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Anadromous salmonids begin life adapted to the freshwater environments of their natal
streams before a developmental transition, known as smoltification, transforms them into
marine-adapted fish. In the wild, smoltification is a photoperiod-regulated process,
involving radical remodeling of gill function to cope with the profound osmotic and
immunological challenges of seawater (SW) migration. While prior work has highlighted
the role of specialized “mitochondrion-rich” cells (MRCs) and accessory cells (ACs) in
delivering this phenotype, recent RNA profiling experiments suggest that remodeling is far
more extensive than previously appreciated. Here, we use single-nuclei RNAseq to
characterize the extent of cytological changes in the gill of Atlantic salmon during
smoltification and SW transfer. We identify 20 distinct cell clusters, including known,
but also novel gill cell types. These data allow us to isolate cluster-specific, smoltification-
associated changes in gene expression and to describe how the cellular make-up of the
gill changes through smoltification. As expected, we noted an increase in the proportion of
seawater mitochondrion-rich cells, however, we also identify previously unknown
reduction of several immune-related cell types. Overall, our results provide fresh detail
of the cellular complexity in the gill and suggest that smoltification triggers unexpected
immune reprogramming.
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INTRODUCTION

During its life cycle, the Atlantic salmon migrates between fresh
and seawater environments (1). Atlantic salmon eggs hatch in
freshwater streams where they develop for 1-4 years. On
reaching a critical size threshold, immature fish known as
‘parr’ are sensitized by several weeks of winter photoperiod
(day-lengths), after which, exposure to increasing photoperiods
stimulates the parr to transform into a ‘smolt’ ready for
migration to sea (2). This process, known as smoltification, is
mediated by endocrine factors that collectively deliver extensive
phenotypic remodeling, leading to overt changes in length,
weight, silvering, migratory behavior, immune function and
osmoregulatory capacity, dependent on gill physiology (1).

The salmonid gill is a complex multifunctional organ,
essential for gas exchange, nitrogenous waste excretion, pH
balance and osmoregulation (3). It is also a major mucosal
immune barrier harboring a dedicated lymphoid tissue termed
gill associated lymphoid tissue (GIALT) (4, 5) which is rich in T
cells, natural killer cells and macrophages. Although it is known
that smoltification suppresses immune function, little, if
anything, is known about which immune cell types in the gill
are modified (6). Structurally, the gills are arranged in
symmetrical arches, each of which are populated by numerous
filament structures, which are themselves densely flanked with
lamellae. The gill is composed of seven major cell types (7).
Pavement cells (PVCs) have an enlarged surface area on the
apical membrane, and form the majority of the epithelium (8).
Pillar cells (PCs), which are structural cells, define the blood
spaces within the lamellae (9). Goblet cells (GCs) reside in the
filament epithelium and excrete mucus (10). Non-differentiated
progenitor cells (NDCs) colonize basal and intermediate layers of
the gill epithelium (11). Chemosensory neuroepithelial cells
(NECs) lie along the length of the efferent edge of the gills and
are innervated by the central nervous system (12).
Mitochondrion-rich cells (MRCs) and their adjacent accessory
cells (ACs) are located at the trough between two lamellae where
they abundantly express the channels and pumps required to
maintain the osmotic gradients between blood plasma and both
fresh- and seawater (13–15).

