract but the infection also involves other tissues
like gastrointestinal tract and endothelial cells. The host immune
response to the virus is, at least in the most severe cases,
ineffective due to the ability of the virus to by-pass the
interferon-mediated anti-viral immunity, being associated with
a reduction of T cells to lymphopenia and to an immune-
deviation to a Th17 phenotype that is inappropriate for
successful virus defence. COVID-19 clinical course ranges
from asymptomatic cases to very severe disease and septic
status which may ultimately lead to multi organ failure (8, 9).
A main focus was made in these months to a peculiar
characteristic of SARS-COV-2 infection, which is the induction
of the so-called cytokine storm (CS). CS is a clinical situation in
which the immune system releases (in the case of SARS-COV-2
mainly the lung) a wide spectrum of immune-active molecules,
including cytokines and chemokines at very high concentrations,
potentially driving the onset of multi-organ failure and in the
most unfortunate cases death.

Based on our current knowledge, the balance of the
composition of the cytokine/chemokine network characterizing
the “cytokine storm” seems to be crucial in the progression of
COVID-19 (10, 11).

Following the demonstration of the pathological role of the
cytokine storm, several studies were designed with the aim of
investigating whether specific chemokines could play a role in
driving COVID-19 progression. These type of studies were
aimed not only at identifying possible targets for treatment of
the disease but also at detecting a possible “immune signature” in
patients with COVID-19 (11). Indeed, COVID-19 is a very
heterogeneous disease, characterized by a clinical course which
may range from a rather free of symptoms condition to fatal
events. Thus, it is evident that the identification of a specific
“immune signature” (i.e., high or low concentrations of one or
more specific chemokine) of COVID-19 patients would
potentially represent a helpful clinical tool for early
identification, already in the early stages of the infection, of
patients more or less prone to develop a severe clinical
condition (11).

Evidences accumulated through the last year, showed that a
complex interplay involving several components of the immune
system, is mandatory for the onset and progression of the CS.
These components include cytokines, chemokines and immune-
active infiltrating cells. It is important highlighting that the three
components exert different but ultimately convergent roles each
of which is mandatory for the onset of CS. In other words, the
contribution of specific cytokines, chemokines, and immune-
active infiltrating cells could be regarded as a rate limiting step of
the process, in that the lack of interplay between any of these
components would prevent the CS (10).

Based on the above notions and taking into account the
currently available data, a cardinal prototype for each
Frontiers in Immunology | www.frontiersin.org 2
component appears to have been identified. At present, IL-6,
CXCL10, and infiltrating macrophages are regarded as the
principal player for cytokines, chemokines, and immune-active
infiltrating cells, respectively.

The present review will be aimed at providing an overview of
the mechanisms by which the three above described components
interact with each other and of the specific role of IL-6, CXCL10,
and macrophages in the pathogenesis of CS.
CYTOKINES AND CHEMOKINES:
DIFFERENCES AND SIMILARITIES

Cytokines and chemokines, due to the common knowledge that
chemokines are indeed a family of cytokines, may in some cases
erroneously considered to be and act as “the same thing.”
However, cytokines and chemokines do differ for at least some
aspects, indeed they both play crucial but different roles during
the inflammatory process. Before addressing the main difference
between cytokines and chemokines a brief description of these
two group of molecules should be provided. Cytokines are a
broad and loose category of low molecular weight proteins (~5–
20 kDa), mainly involved in cell signaling. They are secreted by
different types of cells, affecting the behavior of other cells, often
including the releasing cells themselves. Some cytokines are able
to enhance or inhibit the action of other cytokines through
complex ways. Cytokines include some chemokines, interferons,
interleukins, lymphokines, tumor necrosis factor (12, 13).

Chemokines are a family of small cytokines, or signaling
proteins secreted by cells. Their name is derived from their ability
to induce directed chemotaxis in nearby responsive cells, indeed
they are chemotactic cytokines (14, 15). The chemotactic process
promoted by chemokines is due to the binding of chemokines to
specific 7 transmembrane G protein receptors expressed on
target cells (12, 15–18). Chemokines can be chemically
identified by their small size and by a four cysteine residues in
conserved locations that are key to forming their 3-dimensional
shape. Chemokines have been classified into four main
subfamilies: “CXC, CC, CX3C, and XC” (12, 14).

