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Exosomes are a subset of extracellular vesicles with an average diameter of ~100nm.
Exosomes are released by all cells through an endosome-dependent pathway and carry
nucleic acids, proteins, lipids, cytokines andmetabolites, mirroring the state of the originating
cells. The function of exosomes has been implicated in various reproduction processes,
such as embryo development, implantation, decidualization and placentation. Placenta-
derived exosomes (pEXO) can be detected in the maternal blood as early as 6 weeks after
conception and their levels increase with gestational age. Importantly, alternations in the
molecular signatures of pEXO are observed in pregnancy-related complications. Thus, these
differentially expressed molecules could be the potential biomarkers for diagnosis of the
pregnancy-associated diseases. Recent studies have demonstrated that pEXO play a key
role in the establishment of maternal immune tolerance, which is critical for a successful
pregnancy. To gain a better understanding of the underlying mechanism, we highlighted the
advanced studies of pEXO on immune cells in pregnancy.
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INTRODUCTION

Pregnancy is a complex process associated with numerous biological changes in the maternal body
and our understanding of the complicated relationship between the mother and its semi-allograft
fetus is still limited (1). An immune tolerant environment is a prerequisite to a successful pregnancy.
However, the understanding of how the fetus avoids maternal immune rejection is an enigma.
During pregnancy, the mother needs to have a competent immune system against infection but is
tolerant to the developing fetus. Any disruption of the immune tolerance would lead to adverse
pregnancy outcomes such as recurrent pregnancy loss (2), miscarriage (3) and preeclampsia (4).

The maternal immune system undergoes a wide variety of biological changes during pregnancy.
These include decidual immune cell mobilization, re-distribution and polarization at a local level
(5–7) and a universal immunosuppressive state at a systemic level (8, 9). In humans, the
trophectoderm of blastocyst protects the growing embryo at implantation (10). After
implantation, the syncytiotrophoblast (STB) derived from the trophectoderm, surrounds most of
the chorionic villi, and prevents the fetus from a direct contract with the maternal blood. The
trophoblasts have a unique human leukocyte antigen (HLA) profile (11). For example, the STBs are
org May 2021 | Volume 12 | Article 6710931
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HLA null and are considered as immunologically neutral, while
the extravillous trophoblast cells (EVTs) express an unusual
repertoire of HLA-I molecules including HLA-G, HLA-C and
HLA-E (12, 13). Furthermore, the STBs produce various
immunoregulatory factors such as interleukin 10 (IL10) (14),
macrophage colony-stimulating factor (M-CSF) (15) and IL-35
(16), which contribute to maternal immune tolerance as well.

Exosomes, firstly regarded as cell burden, are involved in the
process of antigen presentation, signal transduction and immune
responses. Placenta STB has been demonstrated to continuously
releases extracellular vesicles (EVs), microvesicles and exosomes,
to the maternal circulation (17, 18). The study on pEXO can date
back to 1999 (19) and our understanding of pEXO are
significantly increased due to advances in technologies of
exosome purification in the last decade. Beyond that, exosomes
from other sources-such as stem cells and tumor-have a critical
role in growth, metabolism and development. The function of
pEXO has been implicated in conferring viral resistance to non-
placenta cells, inhibiting T cells recognition and activation, and
promoting macrophage differentiation and polarization during
pregnancy. Here, we summarize the current knowledge of pEXO
in the establishment of maternal immune tolerance and outlined
an overview role of its application in disease diagnosis.
PLACENTA-DERIVED EXTRACELLULAR
VESICLES

Extracellular Vesicles
Communication among our body cells is traditionally considered
to be through autocrine, paracrine, endocrine and direct cell-cell
contact. Other than that, EVs are another means of cell-cell
communication. According to the guidelines of the International
Society for Extracellular Vesicles (ISEV), EVs are lipid-bound
vesicles with a diameter ranging from 30 nm to 2 mm released
from all kinds of cells (20, 21). Based on the biogenesis process,
EVs generally fall into two categories, ectosomes and exosomes
(Table 1) (20). Ectosomes are vesicles produced by cells via direct
outward budding. They can be further divided into microvesicles
(MVs, 200 nm ~ 1 mm in diameter) and apoptotic bodies (APs,
1 mm ~ 5 mm in diameter) (22). By contrast, exosomes are nano-
sizedparticleswith a size ranging from30nmto200nmindiameter
(100 nm on average) generated by inward budding of the plasma
membrane via a multi-vesicular system (21).
Frontiers in Immunology | www.frontiersin.org 2
Initially, EVs are considered as cell debris for the purpose of
maintaining cellular homeostasis (23, 24). EVs carry various
molecular cargoes, such as proteins, microRNAs (miRNAs),
mRNAs, lipids and metabolites, which endow the EVs with
capacity as a natural vehicle for intercellular communication
(25). The function of exosomes has been well documented in
tumorigenesis, metastasis, regeneration, mammalian reproduction
and development (26). Certain miRNAs are enriched in exosomes
compared to those in the cells of origin, indicating that the process
of exosomes biogenesis is not random, but in a pre-primed
manner (27, 28). However, the mechanism underlying the
exosomal cargo incorporation is still unclear.