Smoltification induced increases in cortisol and growth
hormone, as well as declines in prolactin drive conversion of
the Atlantic salmon gill from a freshwater-adapted organ to a
seawater-adapted organ. This change in endocrinology coincides
with a switch in anatomical and molecular phenotypes of MRCs
and ACs, and these have formed the major focus of smoltification
of gill physiology (1, 14, 16). In the gills offish living in freshwater,
Na+ ions are taken up by proton exchange across the apical
membrane of MRCs and then transported into the blood via the
sodium potassium ATPase (NKA) on the basolateral membrane
(17–19). Cl- ions, meanwhile, are exchanged or channeled across
the apical membrane then enter the blood through an undefined
channel (20–23). In saltwater adapted gills, NKA in the
basolateral membranes of MRCs generates a chemical and
electrical gradient, motivating both loss of Cl- ions via the
smoltification-induced apical CFTR channels and paracellular
escape of Na+ ions (15, 24) [reviewed in (25)].
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While changes in MRC function are undoubtedly of central
importance for the ion regulatory changes which take place
during smoltification, the remodeling of gill phenotype likely
extends far beyond these facets (26, 27). During this time the fish
are exposed to novel pathogens to which they have not
previously been exposed and it is hypothesized that
reorganization of the gill immune system needs to coincide
with the required physiological changes (6, 28, 29). Here we
resolved the complexities of smoltification-driven changes in gill
cytology using a single-nuclei RNAseq strategy, exploring the
transcriptional responses to smoltification and seawater transfer
at individual nuclei-level resolution, with a particular emphasis
on immune cell abundance and transcriptional expression.
MATERIAL AND METHODS

Animal Welfare Statement
The Atlantic salmon smoltification experiment was conducted as
par t o f the rout ine , smol t produc t ion a t Kårv ik
havbruksstasjonen, and was approved by the Norwegian
Animal Research Authority (NARA) for the maintenance of
stock animals for experiments on salmonids. This is in
accordance with Norwegian and European legislation on
animal research.

Experimental Design
Atlantic salmon (Salmo salar, Aquagene commercial stain)
were raised from hatching in freshwater, under continuous
light (LL, > 200 lux at water surface) at ambient temperature
(~10°C). Juvenile salmon were housed in 500 L circular tanks
and fed continuously with pelleted salmon feed (Skretting,
Stavanger, Norway). At seven months of age parr (mean
weight 49.5g) were sampled for T1 (experiment start). Two
days later remaining parr were equally distributed between two
100L circular tanks, and over the next seven days the
photoperiod was incrementally reduced to a short
photoperiod (SP, 8h light:16h darkness). T2 sampling
occurred on experimental day 53 (44 days on SP), remaining
parr were transferred back to LL on experimental day 60. T3
sampling occurred on experimental day 110 (50 days after
return to LL), then a sub-cohort of fish were netted out and
transferred to full strength seawater for 24h before the final
T4 collection.

RNAseq Analysis
Gill samples were collected and RNA extracted as described in
Iversen et al. (27). Sequencing libraries were prepared using the
TruSeq Stranded mRNA HS kit (Illumina). Library mean length
was determined by a 2100 Bioanalyzer using the DNA 1000 Kit
(Agilent Technologies) and library concentration was measured
with the Qubit BR Kit (Themo Scientific). Each sample was
barcoded using Illumina unique indexes. Single-end 100bp
sequencing of sample libraries was carried out on an Illumina
HiSeq 2500 at the Norwegian Sequencing Center (University of
Oslo, Oslo, Norway). Cutadapt (30) was used to remove
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sequencing adapters, trim low quality bases, and remove short
sequencing reads using the parameters -q 20 -O 8—minimum-
length 40 (version 1.8.1). Quality control of the reads were
performed with FastQC software. Mapping of reads to
reference genome was done using STAR software (ver. 2.4.2a)
(31). HTSEQ-count software (version 0.6.1p1) was used to
generate read count for annotated genes (32). Raw counts were
analyzed using EdgeR (ver. 3.30.0), using R (ver. 4.0.2) and
RStudio (ver. 1.1.456). A quasi-likelihood F-test with exhaustive
intergroup contrasts was used to identify differential expressed
genes between T1-T3 samples, an FDR threshold was set to
<0.01. Clustering analysis was performed using Pearson
correlation, and heatmaps rendered using the R package
pheatmap. An exact test was performed to identify differential
expressed genes between T3 and T4. RNAseq data is available
from the European nucleotide archive (PRJEB34224).

