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T Follicular helper (Tfh) cells, a unique subset of CD4+ T cells, play an essential role in B cell
development and the formation of germinal centers (GCs). Tfh differentiation depends on
various factors including cytokines, transcription factors and multiple costimulatory
molecules. Given that OX40 signaling is critical for costimulating T cell activation and
function, its roles in regulating Tfh cells have attracted widespread attention. Recent data
have shown that OX40/OX40L signaling can not only promote Tfh cell differentiation and
maintain cell survival, but also enhance the helper function of Tfh for B cells. Moreover,
upregulated OX40 signaling is related to abnormal Tfh activity that causes autoimmune
diseases. This review describes the roles of OX40/OX40L in Tfh biology, including the
mechanisms by which OX40 signaling regulates Tfh cell differentiation and functions, and
their close relationship with autoimmune diseases.
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INTRODUCTION

Many autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis
(RA) are characterized by autoantibody production. A specialized cell subset named T follicular
helper (Tfh) cells has attract much attention because of their requirement for B cell help and the
production of high affinity class-switched antibodies. Tfh cells, located in lymphoid follicles, belong
to a distinct CD4+ T subset. They are essential for generation of effective and long-lived humoral
immune responses. Several pairs of costimulatory molecules have been demonstrated to control Tfh
development and function. OX40/OX40L is one of them. OX40 and OX40L play a critical role in
enhancement of immune responses and participate in the development of autoimmune diseases.
Recently, it was reported that the OX40/OX40L interaction is required for the functions of Tfh cells.
This article focuses on the effects of OX40/OX40L signaling on Tfh cells and their roles in the
pathogenesis of autoimmune diseases.
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DIFFERENTIATION AND FUNCTIONS OF
Tfh CELLS

In 2000, Schaerli and Breifeld found that there is a subset of
CD4+ T cells in lymphoid follicles, called Tfh cells, which express
CXCR5, ICOS and CD40L (1). They are obviously distinct from
other Th cells in two aspects. First, while CXCR5 is only
expressed temporarily on other Th cell subpopulations when
they are activated, while its expression on Tfh cells persists for a
long time. Upregulated CXCR5 and downregulated CCR7
facilitate the migration of Tfh cells from the T cell area to
CXCL13-rich B lymphoid follicles where they interact with B
cells. Second, unlike Th1, Th2 and Th17 cells, the differentiation
of Tfh cells proceeds through multiple stages, including
initiation, maintenance and full polarization. A variety of
cytokines, transcription factors and surface molecules are
involved in these process (2–4).

ICOS, PD-1, Bcl-6, BTLA, CD40L, IL-21, IL-6R, SAP and IL-
21R are shown to be highly expressed in mouse and human Tfh
cells, indicating that these molecules may play critical roles in
promoting the development and maintenance of Tfh cells and
regulating their functions (4–7). Bcl-6 is recognized as an
essential transcription factor for regulation of Tfh cell
differentiation. Bcl6 controls Tfh differentiation by
antagonizing Blimp-1 and other transcription factors which are
also important for Th1, Th2 and Th17 cells. GCs are absent in
Bcl-6-deficient mice since Bcl-6 deficient CD4+ T cells do not
support the GC reaction. The expression of Bcl-6 in Tfh cells is
mainly driven by IL-6, IL-21 and certain downstream
transcription factors including STAT1 and STAT3 (8, 9).
Recently, a feed-forward loop mediated by the transcription
factors Bcl-6 and Tox2 is reported to promote the Tfh
program (10). Bcl-6 upregulates Tox2 expression, which
further drives Bcl-6 expression and Tfh development. ICOS/
ICOSL molecules are involved in every stage of Tfh cell
differentiation. Mathieu et al. transferred ICOS-Y181F into
mice to block ICOS-mediated PI3K activation and found that
the number of Tfh cells in the spleen was significantly reduced.
At the same time, ICOS-PI3K was also found to be essential for
upregulating IL-21 and IL-4, which are key factors for Tfh
function (4, 11). These multiple factors drive Tfh
differentiation. The first stage of Tfh differentiation is initiated
by interaction with a professional antigen-presenting cell (APC),
such as a dendritic cell (DC). After T cell priming, Bcl-6 and
CXCR5 expression is upregulated on CD4+ T cells to facilitate
Tfh cell migration to the T-B border. Then, the second stage
begins. This is a B cell-dependent phase of Tfh differentiation
that is regulated by ICOS/ICOSL signaling. In the third stage, Tfh
cells and B cells migrate to GCs, where B cells continuously help
Tfh cells to promote their full polarization. GC Tfh cells are in a
further polarized Tfh cell state, with elevated expression of Bcl-6,
CXCR5, PD-1 and ICOS.