Placenta Syncytial Nuclear Aggregates,
Microvesicles and Exosomes
During pregnancy, the placenta actively releases EVs into the
bloodstream of the mother. The STB is the major source of
placenta-derived EVs in the maternal blood (29, 30). Unlike
those EVs that originate from other tissues, placenta-derived EVs
are divided into three categories based on their sizes: syncytial
nuclear aggregates (SNAs), microvesicles (MVs) and exosomes
(Figure 1) (31).

Placenta-derived SNAs, also known as syncytial knot, are the
clusters of multinucleated aggregate of syncytial nuclei (20
mm~200 mm in diameter, averaged 60 nuclei per knot) extruded
from STB (32). The formation of placenta-derived SNAs is
generally considered as a degenerative process, an aging change
and an indicator of trophoblastic state when exposed to ischemia
or hypoxia (18, 31, 33). The history of placenta-derived SNAs can
be dated back to 120 years ago when they were first found in the
lungs of post-mortem women (34). However, the origin and
formation of SNAs are far from clear. Nuclei within SNAs
exhibited condensed morphology compared to the STB and
showed little evidence of apoptosis, indicating that SNAs are not
fragmented STB (31). SNAs could be used as an alternative source
of fetal DNA for prenatal diagnosis (35). The levels of SNAs
increase as gestation proceeds and are found to be correlated in
pregnancy complications such as preeclampsia (36).

The biological function of placenta-derived MVs is broad,
encompassing immune cell activation, proliferation, and
endothelial hemostasis (37). MVs collected from normal placenta
perfusion have a pro-inflammatory effect via activating monocytes
and B cells (38). Inhibition of MV internalization cannot block
placenta-derived MV-mediated activation of monocytes and B cells
indicating that membrane-bound proteins are the key players of the
TABLE 1 | Summary of different subtypes of placenta-derived extracellular vesicles.

Exosomes Microvesicles Apoptotic bodies Syncytial nuclear aggregates (SNA)

Size 30nm ~ 200nm 200nm ~ 1mm 1mm ~ 5mm 20m-200mm
Origin Endocytic pathway Plasma membrane Plasma membrane Syncytiotrophoblast
Function Intercellular communication Intercellular communication Facilitate phagocytosis Unclear
Contents Proteins, miRNA, mRNA, lipid and

metabolites
Proteins, miRNA, mRNA, lipid and
metabolites

Nuclear fractions, cellular
organelles

Nucleus, proteins, miRNA, mRNA, lipid,
metabolites

Markers Alix, CD81, CD63, CD9 Integrins, selectins, CD40 Annexin V,
phosphatidylserine

Nucleus cluster
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phenomenon. Proteomic analysis revealed that the differential
expressed proteins between MVs from normal pregnancy and
preeclampsia patients are related to mitochondria, transmembrane
transport and membrane transporter activity (39).

pEXO can interact with various target cells including
endothelium, T cells, monocytes, natural killer (NK) cells and
macrophages. pEXO are found to protect endothelial cells from
viral infection (40), inhibit NK cytotoxicity (41), constrain T cell
proliferation (42) and promote monocyte differentiation and
macrophage polarization (43). During pregnancy, pEXO can be
detected as early as 6 weeks (44) and their number increases
gradually and finally peaks at term. Pathologically, the levels of
exosomes have been correlated with pregnancy-associated
complications such as preeclampsia (45), gestational diabetes
mellitus (46) and preterm birth (47), which will be described
later in this review. Interestingly, all these complications have
been demonstrated to associated with alteration of immune
system during pregnancy. However, the detailed roles and
mechanisms of pEXO in maternal immune adaption and
placental development are still obscure.
pEXO PREPARATION AND ISOLATION