In order to understand the complex interplay between
cytokines and chemokines, it should be remembered that any
inflammatory process is characterized by the presence of both
cytokines and chemokines.

Indeed, in the early phase of an acute inflammatory event, as
for example lung inflammation, the migration of leukocytes,
neutrophils and other immune cells is one of the first events from
which lung inflammation will further propagate (19). These
immune cells (which in the specific case of lung are mainly
neutrophils) undergo directed migration along “chemotactic”
gradients to the inflamed site (19). This chemotactic gradient is
orchestrated by chemokines secreted by endothelial cells,
resident stromal cells, and parenchyma cells. The chemokine
milieu largely determines both the type (macrophages,
leukocytes, neutrophils) of cell infiltrate and the amount of
infiltrating cells which will be recruited to the site of
inflammation (20). This may happen thanks to the
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chemotactic action mediated by the binding of chemokines with
their specific chemokines-receptors expressed on the immune-
cell surface. The chemokine/chemokine receptor system is a
highly redundant one in that, one chemokines binds to more
than one receptor and one receptor interacts with multiple
chemokines. Some exceptions to this general rule exist, such as
the exclusive interaction between the CXCR3 receptor and its
ligands (CXCL9, CXCL10, CXCL11) (14). More recently, the
general concept of redundancy was re-discussed as several
evidences pointed against redundancy of actual biological
function in the chemokine system (21). The cell recruitment
by chemokines/chemokines receptor binding, leads to the
activation of immune cells which, in turn, will release several
cytokines (19, 20, 22). The subsequent events of cellular/cytokine
interactions are crucial for initiating and propagating the
inflammatory response that leads to pulmonary injury (19).
Both TNFa and IL-1 are early-response cytokines that are
necessary not only for the initiation of acute inflammation, but
are also required for perpetuation of the inflammatory response,
leading to a chronic inflammatory state (23, 24). This event is
paralleled by the production, by the major cellular components
of the alveolar-capillary membrane or airway of the lung, of
chemokines which actively contribute to the inflammatory
response, being critical for the orchestration of the directed
migration of leukocytes into the lung (19, 25). The fact that,
the expression of CXC chemokines by the cellular constituents of
the lung is stimulus specific should be highlighted. In particular,
during SARS-COV-2 infection, the active replication and release
of the virus cause the host cell to undergo pyro-ptosis and release
several damage- associated-molecular-patterns (i.e., ATP,
oligomers and nucleic acids) which “stimulate” epithelial cells,
endothelial cells and alveolar macrophages, to secrete pro-
inflammatory cytokines and chemokines (26–28). Chemokines
attract monocytes, macrophages and T cells to the site of
infection. These cells further promote the progression of
inflammation by releasing IFN-g as well as other pro-
inflammatory cytokines establishing a pro-inflammatory
feedback loop, which will result in a further production of
chemokines which will recruit more inflammatory cells (27).
This inflammatory loop will result in a damage of the lung
architecture. In addition, the resulting cytokine storm
characterized by high circulating concentrations of immune
active molecules will subsequently spread to other organs,
leading to multi-organ damage (10).

In the subsequent section, a description of the network
occurring between IL-6, CXCL10 and macrophages in
initiation and maintenance of the CS will be overviewed.
THE IL-6-CXCL10-MACROPHAGES
NETWORK

Interleukin-6 (IL-6) is a four-helical cytokine of 184 amino acids
(29) primarily produced during acute and chronic inflammation.
IL-6 induces a transcriptional inflammatory response through its
binding to interleukin 6 receptor, alpha (IL-6Ra) (30). IL-6 is
Frontiers in Immunology | www.frontiersin.org 3
involved in the promotion of the specific differentiation of CD4
naïve T-cells in the acquisition of the immune response, it acts on
B-cells, T-cells, hepatocytes, hematopoietic progenitor cells and
cells of the central nervous system. IL-6 is also required for the
generation of Th17 cells (31).