The most important function of Tfh cells is to provide help to
B cells (12). They are necessary for GC formation, high-affinity B
cell selection, and generation of memory B cells and plasma cells
(13, 14). At the T-B border, B cells present antigens to Tfh cells
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and only those cells presenting antigens with high affinity obtain
Tfh help and then enter GCs (15). Most B cell responses cannot
progress without the help of Tfh cells. GCs are recognized as the
essential sites of B cell mutation and antibody affinity
maturation. After GC Tfh cells recognize the antigens
presented by GC B cells in the follicle light zone, they provide
signals for GC B cell proliferation and migration to the dark
zone, where B cells will undergo somatic hypermutation (16).
Moreover, GC Tfh cells promote the development of long-term
humoral immunity by generating memory B cells and high-
affinity plasma cells. The effect of Tfh cells on B cell
differentiation within GCs and extrafollicular areas depends on
numerous signals, such as IL-21 and CD40 signals. IL-21 is the
most potent cytokine driving plasma cell differentiation in both
mice and humans (17–21). IL-21 induces both Bcl-6 and Blimp-1
expression in B cells, in which Bcl-6 promotes GC B cell
proliferation and Blimp-1 is critical for plasma cell
differentiation (17, 22, 23). IL-21 signaling is dependent on the
activation of STAT3 and STAT5 (24). CD40L/CD40 engagement
is central to the maintenance of GC B cells. Provision of CD40L
protein in vitro was found to inhibit apoptosis of GC B cells (25–
27). Schirock et al. reported that a critical ECM:av integrin axis
specifically regulated prolonged Tfh positioning within the GCs
and supported the generation of long-lived plasma cells but not
memory B cells (28).
OX40 AND OX40L MOLECULES

Structure and Expression of OX40
and OX40L
OX40 (also called ACT35, CD134 or TNFRSF4), belonging to the
TNFR superfamily, is a type 1 transmembrane protein
containing 249 amino acids with a 49 amino acids in
cytoplasmic tail and a 186 amino acids in extracellular region
(29, 30). OX40 protein was first recognized on activated rat CD4+

T cells in 1987. Subsequently, OX40 expression was also found
expressed in mice and humans (31–33). OX40 is mainly
expressed on activated CD4+ T cells and CD8+ T cells, whereas
its expression level is relatively low on NK cells and NKT cells
(29, 34–37). OX40L (also named as CD252, TNFSF4, CD134L or
gp34), the ligand of OX40, is a type II glycoprotein with a 23
amino acids cytoplasmic tail and a 133 amino acids extracellular
domain (38). As a member of the TNF superfamily, it is
expressed as a trimer. OX40L was initially identified as gp34
protein on human T-cell leukemia virus transformed cells in
1985 (39). Later, it was found that OX40L is mainly expressed
on antigen presenting cells, such as B cells and dendritic cells
(40–42). Similar to other members of the TNF family, the OX40
signal transduces through TNF receptor related factors (TRAFs).
OX40 signal is transduced to T cells via TRAF2 and TRAF5 in
vivo and TRAF1, TRAF3 and TRAF5 in vitro (43–47).

The expression of OX40 and OX40L is regulated by many
factors. OX40 expression is induced on T cells by TCR, CD28/
CD80, CD40/CD40L and other signals and peaks at 48-72 hours
following T cell activation (34, 48–50). TCR signaling can initiate
June 2021 | Volume 12 | Article 670637
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the expression of OX40 on a variety of cells, while CD28 and
other cytokines can further promote its expression on activated T
cells (32). It has also been reported that IL-2, IL-4 and TNF can
enhance or prolong OX40 expression. Sun et al. found that IL-2,
TNF-a and IFN-g were highly expressed in liver tissues of animal
models of nonalcoholic steatohepatitis, but only exogenous IL-2
stimulation could upregulate OX40 expression on CD4+ T cells
(51). CD40 signaling and inflammatory signals transmitted by
Toll-like receptors induce OX40L expression on antigen-
presenting cells (41). Factors such as IL-18, IFN-g, thymic
stromal lymphopoietin (TSLP) and prostaglandin E2 can also
promote the expression of OX40L (49, 52–55). In an
inflammatory environment, upregulated OX40L expression on
APCs ensures that activated OX40+ T cells receive OX40 signals
from nearby cells (33).