To date, pEXO are mainly purified from four types of sources:
maternal blood, placental perfusate, placental explant culture, and
Frontiers in Immunology | www.frontiersin.org 3
primary trophoblast culture. However, pEXO isolated by different
methods have distinct effects on endothelial cells, T cells and other
cells [Reviewed in (48–50)]. Generally, the yield of placenta
exosomes in the maternal blood is relatively low. On the other
hand, the yields of exosomes from placental perfusion and explant
culture are relatively high but the purity of the isolated exosomes is
a concern. Since differences in content and immunoregulatory
activities of exosome from primary cell and its established cell lines
have been reported (51–53). Primary cells are currently the best
source of exosomes preparation when sample availability is
adequate. However, exosomes from trophoblast cell lines with
gene manipulation could also provide valuable information
regarding trophoblast-specific gene expression and function
(54, 55).

Immuno-capture, centrifugation, precipitation, and size
exclusion chromatography are commonly used to isolate
exosomes from the biological fluid or culture medium (21, 56–59)
(Figure 2). The immuno-capture method is commonly used to
isolate pEXO in plasma (60). Magnetic beads coated with
monoclonal anti-PLAP (placental alkaline phosphatase) antibodies
capture placenta-specific exosomes through antigen-antibody
interaction. Ultracentrifugation and gradient ultracentrifugation
are the most widely used methods in exosome studies. In these
methods, EVs are isolated by differential centrifugal forces. Dead
cells and cell debris are pelleted with a relatively low centrifugal
force (300g for dead cells and 2000g for cellular debris). Higher
FIGURE 1 | Schematic illustration of placenta extracellular vesicles. Placenta derived extracellular vesicles can be divided into four categories: exosomes, microvesicles,
apoptotic bodies and syncytial nuclear aggregates based on size and biogenesis pathway. Exosomes are generated by multivesiculuar body (MVB)-intraluminal vesicles
(ILVs) system. first MVBs are generated by plasma membrane inward budding. Further, invagination of the late endosomes forms intraluminal vesicles (exosomes) within
multivesiculuar body (MVB). Exosomes release to extracellular space when MVB fuse with membrane plasma. During this processes, membrane components and
cytosolic materials are loaded into exosomes. Microvesicles and apoptotic bodies are produced by outward budding of plasma membrane and the size range of 200
nm - 5 mm. Syncytial nuclear aggregates (SNA) are clusters of syncntiotrophoblast with multiple nuclei per SNA. CTB, cytotrophoblast; Exo, exosomes; EVT, extravillous
trophoblast; MVs, microvesicles; Mj, macrophage; NK, Natural killer cells; STB, syncytiotrophoblast; SNA, syncytial nuclear aggregates.
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centrifugal force at 16,500g is then applied to separate the MVs.
Exosomes can be harvested by ultracentrifugation at >100,000g, for
60 minutes. To enhance the purity of exosomes, gradient
ultracentrifugation is employed to separate different subtypes of
exosomes (59). Precipitation is another method for exosome
purification (61, 62). Polyethylene glycol (PEG) functions as a
water-excluding molecule that precipitates the exosomes out of
the aqueous phase. Usually, exosomes are isolated by a low-speed
centrifugation after incubating the sample with a precipitation
solution containing PEG. However, proteins may also be
precipitated by PEG which could result in a lower purity than
those generated by ultracentrifugation. Size exclusion
chromatography (SEC) has also been used for exosome
purification (63, 64). In this method, exosomes and soluble
proteins are separated by a porous matrix. Exosomes that are
larger than the size cutoff of the matrix are eluted faster than the
soluble proteins. Compared to other methods, exosomes isolated by
SEC have a higher purity but lower yields. However, all the methods
have their limitation in terms of efficiency and purity. To bridge this
gap, new technologies and standardization of protocols for pEXO
isolation are needed in future studies.
MATERNAL ADAPTATION OF IMMUNE
SYSTEM RESPONSE AT EARLY
PREGNANCY

Placenta-driven immune tolerance is a hallmark of a successful
pregnancy when exposed to fetal antigens (65–69). Paternal
antigens encounter the maternal immune system when the
placenta villi are in contact with the maternal blood and when
the EVTs interact with the human decidua. Strikingly, the
Frontiers in Immunology | www.frontiersin.org 4
maternal immune cells are abundant in the human decidua in
early pregnancy accounting for 40% of the total decidual cells.
Among them, NK cells (70%) and macrophages (20%) are the
two largest subpopulations, with the rest constituted by T cells.
Dendritic cells and B cells are almost absent in the human
decidua (70). Interestingly, endometrium exhibits a sharp
increase in NK cells and macrophages and a steep decline in T
cells during the secretory phase of menstrual cycle, indicating
that hormones may influence immune cell population and
functions. Although the total cell numbers of the decidual
immune cells in the peri-implantation and post-implantation
periods are similar, their phenotypes and functions are
dramatically different (71, 72).