Single Nuclei RNAseq Analysis
Our choice of single nuclei RNAseq (snRNAseq) rather than
single cell RNAseq (scRNAseq) allowed us to use frozen samples.
The use of frozen samples permits consistent dissociation of
fibrous gill tissue, prevents gene expression changes provoked by
the dissociation of living cells, and allows for parallel library
preparation of our longitudinal study samples (33). Comparison
between snRNAseq and scRNAseq report broadly comparable
gene detection but it should be noted that nuclear depleted genes
are less visible to a snRNAseq analysis (34, 35).

Gills for single nuclei analysis were snap frozen on dry ice and
stored at -80°C. Duplicate samples were processed for T1-T4.
Nuclei were released by detergent mechanical lysis, then samples
were homogenized (30s) and nuclei isolated by sucrose gradient
(36). Libraries were created using Chromium Single Cell 3′GEM,
Library & Gel Bead Kit v3 (10x technologies) using a NextSeq500
by University of Manchester genomic technology core facility
(UK). Raw data was processed using Cell Ranger (10x
Technologies, ver. 3.1.0), where the count command generated
counts per cell. The cell count was 2355.5 ± 539.8 (SD) for each
sample and the pooled duplicate cell count for T1-T4 was 4771 ±
163.6 (SD). The NCBI ICSASG_v2 genome was used for
alignment, with gene annotations from the NCBI Salmo salar
Annotation Release 100. The R package Seurat (ver. 3.1.5) was
used to perform an integrated analysis using all snRNAseq data
(37), further details in results and discussion. Raw and processed
data is available from GEO data archive (GSE166686).

Gene Ontology Analysis
Human orthologs to Atlantic salmon genes were identified by
generating protein sequence homology based orthogroups using
the Orthofinder pipeline (38). Where possible, this links Atlantic
salmon genes to their human gene counterpart through the
shortest distance in ortholog gene trees. Human genome
nomenclature consortium (HGNC) identifiers were then used
to infer gene ontology to Atlantic salmon genes cohorts using the
Consensus Path Database over-representation analysis adjusted
to a background list of all genes expressed in the analysis (39).
Taken together these data form a useful indication of the
concerted function of the gene lists, however, we encourage a
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degree of skepticism in the roles of individual genes, few of which
have been tested for isofunctionality with their orthogroups (40).
RESULTS

A Single-Nuclei Survey of Atlantic Salmon
Gill Cells
We profiled 18,844 individual nuclei from eight Atlantic salmon
gill samples from four smolt developmental states (Figure 1A).
To define the nuclei cluster structure across developmental states
we pooled duplicate samples and integrated data between all four
states. We next identified anchors: cells that represent shared
biological states across datasets. Anchors were then used to
calculate “correction” vectors allowing all fours states to be
jointly analyzed as an integrated reference (37). Unsupervised
graph clustering partitioned the nuclei into 20 clusters, which are
defined by the correlative co-expression of a list of marker genes
(Supplementary Table 1). We then visualized these data using a
uniform manifold approximation and projection (UMAP)
dimension reduction technique (Figure 1B). To assign a cell
identity to each cluster we identified expression of cell-specific
marker genes where possible, then complemented this approach
using an unbiased gene ontology analysis (Figures 1B, C).

The most well-described gill cells are the MRCs and ACs,
which are clearly separated from other gill cell types by their
abundant expression of the osmotic regulators NKAa1a and
NKAa1b sodium-potassium ATPase subunits (for details see
Figure 3C). The MRCs were highlighted within this subset by
their shared expression of the sodium-potassium-chloride co-
transporter Nkcc1a. We further discriminated the SW
population of MRCs from the FW cluster by their increasing
abundance through smoltification (see Figure 2), and through
the specific expression of a collagen alpha-chain gene, Col4a1,
which is shared in expression with two vascular cell (VC1 and
VC2) groups, highlighting the developmental heritage of the SW
MRC cluster (Figure 1C) (3). Interestingly, the AC cluster was
characterized by its expression of Slc26a6, an apical membrane
Cl-/HCO3 exchanger, heretofore misassigned to MRCs (Figure
1C) (41, 42).