Functions of OX40 and OX40L
As a pair of costimulatory molecules, OX40/OX40L is required
for T cell activation especially in the later phase of the immune
response. OX40/OX40L plays critical roles in enhancing the
function of effector T cells, maintaining their survival and
inhibiting their apoptosis. Rogers et al. detected a significantly
decreased percentage of antigen-specific T cells in OX40-
deficient mice. Moreover, antiapoptotic molecules, such as Bcl-
xL and Bcl-2, were obviously downregulated in OX40-/- T cells
and CD28-/- T cells after antigen stimulation. When CD28-/- T
cells were stimulated with an anti-OX40 agonist antibody, the
expression of Bcl-xL and Bcl-2 was increased, and T cell
apoptosis was inhibited (56). OX40-deficient T cells normally
proliferated and differentiated into effector T cells 2-3 days after
activation of TCR signaling. However, the survival rate was
significantly reduced after 12-13 days of activation, which
indicated that OX40 signaling might not be essential for the
early stage of T cell activation but might promote the
proliferation of T cells and maintain their survival in the later
stage (57). OX40/OX40L signaling is critical for differentiation of
various Th cells. This signaling preferentially induces
differentiation of naive CD4+ T cells into Th2 cells but
promotes Th1 differentiation under the influence of antigens
or IL-12 (58). OX40 was also reported to play important roles in
differentiation of Th9 cells through the nonclassical NF–kB
pathway by activating tumor necrosis factor receptor-
associated factor 6 (TRAF6) (59). Which type of Th cell
differentiation is promoted by this signal may be dependent on
the environment it is involved. OX40 expression is usually
downregulated after the effect phase of the primary T cell
response and can be rapidly upregulated on memory T cells
after secondary challenge with the same antigen again to
subsequently activate and recruit memory effector T cells,
suggesting that the OX40/OX40L interaction is required in the
recall response (59). OX40 is also constitutively expressed on
mouse Treg cells (60). Evidence has shown that OX40 signaling
is essential for inhibiting Treg cell function. Jaquemin et al.
reported that engagement of the OX40/OX40L axis resulted in
Foxp3 downregulation in Tregs and decreased Treg-mediated
suppression of effector T cell proliferation(OX40 upregulates
BATF3 and BATF, which produce a closed chromatin
Frontiers in Immunology | www.frontiersin.org 3
configuration to repress Foxp3 expression in a Sirt1/7-
dependent manner (61). However, there are also reports
showing that OX40 agonists can enhance Treg cell
proliferation and inhibit function. Gavin MA et al. found that
the number of Treg cells in the spleen of OX40-deficient mice
decreased, while the number of Treg cells in the thymus of
OX40L-overexpressing mice increased, indicating that abnormal
OX40/OX40L signaling interfered with the development of Treg
cells (62).

In addition to its critical role in T cells, OX40/OX40L
signaling can also promote the differentiation and maturation
of DCs. Human immature DCs have no OX40L expression,
whereas the expression of OX40L is rapidly induced after
sCD40L stimulation. Ligation of OX40L upregulated the
expression of CD80, CD86, CD54 and CD40 on mononuclear-
derived DCs in the reversible phase, and could enhance the
secretion of IL-4, IL-6, IL-12, TNF-a and IL-1b by 4- to 35- fold
(41). This result indicates that the OX40L reverse signal
enhanced the maturation of DCs. B cells are also an OX40L-
expressing antigen-presenting cells that play an important role in
formation of the GC (63). Cross-linking of OX40L on stimulated
B cells significantly enhanced proliferative response and
promoted immunoglobulin secretion (64). Morimoto et al.
found CD134L engagement on human B cells increased IgG
production rate per cell rather than increasing the number of
plasma cells (65). Therefore, the OX40/OX40L bidirectional
signal not only acts on T cells but also plays critical roles in
differentiation and maturation of APCs, especially DCs and B
cells (Table 1).
OX40/OX40L SIGNALING IN Tfh CELLS