It is generally accepted that a T-helper type-2 (Th2) cytokine
prevailing environment is important in pregnancy (73). The
proportion of Th2 cytokines-secreting cells in the endometrium
are significantly higher in pregnant women in the first trimester
than in non-pregnant women (73–75). On the other hand, Th1
cytokine-dominated immune responses are associated with
implantation failures (76), abortion (77) and preeclampsia
(78). The excessive Th1 cytokines are also associated with an
elevated number of activated CD8+ T cells (79), M1 macrophages
(80), Th-17 cells (81) in the decidua. However, several Th1
cytokines such as interferon (IFN)-g and tumor necrosis factor-a
are important in uterine vascular remodeling (82) and
implantation (83), suggesting that the Th-1/Th-2 paradigm for
pregnancy may be too simplistic. Recently, the concept of Th-1/
Th-2 paradigm was gradually expanded to Th1/Th2/Th17/Treg
paradigm due to the discovery of new Th cell subsets at the
maternal-fetal interface (84, 85).

Systemic changes in peripheral immune cells are also essential
for a successful pregnancy. It is supported by the observations in
FIGURE 2 | Preparation and isolation of pEXO. Exosomes extruded from placenta can be purified from blood plasma, medium of placental perfusion, explant culture
and primary trophoblast culture through immune-capture, ultracentrifugation, gradient centrifugation, or size exclusion chromatography.
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immunodeficient mice (Table 2). In general, adaptive immune
cell-deficient female mice are fertile, whereas innate immune
cell-deficient female mice are often accompanied by a
compromised reproductive performance. However, the
mechanism responsible for this observation is still unknown.
The significance of peripheral immune cells in pregnancy is also
well manifested in pregnant mothers with rheumatoid arthritis,
an autoimmune disease which was partially subsided during
pregnancy (97). Peripheral Treg cells, granulocytes and
monocytic myeloid-derived suppressor cells (M-MDSC) are
significantly increased when compared to non-pregnant
women (98–100). In contrast, the number of T cells and B
cells remain stable (8, 101). Moreover, the cytotoxicity of
peripheral NK cells from pregnant women is well constrained
when compared to non-pregnant individuals (102, 103).
pEXO AS A MODULATOR OF MATERNAL
IMMUNE TOLERANCE

Given that exosomes, but not other EVs, are generated through
the endosomal pathway, biological molecules encompassed by
the exosomes are believed to have specific functions in cell-cell
crosstalk. The placenta secretes a large number of exosomes into
the maternal circulation. The NK cells, macrophages and T-cells
are the three largest cell types making up >90% of the immune
cells at the fetal-maternal interface in the post-implantation
period. Thus, this review focuses on the effect of pEXO on
these three immune cell populations. Yet it should be
emphasized that exosomes are also involved in mediating the
bi-direction communications between endometrium and
embryo during peri-implantation and implantation phase
(104–106). For example, endometrial epithelial cell-derived
exosomes promote embryo attachment during implantation via
miR-30d-dependent upregulation of integrins or through
activation of focal adhesion kinase (FAK) signaling pathway
(107, 108). Another study shows that diapausing endometrial
epithelial cell-derived exosomes enriched with miR-let-7 can
protect the embryo from collapsing (109). Conversely, embryo-
derived exosomes have been detected in spent embryo culture
medium. These exosomes can be internalized by endometrial
Frontiers in Immunology | www.frontiersin.org 5
epithelial/stromal cells (110, 111) and promote endometrial
receptivity (112–114).

Natural Killer Cells
Peripheral Blood Natural Killer Cells
NK cells in peripheral blood are divided into two groups: over 90%
of peripheral NK cells (pNK) are CD56dim CD16+ which are
cytotoxic cells; the rest are CD56+ CD16- NK cells which are less
cytotoxic and can migrate into peripheral tissues. Compare to non-
pregnant, pNK of pregnant women have a higher expression of
Tim-3 (115), galectin-1 (102) and lower secretion of IFN-g (103).
The cytotoxic activities of pNK at early pregnancy are controversial
(101, 116). Moreover, overactivated pNK are associated with
repeated implantation and unexplained spontaneous abortion
(117). Currently, there is no report on the effect of pEXO on pNK.