IL-6 is secreted by several cells of the immune system but is
mainly produced by macrophage and T cells activated by a viral
or bacterial infection or by other immune cells (30, 32, 33)
representing a signal for the induction of a response to the
infection by cells of the immune system (30, 34).

Besides being produced by macrophages (35), IL-6 is also
produced by a variety of different resident cells including
keratinocytes, enterocytes, hepatocytes (33), pneumocytes, and
bronchial epithelial cell (36), smooth muscle cells (37), skeletal
muscle cells (38), osteoblasts (39), adipocytes (40), neurons (35,
41). Interestingly IL-6 was also shown to be produced by lung
epithelial cells in response to a variety of different stimuli
including allergens, respiratory virus and exercise (42–44). A
number of studies have shown an overexpression of IL-6 in
bronchial epithelial cells in patients (adult and children) with
asthma (42–45).

As far as COVID-19 is concerned, evidences have
accumulated supporting the concept that IL-6 plays a major
role in the cytokine storm. The so-called COVID-19–related
cytokine storm is a potentially fatal immune reaction induced by
hyper-production -activation of T cells, during which a strong
induction of IL-6 secretion is observed (46, 47). The consequent
high levels of IL-6 (together with other factors), act on
endothelial cells of lung capillaries, by increasing their
permeability for serum proteins and improving the
transmigration of inflammatory cells from vessels, leading, in
more severe cases of COVID-19, to an uncontrolled excessive
immune-response (46, 47).

In the attempt to identify a possible pharmacological strategy
against SARS-COV-2, a clinical trial tested the ability of
tocilizumab, a monoclonal antibody to inhibit the biological
effects of IL-6 (48). However, more recent clinical data did not
support the use of Tocilizumab in these patients since it caused
several adverse effects including neutropenia, transaminitis and
immunosuppression, increased risk of secondary infection, liver
dysfunction, and cytopenias (3).

Nevertheless, apart from tocilizumab, other several
monoclonal antibodies potentially preventing the biological
effects of IL-6 (like Sarilumab, Siltuximab, Sirukumab,
Clazakizumabo, Olokizumab, Levi l imab) are under
investigation or being tested in clinical trials (49). More
interestingly, also a broad spectrum of cytokines/chemokines
inhibitors not specifically targeting IL-6 and its secretion
pathways was applied to counteract COVID-19. Just to give
few examples Baricitinib (a JAKs inhibitor), was found to reduce
the development of cytokine storm in animals and patients with
COVID-19 (50). Another JAK1/JAK2 inhibitor, Ruxolitinib, was
shown to ameliorate pulmonary function in COVID-19 patients
(51). Other compounds (i.e., steroids, Desametasone) inducing
the inhibition of the NF-kB pathway, predominantly reduced
highly pro-inflammatory cytokines and chemokines, involved in
April 2021 | Volume 12 | Article 668507
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aberrant systemic inflammatory responses of COVID-19 (52).
Baricitinib (JAKs inhibitor) in combination with Remdesivir
(NFKb inhibitor) resulted in reduced hospitalization period
and accelerated recovery time in critically ill patients compared
to Remdesivir alone 33306283. These data would suggest that
combination therapy with JAK inhibitors and other agents with
the potential to normalize NFkB- signaling, such as Ruxolitinib,
Remdesivir or TNF antagonists, may be a better therapeutic
approach than monotherapy alone (53). Therefore, although
several clinical and experimental evidences, accumulated
through the last few months, consistently identified IL-6 as a
crucial molecule involved in the Sars-Cov-2-related CS
representing a cardinal mediator of the adverse clinical
consequences, it should be highlighted that a number of other
factors are required in order to orchestrate all the events that take
place in the onset and progression of the CS. Indeed, the
interplay between IL-6, its cellular source and specific
chemokines recruiting these latter are all mandatory and
limiting steps required for the initiation and perpetuation of
the CS of COVID-19. As a matter of fact, consolidated data from
literature showed that IL-6 is secreted by lung resident cells after
a stimulus (i.e., viral or other infection) but this is likely just one
step of a much more complex scale of events that deserves to be
elucidated in order to understand what actually happens in the
early phase of COVID-19. Following SARS-COV-2 infection,
both lung resident cells and cells of the immune response
contribute to increasing the levels of IL-6 in lungs and
consequently in serum of affected patients.