Expression of OX40 On Tfh Cells
OX40 is transiently expressed on CD4+ T cells after 12-24 hour
of activation. As a distinct CD4+ T cell subset, Tfh cells in
both mice and humans have been confirmed to express OX40.
T

C
ty

T

T

T

D

B

ABLE 1 | OX40/OX40L functions in different cell types.

ell
pes

OX40 or OX40L
expression

Functions

cells OX40 and OX40L Promotion of T cell activation and proliferation
(57)
Inhibition of T cell apoptosis (56)
Enhancement of recall response (59)
Promotion of Th differentiation (58, 59)

fh cells OX40 Promotion of Tfh differentiation and
maintenance
Enhancement of Tfh function of helping
B cells

regs OX40 Inhibition of Treg function (60, 61)
Promotion of Treg proliferation (62)

Cs OX40L Promotion of the differentiation and
maturation of DCs (41)

cells OX40L Promotion of B cell proliferation and Ig
secretion (64, 65)
Promotion of GC formation (63)
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Adam L et al. found that OX40 and ICOS were coexpressed on
peripheral blood Tfh cells of patients with primary biliary
cholangitis (PBC) and primary sclerosing cholangitis (PSC).
Compared with PBC patients, PSC patients had significantly
upregulated OX40 and ICOS expression (66). Analysis of
patients with rheumatoid arthritis (RA) showed an abundance
of OX40-overexpressing Tfh cells, especially Tfh17 cells (67).
Jiang et al. also reported OX40 expression on Tfh cells in a mouse
model of myelodysplastic syndrome (MDS) (68). Tahiliani et al.
found that in mice infected with vaccinia virus, OX40 was
already expressed on pre-Tfh cells, and the expression level
gradually increased with maturation of the Tfh cells (69).
Therefore, OX40 is expressed during differentiation of Tfh cells
and may play a role in Tfh development and functions.

Differentiation and Maintenance of
Tfh Cells
Many cytokines and costimulatory signals, such as IL-12, IL-6
and ICOS/GL50, have been reported as the key factors in
differentiation of Tfh cells. Recently, OX40/OX40L is
characterized as another important costimulatory signal to
promote Tfh differentiation. It has been reported that Rouqin
regulates Tfh cell differentiation by inhibiting the expression of
ICOS and OX40 mRNA, suggesting a close correlation between
OX40 and Tfh cells (70). Defects in Rc3h1 and Rc3h2 in T cells
elevate the expression of OX40 and Irf4, leading to activation of
the NF-kB pathway. Tfh cells and GC-B cells spontaneously
differentiate in the absence of immunization (70). Therefore,
OX40 may promote the differentiation of Tfh cells.

CXCR5 is one of the most widely used markers to identify Tfh
cells. Initially, OX40 in vitro was reported to induce CXCR5
mRNA transcription in activated mouse T cells, indicating that
OX40 signaling may promote differentiation of Tfh cells by
upregulating CXCR5 expression (71, 72). Then, the OX40/
OX40L signal was found to upregulate multiple Tfh genes,
including CXCR5, Bcl-6, IL-21, CXCL13 and PDCD1, in both
naïve and memory Th cells and to downregulate the expression
of the transcription factor PRDM1, which inhibited the
generation of Tfh cells (72). The upregulation of Bcl-6 and
downregulation of PRDM1 fully demonstrated the important
role of OX40 signaling in Tfh cell differentiation. Jacquemin et al.
further compared the expression of Tfh genes after stimulation
with OX40, IFN-g and IL-12 which is an inducer of Tfh cells, and
found that OX40 and IL-12 promoted naïve Th cells to express
Tfh cell-related genes at similar levels (72). OX40 signaling is
more efficient than IL-12 signaling at inducing memory Th cells
to upregulate Tfh genes. The cooperation of the two signals can
further increase the expression of CXCR5 and IL-21 on memory
Th cells. In addition, it was shown that after 8-15 days of infection
with vaccinia virus (VacV) in OX40-deficient mice, the numbers
of Tfh and GC Tfh cells were significantly reduced compared with
those in wild-type mice, indicating a critical role of OX40 in Tfh
maturation (69). Prior studies reported that the interaction of
OX40 and OX40L can also promote accumulation of CD4+ T cells
in the T/B boundary and B cell follicles in mouse models with
protein Ag immunization (73). Recently, Tahiliani V et al.
Frontiers in Immunology | www.frontiersin.org 4
visualized OX40L-expressing DCs and B cells at the T/B borders
and in the follicle and GC, in direct association with OX40+ Tfh
cells in these areas (69). The interaction between Tfh cells and
DCs or B cells is very important for further Tfh differentiation and
Tfh maintenance. Therefore, OX40/OX40L signaling promotes
not only Tfh generation but also Tfh maturation and
maintenance (Figure 1).