Endometrial NK Cells (eNK) and Decidual NK Cells (dNK)
NK cells represent the largest fraction of lymphocytes in the
endometrium during the late-secretory phase and early
pregnancy. Unlike pNK, majority of the endometrium NK cells
(eNK) are CD56+ CD16- with a minority being cytotoxic CD56dim

CD16+. The transformation from eNK to decidual NK cells (dNK)
occurs upon implantation, resulting in two cell subsets with
distinct transcriptional profiles. Strikingly, the eNK are more
active than the dNK as 70% of differentially expressed genes are
highly expressed in the eNK (118). On the other hand, the eNK
have no expression of NKp30 and cannot produce VEGF and
placental growth factor (119). The phenotype and KIR repertoire
are also different between the two type NKs; the dNK have a
higher expression of KIR2D, the killer immunoglobulin-like
receptor for HLA-C recognition than the circulating NK and the
non-pregnant eNK (72, 120).

Decidual NK cells (dNK) are abundant in the maternal-fetal
interface at early pregnancy- accounting for up to 70% of total
lymphocytes in decidua (121). The number of dNK gradually
increases upon embryo implantation, peaks at 8-10 weeks of
gestation, and returns to the original level at term. In general,
dNK have low cytotoxicity and are prone to produce more growth
factors with immunomodulatory activities (122). Elevated dNK
cytotoxicity is associated with recurrent spontaneous abortion due
to increased lysis activity (123). This was, in part, mediated by the
TABLE 2 | Reproductive performance of immunodeficient mouse model.

Immune cell deficiency Innate immune cell depletion

Cell types Nude SCID Nod-SCID Rag-/- Rag-/- gc-/- Treg-/- Csf1-null CD11b+ MDSC
Mature B cells Present Absent Absent Absent Absent Present Present Present Present
Mature T cells Absent Absent Absent Absent Absent Present Present Present Present
Dendritic cells Present Present Defective Present Present Present Present Present Present
NK cells Present Present Defective Present Present Present Present Present Present
Treg N/A N/A N/A N/A N/A Absent Present Present Present
Macrophages Present Present Present Present Present Present Absent Absent Absent
Monocytes Present Present Present Present Present Present Defective Absent Defective
MDSC N/A N/A N/A N/A N/A Present N/A N/A Absent
Reproductivity Fertile Fertile Impaired Fertile Fertile Impaired Infertile Infertile Impaired
Reference (86) (87) (88, 89) (90) (91) (92) (93, 94) (95) (96)
May 20
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up-regulation of NKp44 and NKp46 cytotoxicity receptors on
CD56bright CD16- and CD56dimCD16+ cells (124). In fetal/
neonatal alloimmune thrombocytopenia (FNAIT), activated
dNK with increased cytotoxicity induce trophoblast apoptosis
(125). A recent single-cell study (126) classified the dNK into
three subsets: dNK1 (CD39+KIR2DL+ITGB2-CD103-), dNK2
(CD39-KIR2DL+ITGB2+CD103-) and dNK3 (CD39-KIR2DL-

ITGB2+). The origin of the dNK remains uncertain, though they
are thought to be derived from the NK precursor in the
endometrium, or recruited from the circulating NK (126) and/or
renewed by the CD34+ progenitor cells (127).

dNK are localized closely to EVT and spiral artery (128). They
are vital to various processes of pregnancy including embryo
implantation, immunomodulation, trophoblast differentiation
and invasion, and endothelial cell remodeling. dNK also
express unique NK receptors (e.g. 2B4, KIR2DL, ILT2) for
interaction with their corresponding ligands (e.g. HLA-C, -E,
-G) on EVT to fine-tune their cytolytic activity (129) within the
maternal-fetal interface during the first trimester of pregnancy.
Recent studies also suggest novel properties of dNK such as
providing osteoglycin (OGN) and osteopontin (OPT) for fetal
development (130) and selectively killing the pathogenic bacteria
inside the trophoblast by injection of granulysin through
nanotubes (131).

Effect of pEXO on NK Cells
pEXO can be internalized by NK cells in vivo (132) and in vitro
(Supplementary Table 1) (133), which mediate the crosstalk
between the placenta and the maternal immune system. The
cytotoxic activity of NK cells mainly attributes to its activating
receptors on the plasma membrane. NK group 2 member D
(NKG2D) is widely expressed on the NK cells, activated CD8+ T
cells and macrophages for removal of infected cells or foreign
pathogens. NKG2D is remarkably downregulated in NK cells by
NKG2D ligands expressed on pEXO (Supplementary Table
1) (134).