In addition to other well-known biological effects, IL-6 signal
transduction induced by binding to immune cells expressing its
receptor (a-IL-6R) activates the JAK/STATkinase pathway leading
to further production of several cytokines and chemokines (54).
These latter include, CCL2 and CXCL8 causing also an increase in
the expression of small protein such as E−cadherin and VEGF
(vascular endothelial growth factor) (55–59).

The above molecules do play a specific and relevant role in the
onset of CS. Indeed, on one hand VEGF and E−cadherin by
increasing vascular permeability and leakage, will facilitate
immune cells migration and trafficking from vessels to lung,
ultimately favoring lung dysfunction and respiratory disease (55,
56). On the other hand, this event is paralleled by an increase of
specific chemokines which will further recruit immune cells.
CCL2 is a chemoattractant for monocytes, dendritic cells, and
memory T cells expressing its receptor CCR2 (60), while CXCL8,
is secreted by monocytes/macrophage, serving as a powerful
chemoattractant for neutrophils expressing its receptors CXCR1
and CXCR2 (61). The secretion of these chemokines fits with the
notion that a predominant presence of peripherally derived
monocytes, neutrophils, and macrophages was found in BALF
of severe cases of COVID-19 and in post mortem autopsies (62).
Besides neutrophils and monocytes (mainly attracted by CCL2
and CXCL8), macrophages represent a predominant cell type
characterizing lung infiltrate of COVID-19 patients, being a
direct target of SARS-COV-2 owing to their abundant
expression of ACE-2 and TMPRSS2 (63). Thus, also
macrophages seem to play a major role in the disease, also in
Frontiers in Immunology | www.frontiersin.org 4
view of the evidence that macrophages represent one of the main
source of IL-6 secretion (29, 30, 35, 64).

Thus, the predominance of infiltrating macrophages would
close the link between IL-6 (macrophages secretory product) and
CXCL10 (powerful recruiter of macrophages). CXCL10 was
recently identified as the cardinal chemokine playing a crucial
role in COVID-19 being a chemoattractant for monocytes/
macrophages, dendritic cells, NK cells, and T cells. Elevated
serum levels of CXCL10 were consistently reported in patients
with COVID-19, being positively correlated (together with
CCL2) with increased disease severity and, more importantly
with an increased risk of mortality (11, 65, 66). High levels of
CXCL10 were previously reported to be associated also with the
severe acute respiratory syndrome (SARS) disease progression
and to the development of ARDS in preclinical models (67, 68).

Thus, increased circulating concentrations of CXCL10 seem
to characterize both SARS-COV-1 and SARS-COV-2 infections.
In ex vivo human lung tissue explants, the inoculation of SASR-
COV-1 and SARS-COV-2 up-regulated the expression of
different chemokines/cytokines, being the secretion of CXCL10
strongly enhanced in both cases (69). Furthermore, CXCL10
circulating levels were correlated with disease severity in both
SARS-COV-1 and SARS-COV-2 infections (10, 69). It seems
worth highlighting that, according to previous studies, patients
with severe SARS-COV-1 were found to display a CXCL10 mean
level of 10000 pg/ml (70) versus 5000 pg/ml in patients with
severe SARS-2 (71). In conclusion, the recruitment of high levels
of CXCR3-expressing macrophages by CXCL10, would lead to
the production of further IL-6 in the lungs. Thus, the initial
cytokine/chemokine response would be perpetuated leading to a
kind of loop vicious circle characterized by an hyper-production
of IL-6 by lung resident cells as well as by infiltrating immune
cells (mainly macrophages) recruited by specific chemokines
(mainly CXCL10). This sequence of events will perpetuate the
recruitment of immune-active cells. A schematic representation
of the above scenario is shown in Figure 1. This fulsome immune
response represents the primum movens of the cytokine storm,
which, in more severe cases, promotes the damage of resident
cells and subsequent organ failure.
CONCLUSIONS