Enhancement of Tfh Functions
OX40L was found to be expressed in the GCs and surrounding
areas, suggesting that OX40/OX40L signaling may play a role in
formation of the GC. Li Y et al. constructed a recombinant rabies
virus (RABV) mouse model (LBNSE-OX40L) which
overexpressed OX40L and found that Tfh cells and GC-B cells
significantly increased after RABV infection (74). Deletion of
OX40L in B cells in the SLE mouse model resulted in an
improved disease index and a decreased number of plasma
cells and GC-B cells (75). In OX40-deficient mice, GCs could
not be built up even if activated B cells from wild-type mice were
injected. In contrast, GCs could be formed and expanded when B
cells from OX40-deficient mice were injected into wild-type mice
(69), suggesting that the OX40/OX40L signal is essential for the
formation of GCs. In addition, reduced Ab production has been
found in animals that lack the OX40 molecule. The interaction of
OX40L+ B cells and OX40+ Tfh cells has been observed in T-B
border and GCs in mice infected with VacV, further indicating
the roles of OX40/OX40L signaling in Tfh helping B cells. During
their interaction, a bidirectional OX40/OX40L signal occurs. On
the one hand, OX40 on Tfh cells can receive signals from OX40L
expressed on B cells to promote secretion of cytokines such as IL-
21, which further assists B cell activation and antibody
production. On the other hand, B cells can receive the OX40L
reverse signal from Tfh to directly expand B cell clones and
promote GC formation (Figure 1).

OX40-Initiated Signaling Pathways in
Tfh Cells
There are two main OX40/OX40L signal transduction pathways in
T cells. One is the antigen-independent NF-kB pathway, and the
other is the antigen-dependent PI3K-Akt pathway. Binding of
OX40L results in trimerization of OX40 monomers and
recruitment of TRAF2, 3 and 5 (46, 47). TRAF2 has been
characterized as an adaptor molecule that can lead to activation
of NF-kB signal and recruitment of PI3K. For the NF-kB pathway,
engagement of OX40 on activated/effector T cells by OX40L recruits
not only the TRAF-RIP-IKKa/b/g complex, but also the
PCARMA1–BCL10–MALT1–PKCq complex (76). This
signalosome directly controls NF-kB activation without antigen/
TCR engagement. The TRAF-RIP-IKKa/b/g signaling complex
mediates phosphorylation and degradation of IkBa, leading to
activation of NF-kB1 and entry of p50 and RelA into the nucleus,
which is sufficient to provide survival signals to T cells in the
absence of antigens. The CARMA1–MALT1–BCL10–PKCq
complex forms the signalosome with OX40 in the immune
synapse, which plays a major role in promoting prolonged NF-kB
activity and survival of effector T cells during late-phase T cell
June 2021 | Volume 12 | Article 670637
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responses when antigen is cleared. OX40 can also induce
phosphorylation of IKKa and activation of NIK, which activates
the noncanonical NF-kB2 pathway (46, 77, 78). For the PI3K-Akt
pathway, after ligation of OX40L, OX40 was found to assemble a
signaling complex that contains TRAF2, PKB and its upstream
activator PI3K (79, 80). It only induced strong phosphorylation and
functional activation of the PI3K-Akt pathway when Ag was
presented. Thus, OX40 can augment TCR signaling via the PI3K-
Akt pathway. In addition, OX40 synergizes with TCR to allow Ca2+

influx and nuclear accumulation of NFATc1 and NFATc2
(78) (Figure 2).