NKp30 is another activating receptor on the NK cells
responsible for eliminating cancer cells and inducing dendritic
cells maturation by secretion of tumor necrosis factor-alpha
(TNF-a), interferon-gamma (IFN-g), perforins and granzymes
(135). B7H6, one of NKp30 endogenous ligands, is widely
expressed on cancer cells and trophoblasts, while soluble B7H6
(sB7H6) was a decoy agent for ligand-receptor interaction and
compromising NK cytotoxicity. High levels of exosome-packed
sB7H6 or soluble B7H6 are correlated with poor tumor
prognosis, likely due to inhibition of the NK cytotoxicity
against the tumor cells (136). During pregnancy, both
exosome-packed B7H6 and sB7H6 are present in the serum of
pregnant women (Supplementary Table 1), indicating its
potential contribution via a similar mechanism to inhibit NK
cells in the establishment of maternal immune tolerance (137).

In addition to reducing the cytotoxicity of NK cells, exosomes
from the serum of pregnant women can selectively increase the
caspase-3 activity in CD56dim NK cells, pointing to an alternative
way of exosome-mediated immune tolerance by inducing
apoptosis of the CD56dim NK cells (Supplementary Table 1)
(133). pEXO proteomic study showed that glycodelin A (GdA), a
Frontiers in Immunology | www.frontiersin.org 6
glycoprotein with immunosuppressive activities, is abundantly
expressed in human decidua and pEXO (138). We demonstrated
that decidua-derived GdA stimulated the conversion of
peripheral CD56bright CD16- NK cells to cells with a decidual
NK cell-like phenotype via upregulation of CD9, CD49a and
production of VEGF (139). Together, this evidence indicated that
the pEXO contribute to maternal immune tolerance through
modulating NK cytotoxicity, inducing CD56dim NK cells
apoptosis and promoting the development of decidual NK cell-
like phenotype.

Monocytes and Macrophages
Peripheral Blood Monocytes
Circulating monocytes are the primary phagocytic cells and the
major APCs in blood (140). Notably, monocytes are able to
differentiate into dendritic cells and macrophages for antigen
presentation and removal of foreign pathogens, respectively. In
humans, peripheral monocytes can be divided into three main
subtypes based on the expression of CD14 and CD16 (141):
classical monocytes (CD14++CD16-); intermediate monocytes
(CD14+CD16+) and non-classical monocytes (CD14-CD16++).
Approximately 80% of the total monocytes are classical
monocytes, while the non-classical monocytes comprise about 2-
11%. Non-classical monocytes retain a highly inflammatory
characteristic and their number is elevated in both chronic and
acute inflammation. The population of the intermediate
monocytes (2-8%) with both inflammatory and phagocytic
capacities expands during ZIKA viral infection and is the main
target for ZIKA infection during pregnancy (142). Despite the
conflicting results on the proportion of classical monocytes in
peripheral blood between pregnant and non-pregnant women,
classical monocyte number is lower in pregnancy complications
such as preeclampsia (143, 144), indicating a possible regulatory
role of monocyte in pregnancy.

Decidual Macrophages
Decidual macrophages are the second most abundant type of
lymphocytes (~20%) and the major antigen-presenting cells
(APC) in human decidua during early pregnancy (70). They
contribute to maternal-fetal immune homeostasis, spiral artery
remodeling and trophoblast functions (145). Decidual
macrophages display the transcriptional profile of both classically
activated macrophages (M1 macrophages) for immune activation
and alternatively activated macrophages (M2 macrophages) with
anti-inflammatory and immunosuppressive functions (146, 147).
Thus, the decidual macrophages do not fit into the conventional
M1/M2 classification of macrophages. Indeed, decidual
macrophages show dynamic changes throughout pregnancy (13).
For instance, seminal plasma-induced M1 macrophage infiltration
contributes to embryo implantation in mice (5) and early
placentation (5, 67, 148). As pregnancy proceeds, the M2-
dominated microenvironment protects the fetus from rejection.
At the time of parturition, M1 macrophage accumulation facilitates
uterine contraction (149). The driving forces underlying the
phenotype changes remain unclear, yet it is generally believed that
the surrounding micro-environment is essential for macrophage
transformation and maturation.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bai et al. Placental Exosomes in Maternal Tolerance
Tissue-resident macrophages arise from three subsets of
precursors: early yolk sac macrophages, fetal liver monocytes and
bone marrow-derived monocytes (150, 151). In other words, the
tissue-resident macrophages can be generated by self-renewable
macrophages or replenished from circulating monocytes. However,
the origin of human decidual macrophages remains uncertain.
Kammerer et al. reported a unique CD209+CD14+CD68+ HLA-
DR+ CD83- proliferating APCs in the decidual of early human
pregnancy, suggesting that the human decidual macrophages
maintain themselves through self-renewal (152). On the other
hand, a gene knockout mice study indicates that the decidual
macrophages are replenished by peripheral monocytes expressing
circulating lymphocyte antigen 6 complex (Ly6C)hi via a
Chemokine (C-C Motif) Ligand 2 (CCL2) - CC chemokine
receptor-like 2 (CCR2) dependent pathway driven by CSF-1 (153).