Goblet cells were identified by the specific expression of the
mucin gene Muc5ac (Figure 1C) (43). Cluster identity was
supported by the association of enriched GO terms for ‘vesicle’
and ‘secretion by cell’ (Supplementary Table 1).

Erythrocytes were identified due to their expression of diverse
hemoglobin subunits including Hbb (Figure 1C). We were
interested to note that the markers defining the erythrocyte
population, including beta-globin, were expressed widely
among all cell types. It is unclear what role extra-erythroid
hemoglobin plays in the gill, however, mammalian studies
suggest that hemoglobin, in addition to its oxygen carrying
capacity, may play an antimicrobial role (44). As a major
mucosal immune barrier, this capacity may be pertinent to the
gill (5).

Of great interest we also highlighted several immune cell
clusters. The T cell cluster was identified by the classical marker
May 2021 | Volume 12 | Article 669889
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Cd3e (Figure 1C) (45), and was enriched for the GO term
‘thymic T cell selection’ (Supplementary Table 1). A dendritic
cell-like cluster was identified by Flt3 (46), Xcr1 (47) and CD209
(48) expression, although of note, this cluster also expressed Itgae
which is more typically associated with T cells (Figure 1C and
Supplementary Table 1) (49). We further identified a monocyte-
like cluster based on the expression of the monocyte markers
ACP2 and C1QA (50), although this cluster also likely subsumes
neutrophil cells due to the presence of the CSF3R (51) and
LAMP2 (52) marker genes (Supplementary Table 1). Lastly we
identify a lymphatic cell population defined by typical Prox1
expression (Figure 1C) (53).

We defined a neuroepithelial cell cluster by its expression of
Notch1 (54), Occludin (55) and Hes1 (56) markers in union with
the enriched GO terms for ‘cellular response to stimulus’ and
‘signal transduction’ (Supplementary Table 1). The remaining
Frontiers in Immunology | www.frontiersin.org 4
eight cell types were broadly defined as clear molecular indicators
were not found. A cluster of ‘non-differentiated cells’ was
tentatively defined by the GO enrichment for ‘desmosome’ a
structure typical to this cell type (Supplementary Table 1) (7).
Two epithelial cell clusters were identified due to their high
degree of relatedness, expression of tight junction and cell
adhesion molecules including Cld4 (57) and PCDH11X (58),
and enrichment of GO terms including ‘keratinization’. Four
vascular cell clusters were described by their common GO
enrichment for ‘tube development’ and ‘blood vessel
development’ (Supplementary Table 1). We indicate a
potential fibrocyte population due to its otospirilin expression
(Supplementary Table 1) (59), and a pillar cell cluster
characterized by its diverse collagen expression and enriched
GO terms for ‘extracellular matrix’ (Supplementary Table 1).
Lastly we define a pavement cell cluster by the high abundance
A

C

B

FIGURE 1 | Single nuclei RNAseq analysis of Atlantic salmon gill tissue. (A) Gill tissue processing. Pooled duplicates from all T2, T3 and T4 collection points are
integrated against T1 as a reference set. (B) UMAP plot of pooled cell data from 18844 cells representing eight samples from four collection states. The plot
indicates 20 separate cell clusters. (C) Expression of marker genes in 20 cell clusters. From left to right: hierarchical relatedness of difference cell clusters; total cells
in each cluster; UMI number in each cell cluster; gene features in each cell cluster; violin plots showing expression pattern of marker genes for each cluster. ACs,
accessory cells; DCs, dendritic cells; ECs, epithelial cells; fib, fibrocytes; GCs, goblet cells; LCs, lymphatic cells; Ms, monocytes; MRC, mitochondrion-rich cells;
NDCs, non-differentiated cells; PVCs, pavement cells; RBCs, red blood cells (erythrocytes); TCs, T cells; VCs, vascular cells.
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of the cluster and its GO enrichment for the terms ‘apical
junction complex’ and ‘basolateral plasma membrane’
(Supplementary Table 1). The novel populations of fibrocyte-
like cells, and several types of vascular- and endothelial-like cells
that partitioned across several clusters, together suggesting
greater complexity in gill cytology that previously appreciated
(Figures 1B, C).