The NF-kB pathway is also involved in Tfh cell proliferation
and survival (81). Blocking molecules in the NF-kB1 and NF-
kB2 pathways inhibits the Bcl-6 expression on CD4+ T cells.
However, the effect is independent of OX40 signaling (72).
Strong and durable TCR signals can also contribute to
promoting Th cell differentiation to the Tfh lineage and their
proliferation (82–84). A recent study showed that stimulation
with anti-CD3 and anti-CD28 beads promoted the expression of
multiple Tfh molecules including CXCR5, IL-21, CD40L and
Bcl-6, in a dose-dependent manner. The combination of OX40
and TCR signals further upregulated the expression of Tfh
molecules, indicating that OX40 signaling promotes Tfh
differentiation by enhancing TCR signaling. PI3K activity is an
essential component of pathways driving Tfh cell and GC
formation (85). Both TCR and OX40 are characterized as
strong activators of both the PI3K and Akt signaling pathways.
Frontiers in Immunology | www.frontiersin.org 5
Thus, OX40 may mediate Tfh cells by augmenting TCR signaling
via the PI3K-Akt pathway. Another way for OX40 to regulate
Tfh cells may be through NFAT, which has been shown to be
essential for effective Tfh development (Figure 2) (86).
IMPLICATION OF Tfh IN AUTOIMMUNE
DISEASES AND IMMUNE THERAPY
THROUGH OX40/OX40L SIGNALING

Tfh cells and OX40/OX40L have both been reported to be
associated with autoimmune diseases both in humans and mice
(Table 2). Since many autoimmune diseases such as SLE, RA and
Graves’ diseases are autoantibody-mediated, the critical roles of Tfh
cells in these diseases are obvious (87–101). Tfh cells enhance the
intensity and duration of the GC response and promote
autoantibody production. In lupus nephritis lesions, Tfh-like cells
expressing PD-1, ICOS, IL-21 and Bcl-6 were observed to form
ectopic GCs. In addition, an increased population of circulating Tfh
cells was identified in SLE patients (102). In salivary gland tissues
and peripheral blood of patients with Sjogren’s syndrome (SS), the
numbers of CD4+CXCR5+ Tfh cells were significantly increased
along with abnormal B cells and plasma cells, suggesting that Tfh
cells participate in the pathogenesis of SS by promoting B cell
maturation (103). Moreover, multiple studies have demonstrated
that OX40 is expressed on pathogenic T cells in autoimmune
FIGURE 1 | OX40/OX40L signaling in Tfh differentiation and function. Tfh differentiation occurs at the time of DC priming. Upregulation of OX40 on pre-Tfh cells
promotes their accumulation at the T-B border. With the interaction of cognate B cells, OX40 signaling contributes to Tfh maintenance, maturation and migration to
B follicles. Meanwhile, B cells also move to B follicles to further interact with Tfh cells. Bidirectional OX40/OX40L signaling promotes both GC Tfh and GC B cell
differentiation. With the help of GC Tfh cells, B cells differentiate into plasma cells and memory cells.
June 2021 | Volume 12 | Article 670637
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disease (42, 104–112). Farres et al. found that compared with
healthy people, CD4+ T cells in SLE patients express high levels
of OX40, and the disease activity index is positively correlated with
the number of CD4+ T cells expressing OX40. The disease is
improved after treatment with an anti-OX40L monoclonal
antibody (113, 114). Yoshioka et al. found that T lymphocytes in
synovial fluid and synovial tissue of RA patients express OX40, and
secondary lymphocytes in synovial tissue express OX40L,
suggesting that the OX40/OX40L interaction may play a key role
in RA occurrence and development (34). Graves’ disease (GD) is an
autoimmune thyroid disease, with clinical manifestations that
primarily include ophthalmopathy, goiter and hypermetabolic
syndrome (115, 116). We have found that OX40/OX40L was
abnormally and persistently coexpressed on CD4+ T cells from
GD patients, and the coexpression level was closely related to
TRAb (117).