Effect of pEXO on Circulating Monocytes and
Decidual Macrophages
Early pregnancy is in a pro-inflammatory state. Monocytes in the
maternal blood are progressively activated in pregnant women
compared to non-pregnant women (144). Placenta-derived EVs
can transform the phagocytic classical monocytes (CD14++CD16-)
to the intermediate monocytes (CD14+CD16+) (143) with
enhanced migratory capacity and secretion of pro-inflammatory
factors such as IL-1b, IL-6, serpinE1, granulocyte-macrophage
colony-stimulating factor (GM-CSF), M-CSF and TNF-a
(Supplementary Table 1) (154, 155). On the other hand, the
number of CD14+HLA-DRlow monocytes is elevated in the
maternal blood of the first trimester of pregnancy, and displays
an immunosuppressive phenotype when compared with non-
pregnant controls (99). Downregulation of HLA-DR endows
monocytes with a tolerogenic ability (156). Similarly, tumor-
derived exosomes contribute to a systemic immune tolerance via
modulating the monocyte phenotype. Exosomes from chronic
lymphocytic leukemia induce a high expression of PD-L1 in
monocytes in a Toll-like receptors 7 (TLR7)-dependent manner
(157). Head and neck squamous cell carcinoma-derived exosomes
promote monocytes differentiation into an M2 macrophage-like
phenotype via activation of miR-21 (158).

Studies of pEXO on decidual macrophage are sparse. On the
other hand, Nguyen et al. demonstrated that pEXO from pregnant
mice are specifically targeted to the lungs and liver, and are taken
up by lung interstitial macrophages (97). However, the
physiological implications of this observation are unclear.
Interestingly, tumor-derived exosomes play a critical role in
modulating the differentiation of tumor-associated macrophages
(TAMs) via exosomal miRNAs, proteins and metabolites (26,
159–161). Similarly, exosomes from the trophoblastic cell line
(Swan 71) induce monocyte recruitment and differentiation
(Supplementary table 1) (155). Another study found that
exosome-carrying fibronectin stimulates the production of IL-1b
frommacrophages (Supplementary table 1) (162). Of note, pEXO
contain molecules known to promote the induction of decidual
macrophages. For example, programmed death-ligand 1 (PD-L1),
a factor mainly released by trophoblast in early pregnancy, is
identified in trophoblast-derived exosomes, and trophoblast-
derived soluble PD-L1 promotes decidual macrophages
Frontiers in Immunology | www.frontiersin.org 7
polarization (163–165). Taken together, pEXO favor pregnancy
maintenance by inducing monocyte activation, differentiation and
decidual macrophage polarization.

T Cells
Decidual and Peripheral Blood T Cells
T cells are the main cell types responsible for immune
surveillance, pathogen recognition and elimination. CD3+ T
cells constitute ~10% of the decidual lymphocytes in the first
trimester. Among them, the CD4+ and the CD8+ T cells are the
two largest groups of T cells accounting for 30-45% and 45-75%
of the population respectively (3, 70). During pregnancy, these T
cells are immunologically tolerant to the fetus and remain in a
constrained cytotoxic phenotype (166). Compared to the
circulating CD8+ cells, the decidual CD8+ T cells are unable to
differentiate into the CD8+ effector cells as validated by low
production of perforin and granzyme B. Moreover, the decidual
CD8+ T cells show exhausted T cell phenotype with high
expression of PD-1, lymphocyte-activation gene 3 (LAG3),
cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and T
cell immunoglobulin and mucin domain 3 (Tim3) (167). Recent
studies further reveal that the CD8+ cells are expandable in the
decidua with upregulated expression of cell activation markers
such as CD25, CD38, CD69 and HLA-DR, as well as enhanced
expression of IFN-g and IL-17A. These partially activated
decidual CD8+ T cells may be associated with trophoblast
invasion and spiral artery remodeling after endothelial
monolayer destabilization (126, 168).