The common effort made by scientists in the last few months,
provided more insights into the mechanisms involved in the
“cytokine storm,” a peculiar and worrisome event of SARS-
COV-2 infection. According to currently available studies, a
number of cytokines (such as IL-6, TNFa, IFNg, and others)
chemokines (such as CCL2, CXCL8, CXCL10 and others) and
infiltrating cells (such as neutrophils, monocytes, t-cells,
macrophages and others) were shown to be involved in the
immune mechanisms sustaining CS. A summary of the studies
addressing the role of the here overviewed chemokines and
cytokines is provided in Table 1. Several of the above listed
factors were found to be correlated with a more or less severe
course of the disease as well as to the patient’s overall risk.
April 2021 | Volume 12 | Article 668507
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It is now clear that the action of a single component of the
immune system (a given cytokine, chemokine, or immune cell
type) would not be sufficient to fully drive the adverse events
characterizing the CS, but it is rather the interplay of these
distinct components that is crucial for driving the final
detrimental effect. Indeed, the concomitant presence of
cytokines, chemokines, and infiltrating immune cells is a
mandatory condition for the development of the sequence of
Frontiers in Immunology | www.frontiersin.org 5
events leading to CS and the related clinical consequences. Based
on current knowledge, it would seem that more than one
cytokine, chemokine, or infiltrating cell type is involved;
however, at present, the interplay among IL-6, CXCL10, and
macrophages, could represent a main circuit for the onset
maintenance and progression of CS in COVID-19. However
further in vitro and in vivo studies are needed to better clarify
this issue and to confirm the here proposed main role of
FIGURE 1 | The cytokine storm after SARS-COV-2 infection the interplay among IL-6-CXCL10-macrophages. SARS-COV-2 enters the respiratory tract and binds to
ACE-2 receptors expressed by lung epithelial cells. After virus entrance and binding, a sequence of events will start inside the lung interstitium; SARS-COV-2 induce
in the lung epithelium the production of cytokines among which IL-6 is the mainly secreted; IL-6 stimulates the production of several chemokines (including CXCL10);
the increase of the secretion of these chemokines will induce a chemotactic action on immune-cells of the blood circulation, which will be recruited from vessels to
interstitium; the increase of immune cells in the lung interstitium lead to an increase of the production of further cytokine and chemokines; in particular an increased
production of CXCL10 induced by IL-6 lead to an increase infiltration of macrophages which are the main source of IL-6, thus generating a loop vicious circle
characterized by an hyper-production of IL-6 by lung resident cells as well as by macrophages recruited by CXCL10.
TABLE 1 | Summary of studies showing a role for the here overviewed cytokines and chemokines in COVID-19.

Cytokines and Chemokines Main studies Reference number

IL-6 Tanaka et al., Khadke et al., Masià et al., Patel et al.; Choudhary et al., Chen et al. (3, 47–49, 54, 56)
CCL2 Chua et al; Liao et al., Yang et al, Blanco-melo et al. (52, 62, 65, 66)
CXCL8 Chen et al.; Chua et al; Liao et al., Blanco melo et al. (26, 52, 62, 66)
CXCL10 Yang et al., Blanco Melo et al, Chu et al., Blot et al (65, 66, 69, 71)
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these three components. As a last consideration, it seems worth
highlighting that CS is likely not the sole responsible for a severe
course of COVID-19. Indeed, since the beginning of the
pandemic, a wide spectrum of other factors including age,
gender and, more importantly the presence of comorbidities,
and likely others yet to be identified, all contribute to the
outcome of Sars-CoV-2 infection. The present review was not
aimed at fully elucidating the complex mechanisms sustaining
the cytokine storm in COVID-19, but rather at providing more
insights into the currently identified “prime actors” involved in
this scenario. The here overviewed evidences might provide a
Frontiers in Immunology | www.frontiersin.org 6
food for thought for future studies aimed at further clarifying
the relative role of each component of the immune response
to SARS-COV-2 infection, as well as to develop potential
therapeutic strategies.
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