Recent data for SLE and RA showed that high OX40 and
OX40L expression may be involved in the pathogenesis of
autoimmune diseases by enhancing Tfh functions. Jacquemin
et al. also reported that OX40L+ myeloid cells are visualized in
skin and kidney tissues from SLE patients. OX40 engagement
upregulated the expression of several Tfh-associated molecules in
Frontiers in Immunology | www.frontiersin.org 6
T cells from lupus patients, including Bcl6, CXCR5 and IL-21,
showing that Th cells in an OX40L-rich environment may
receive OX40 signaling to promote Tfh development. The
percentage of OX40L+ myeloid cells in blood was significantly
higher in active patients than in inactive patients and positively
correlated with peripheral Tfh cell frequencies, indicating that
the Tfh response was enhanced by the OX40 signal. Moreover,
myeloid cells expressing OX40L can also impair Treg and Tfr
functions by suppressing Tfh-dependent B cell activation and
immunoglobulin secretion in SLE. OX40-overexpressing Tfh
cells, especially Tfh 17 cells, were found to be increased in RA
and a murine model. In vitro coculture experiments showed
enhanced hyposialylation by the Tfh cells via OX40. Blockade of
OX40 signaling prevented arthritis development by reducing
Tfh17 cells and recovering autoantibody salivation (67).
Therefore, upregulated OX40 signaling plays a crucial role in
the development of autoimmune diseases by enhancing Tfh
functions directly or indirectly. Thus, targeting OX40/OX40L
signaling may be an effective strategy for these diseases.

OX40/OX40L blockade in vivo is generally effective in many
models with autoimmune diseases, mainly by inhibiting
activation and migration of CD4+ T cells and altering cytokine
FIGURE 2 | OX40 signaling pathways mediating Tfh differentiation. Both TCR and OX40 can activate PI3K, including P110 and P85 subunit, further leading to
phosphorylation of AKT. pAKT then phosphorylates the FOXO1 transcription factor, which can subsequently be exported out of the nucleus and degraded. FOXO1,
which represses Bcl6, is recognized as an inhibitor of Tfh differentiation. In addition, OX40 synergizes with TCR to allow Ca2+ influx and nuclear accumulation of
NFATc1 and NFATc2. Overall, OX40 may mediate Tfh cell activity by augmenting TCR signaling via the NFAT or PI3K-Akt pathway.
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production (34, 118, 119) (Table 3). When a blocking anti-
OX40L antibody was given to NOD mice at 12 weeks of age, the
incidence of diabetes was reduced (120). In EAE mice, anti-
OX40L antibody blockade leaded to decline of clinical score and
reduction of spinal cord T cell infiltration (121, 122). There are
also some clinical trials targeting OX40/OX40L in development.
OX40L-blocking antibodies were reported to ameliorate antigen-
driven Th2 responses in mouse and nonhuman primate models
of asthma (123). An anti-OX40 antibody, GBR 830 in phase II
study showed significant clinical improvement in patients with
moderate to severe atopic dermatitis (125) (Table 3). Combined
OX40L and mTOR blockade in nonhuman primate graft-versus-
host disease (GVHD) model prolonged survival by controlling
effector T cell activation while preserving Treg reconstitution
Frontiers in Immunology | www.frontiersin.org 7
(126). However, the treatment with a humanized anti-OX40L
mAb has no effect on allergen-induced airway responses in mild
asthmatic patients (124). Timing and dosing of clinical
intervention may be critical for the efficacy.
CONCLUSION

Providing help for B cell development and GC reactions is the most
crucial function of Tfh cells, which lead to high-affinity antibody
production. Thus, increased activity of Tfh cells plays a pathogenic
role in a wide range of autoimmune diseases, in both mice and
humans. The differentiation of Tfh cells requires not only TCR
signaling, cytokines and antigen stimulation but also costimulatory
TABLE 2 | OX40, OX40L expression and Tfh cells in autoimmune diseases.