Major Changes in Cell Composition During
Smoltification
To understand how gene expression and cellular complexity
changes within the gill during smoltification and seawater
transfer we compared the snRNAseq profiles at different
developmental points [Figure 2A and Supplementary Table 2;
Frontiers in Immunology | www.frontiersin.org 5
for confirmation of smolt status see (27)]. The abundance of six
nuclei clusters changed dramatically (>3 fold change in
percentage abundance) during smoltification (Figure 2B). SW
MRCs increased in proportion steadily from T1-T4, consistent
with previous descriptions of Atlantic salmon gill physiology
(60). We also observed a marked increase in vascular cell (2)
number, with the major differences occurring between T2 and
T3, suggesting that this vascular cell cluster proliferates in line
with growth rates (Figure 2C). Interestingly, four immune-
related nuclei clusters representing T cells, monocyte cells,
dendritic cells and lymphatic cells fell dramatically during
smoltification (Figure 2D). Changes in cell abundance
occurred with a similar profile in all immune-associated cell
clusters, with consistent decline observed between T1-T3. In
C D

A

B

FIGURE 2 | Comparative abundance of cell clusters at different sampling points. (A) Experimental design. Fish were kept in constant light (LL) from hatching then
transferred to short photoperiod (SP; 8L:16D) for 8 weeks before being returned to constant light (LL) for 8 weeks. Finally the fish were transferred to sea water for
24h. Sample points are indicated T1-T4. (B) Subset of cell clusters from T2, T3 or T4 (orange and blue dots) overlaid on T1 cells (grey dots). (C) Increasing
abundance of sea-water mitochondrion-rich cells (MRCs SW) and vascular cells (VC 3) during smoltification (D) Decreasing abundance of leukocytes and immune-
associated cells during smoltification.
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contrast, 24h SW transfer does not appear to affect immune-cell
abundance directly (Figure 2D). These results highlight the
complex and dynamic changes in cellular composition that
occur in the gill during smoltification.

Nuclei Cluster-Specific Expression of
Smoltification-Associated Factors
Next, we wanted to identify cluster types where smoltification is
associated with cluster-specific gene regulation. As our
snRNAseq dataset represented duplicate samples at each
developmental point, we cross referenced our snRNAseq
analysis with whole gill RNAseq analysis of T1-T3 (n = 6),
Frontiers in Immunology | www.frontiersin.org 6
identifying 9746 genes differentially regulated by smoltification
(quasi-likelihood F-test with exhaustive intergroup contrasts,
FDR <0.01). Pearson correlation clustering of these genes
resolved five major clusters that were associated with immune
response, structural morphogenesis, catalytic activity,
ribonucleoprotein complexes and mitochondrial respiration
(Figure 3A). Given the conspicuous decrease in immune cell
abundance seen in our snRNAseq experiment, we data-mined
our RNAseq dataset to track the expression of the marker genes
for the T cell (Cd3e), monocyte (Csf2r), LEC (Il10rb) and DC
(Flt3) clusters (Figure 3B). In accordance with our snRNAseq
analysis each of these factors are reduced after smoltification,
A

B

C

FIGURE 3 | Photoperiodic changes in gill gene expression and localized cell cluster expression. (A) Heat map representing 9746 genes differentially regulated
(FDR <0.01) from T1-T3. Regulatory patterns for 5 major cluster are shown as amplitude index and 95% confidence limits. Major gene ontology terms for each
cluster are shown. (B) RNAseq data for immune-associated genes differentially expressed by smoltification (FDR <0.01). (C) RNAseq data for “classical”
smoltification-related genes and violin plots showing their cluster specific expression.
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supporting the evidence that immune cells are depleted during
this process. A number of “classical” smoltification-related genes
was also identified and localized to specific cell types (Figure
3C). As expected, CFTR was highest under constant light (LL),
and was highly localized in expression to MRCs. We also
identified the reciprocal regulation of sodium-potassium
ATPase subunits, specifically, suppression of NKAa1a and
increase in NKAa1b (14). Inspection of cellular localization
within our snRNAseq dataset showed that expression of these
genes were, as anticipated, highest within the MRCs and ACs
(Figure 3C).

Our previous work identified genes whose expression
are predicated on exposure to several weeks of short-
photoperiod exposure (27). In Atlantic salmon, these “winter-
dependent” genes are analogous to vernalization dependent
genes in Arabidopsis (61), where a dosage of exposure to a
winter-like stimulus (in Arabidopsis, cold; in Atlantic salmon,
short photoperiod) controls the presentation of a seasonal
phenotype under summer-like stimulus (in Arabidopsis,
warmth and long days; in Atlantic salmon, long photoperiod).
Winter-dependent genes are therefore intrinsically linked to
unidirectional smolt development, and may play a mechanistic
role in pre-adaptation of the gill for seawater migration.
Surprisingly, canonical markers of smolt status, including
the reciprocal expression of NKA subunits, are not winter-
dependent. Rather than indicating life history progression,
NKA subunit expression correlates directly to photoperiod,
meaning that their usefulness in asserting smolt status is
flawed (27).

Using our RNAseq dataset we identified novel, winter-
dependent genes which we then isolated from our snRNAseq
dataset to identify the cell clusters that express these factors
(Supplementary Figure 1). Of particular interest was Cuzd1, a
gene associated with tumorigenesis, as well as prolactin-induced
JAK/STAT5 signaling during mammary gland development in
mice, and muscle growth in zebrafish (62–65). The induction of
Cuzd1 within non-differentiated cells of the Atlantic salmon gill
suggests Cuzd1 is important in gill development during
smoltification, and may hint at a role for prolactin signaling.
We also identified Rhag, a transporter associated with
erythrocytes in mammals, but expressed in the teleost gill
where it is thought to regulate ammonium excretion (66–68).
Its predominant expression within the vascular cell (VC 3)
cluster suggests this cluster plays a specialized role in
ammonium balance within the Atlantic salmon gill (69). We
also highlight Hg2a (CD74), a multifunctional protein best
characterized as a chaperone during mammalian MHCII
antigen presentation but also important for endosomal
trafficking, cell migration and cellular signaling (70, 71). Hg2a
is expressed in the gills of other teleosts however little is known of
its function within this context (72, 73). The striking abundance
of Hg2a transcripts in our analysis and its common expression in
all cell clusters suggests it plays a valuable role in salmonid gill
function. Taken together our data show that the phenotypic
change driven by smoltification is diverse and engages all
gill cells.
Frontiers in Immunology | www.frontiersin.org 7
Cell Cluster-Specific Expression of
Seawater Transfer-Associated Factors
Smoltification manifests when the Atlantic salmon smolts
migrate downstream and arrive in the marine environment,
thereby committing to an oceanic phase of the life cycle (1).
To gain insight into this critical step in smolt gill remodeling we
identified 144 induced and 107 suppressed genes (whole gill
RNAseq, FDRE<0.01; Supplementary Table 3) after exposure to
seawater for 24h. Gene ontologies showed the induced gene
cohort was significantly associated with keratinization (Figure
4A) and the suppressed gene cohort was related to immune
function, including the key immune regulators CD40, CXCL10,
TAP and TAPBP (Figure 4B).