Disease OX40 OX40L Tfh

Systemic lupus
erythematosus
(SLE)

Upregulated OX40 expression on peripheral
T cells (108)

Upregulated OX40L expression on myeloid
APCs (72)

Increased Tfh in patients with active
SLE (108)

Rheumatoid arthritis
(RA)

Upregulated OX40 expression on T cells in synovial
fluid and blood (34, 67, 119)
Upregulated OX40 expression on circulating
CD4+CD28- T cells (116)
Upregulated OX40 expression on circulating Tfh17
cells (67)

Upregulated OX40L expression on sublining
cells in synovial tissue (34) and on
monocytes and B cells in blood (90)

Increased circulating Tfh cells and Tfh17
cells (118)

Type 1 Diabetes
(T1D)

Increased circulating CD4+CD25high OX40+ T cells in
children with newly diagnosed T1D (94)

Increased circulating Tfh cells in newly
diagnosed T1D children (102)
Increased circulating Tfh cells in T1D
patients (88, 89)

Graves’ diseases Upregulation of OX40 on circulating CD4+ T cells (117) Upregulation of OX40L on circulating CD4+ T
cells (117)

Increased circulating Tfh and Tfh2
cells (90)
Elevated Tfh cells in thyroid tissues
(77, 78)

Multiple sclerosis Downregulation of OX40 expression on circulating
CD4+ T cells after treatment with natalizumab (95)
The presence of OX40+ T cells in brain tissue (106)

Increased circulating IL-21-producing
Tfh-like cells (96)
Increased Tfh/Tfr ratio associates with
abnormal IgG production in blood and
CSF (92)

Myasthenia gravis Upregulation of OX40 expression on circulating CD4+

T cells (107) and thymic CD4+ T cells adjacent to GC
(108).

The presence of OX40L+ mononuclear cells
in thymic GC (108).

Increased circulating Tfh cells (102)
Increased circulating Tfh17 cells in
MuSK-antibody positive patients (93).

Sjogren syndrome Upregulation of OX40 expression on circulating CD4+
T cells (108)

Upregulation of OX40L expression on
circulating B cells and monocytes (108)

Increased circulating Tfh and Tfh17
cells (94)
Localization of Tfh cells in salivary
glands (95)

lupus mouse Upregulation of OX40 expression on CD4+ T cells in
the spleen and kidney of NZB/WF1 mouse (109)

Expanded Tfh cells in spleen of MRL/lpr
mouse (96)
Tfh cells infiltrating the brain of murine
neuropsychiatric lupus in MRL/lpr
mouse (97)

Collagen-induced
arthritis mouse

Upregulation of OX40 expression on CD4+ T cells in
joints (110) and spleen (111)
Upregulation of OX40 expression on CD4+CD28- T
cells in spleen (118)

Upregulation of OX40L expression on APCs
in spleen (98)

Increased Tfh cells in the spleen (111)

T1D mouse Upregulation of OX40 expression on CD4+ and CD8+

T cells in pancreatic lymph nodes and spleen of NOD
mouse prior to diabetes onset (120)

Upregulation of OX40L expression on
dendritic cells in pancreatic lymph nodes late
during NOD development (120)

Increased Tfh cells in the pancreatic
lymph node and the pancreas of
DO11×RIP-mOVA mouse (99)

Autoimmune
encephalomyelitis
(EAE) model

Upregulation of OX40 expression on CD4+
T cells in spleen and brain tissue (42, 106)
OX40 expression selectively on autoantigenic CD4+

T cells from the inflammatory site in spinal cord or
brain (111, 112)

Upregulation of OX40L expression on
CD11b+ cells and vascular endothelial cells in
central nerous system (106, 121)

Increased Tfh cells in ectopic lymphoid
structures in spinal cords (100)
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signals, such as ICOS/ICOSL and OX40/OX40L. As an important
marker of Tfh cells, OX40 can promote Tfh generation and
contribute to maintenance of Tfh and GC B cells at later times.
OX40 synergizes with ICOS to maximize and prolong the Tfh
response. Therefore, upregulation of OX40 and OX40L may induce
abnormal activation of Tfh cells and excessive production of
autoantibodies, leading to the development of autoimmune diseases.

Given that blocking OX40/OX40L signaling has shown great
therapeutic effects in some mouse models of autoimmune diseases,
targeting OX40/OX40L is promising as a new therapeutic approach
for these diseases. However, the efficacy data of clinical trials are
currently limited. Further studies are needed for clinical
intervention since many factors, such as dose and time point,
influence the effect. Moreover, controversial results have been
obtained regarding the roles of the OX40/OX40L axis in
regulation of Tfh responses. Whether other factors may impact
the roles of OX40L in Tfh cells needs also to be further investigated.
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