We then cross-referenced the seawater induced genes (Figure
4A) with our snRNAseq data to identify cluster-specific gene
regulatory responses (Figure 4C). For example, we localize the
expression of an enzyme involved in both ionic and acid/base
balance, carbonic anhydrase, to MRCs (26, 74). We also show
that ATP-binding cassette sub-family A member 12 (Abca12), a
gene important in epidermal lipid barrier formation (75), is
broadly expressed, but particularly concentrated in MRCs (SW),
pavement, vascular, and non-differentiated cells. Interestingly,
we show that a protein chaperone that helps regulate chromatin
state, nucleoplasmin (76, 77), is expressed specifically in non-
differentiated, vascular and pavement cells groups, suggesting
that these cell types undergo a change in chromatin status under
seawater exposure.
DISCUSSION

Our results bring insightful cellular resolution to the complexity
of the Atlantic salmon gill and the compositional changes
that occur during smoltification. Of particular interest was the
suppression of immune cell types, which correlates with
reduction in immune-related genes and suppression of
immune function during smoltification and seawater transfer
(6, 29, 78). These data are a puzzle. The marine environment
is awash with parasites, bacteria and viruses to which the
salmon is potentially vulnerable, so loss of immune function
would make little sense. Future work should focus on why
and how the immune system is affected in aquaculture,
and should include analyses of other important immune
tissues to contextualize the response to smoltification beyond
that which we report in the gill. Indeed, other studies
suggest a systemic suppression of the immune system during
smoltification and seawater transfer, including in the head
kidney and intestine (38). Conceivably these data point
towards an adaptive immunological reprogramming that helps
to avoid immune shock when the salmon transition between
the distinctive pathogen complements of fresh- and seawater
habitats (79, 80). Alternatively, artificial smolt production
may drive abnormal immunosuppression. The constant
light routinely used to stimulate smolts would profoundly
undermine the immune defenses of mammals via disruption of
the circadian clock (81).
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Our data also show that smoltification-driven transcriptional
regulation occurs not only in MRCs and ACs, but also in other
distinctive cell types including pavement cells, vascular cells and
non-differentiated cells. We anticipate that novel gene function
within the context of cell function will be a priority for future
investigation, and will be assisted by the novel suite of marker
genes which we present here.
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awarded to DH supports this work. SW is supported a grant from
the Tromsø forskningsstiftelse (TFS) starter grant TFS2016SW.
Experimental costs were covered by HFSP grant “Evolution of
seasonal timers” RGP0030/2015 awarded to AL and DH. Storage
resources were provided by the Norwegian National
Infrastructure for Research Data (NIRD, project NS9055K).
Frontiers in Immunology | www.frontiersin.org 9
ACKNOWLEDGMENTS

The authors thank all of the animal staff at Kårvik
havbruksstasjonen for their expert care of the research animals,
and the University of Manchester Genomics Technology core
facility (UK) for performing chromium 10x library preparation
for snRNAseq. We also thanks the reviewers for their
constructive comments on the original manuscript.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.669889/
full#supplementary-material

Supplementary Figure 1 | RNAseq data for winter-dependent genes and violin
plots from the snRNAseq dataset showing their cluster specific expression.
REFERENCES
1. Stefansson SO, Björnsson BT, Ebbesson LOE, McCormick SD.

“Smoltification,”. In: Roderick Nigel Finn, BG Kapoor, editors. Fish Larval
Physiology. Science Publishers Inc. (2008). p. 639–81.

2. Strand JET, Hazlerigg D, Jørgensen EH. Photoperiod Revisited: Is There a
Critical Day Length for Triggering a Complete Parr–Smolt Transformation in
Atlantic Salmon Salmo Salar? J Fish Biol (2018) 93:440–8. doi: 10.1111/
jfb.13760

3. Evans DH, Piermarini PM, Choe KP. The Multifunctional Fish Gill:
Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation,
and Excretion of Nitrogenous Waste. Physiol Rev (2005) 85:97–177.
doi: 10.1152/physrev.00050.2003
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