Other than the CD8+ T cells, CD4+ T helper cells (Th) are critical
in modulating the immune tolerance to fetal antigens as well. The
Th1/Th2 paradigm has been demonstrated to be essential for a
successful pregnancy. Furthermore, recent reports have shown that
a Th17/Treg balance is well maintained during pregnancy. The
number of regulatory Treg cells in both the human decidua and
circulation is increased during pregnancy (169–171). Decreased
level of CD25+Foxp3+ Treg is associated with spontaneous abortion
(172), preeclampsia (173), and spontaneous preterm birth (174).
Furthermore, acute Treg depletion after conception causes embryo
resorption along with maternal systemic inflammation and poor
endothelial function (92).

Th17 cells are a subset of CD4+ T cells presenting a pro-
inflammatory phenotype. Although accounting for only ~2% of
CD4+ T cells, elevated frequency of Th17 cells is related to
spontaneous abortion and chorioamnionitis (85, 175–177).
Interestingly, the study of Wu et al., showed that Th17 cell
numbers in both peripheral blood and decidua are elevated in the
first trimester of pregnancy and IL17 could promote trophoblast
migration and invasion (82). An inverse relationship of Treg cells
and Th17 cells are observed in a wide range of pregnancy
complications (81, 85). Thus, the new Th1/Th2/Th17/Treg
paradigm indicates that T cell homeostasis is an indispensable
factor in pregnancy.

Effect of pEXO on T Cells
The roles of pEXO in T cell response have been widely documented.
Recent progress suggests that the pEXOmediate immunosuppression
via transfer of exosomal proteins to the T cells, leading to T cell
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apoptosis, inhibition of T cell proliferation, induction of Treg
differentiation and reduction of T cell cytotoxicity.

T Cell Apoptosis
It has long been known that T cell apoptosis in human decidua is
a characteristic of early pregnancy. Fas ligand/receptor triggered
apoptosis is instrumental in the establishment of immune
privilege of the fetus and safeguards its development. pEXO
with surface Fas ligand and TNF-related apoptosis-inducing
ligand (TRAIL) can induce apoptosis in the Jurkat T cells and
activate peripheral blood mononuclear cells (PBMCs) in a dose-
dependent manner in vitro (42). Moreover, pEXO from maternal
blood inhibit T cell activation by down-regulation of CD3 z and
JAK3, with a more notable effect on CD8+ T cells than on CD4+

T cells (Supplementary Table 1) (178).

Treg Differentiation
The role of exosomes in the differentiation of Treg cells has been
implicated in tumor immunology (179–181). Tumor-derived
exosomes inhibit T cell proliferation, cytotoxic activities and
macrophage polarization (179, 182, 183). Exosomes isolated from
the normal placenta via perfusion also inhibit lymphocyte
proliferation and induce Treg/memory T cells differentiation
(Supplementary Table 1) (184–186). Placental mesenchymal
stromal cells (PMSC)-derived exosomes alleviate tubulointerstitial
fibrosis by increasing infiltration of the Foxp3+/IL17+ cells in kidneys
of the unilateral ureteral obstruction animal model, indicating the
involvement of PMSC-exosomes in Treg differentiation (187).
Together, these findings indicate that the pEXO are one of the
modulators in Treg differentiation during pregnancy.

Cytotoxicity Activity of T Cell
NKG2D ligands such asMHC class I chain-related (MIC) and UL-
16 binding protein (ULBP) are expressed on pEXO. Interestingly,
the levels of the soluble forms of the MIC protein A and B are
negatively correlated with the survival time of cancer patients. The
soluble MIC supports tumor escape via binding to NKG2D and
downregulating its expression on cytotoxic T cells and NK cells.
Similarly, pEXO carrying MIC and ULBP down-regulates the
expression of NKG2D receptor on CD8+ T cells and cytotoxic
activities of the CD8+ and gamma delta T (gς T) cells
(Supplementary Table 1) (134). The expression of syncytin-2, an
endogenous retroviral protein exclusively expressed on the human
placenta, on the pEXO is down-regulated in preeclampsia patients.
Lokossou et al. reported that the pEXO bearing syncytin-2 are
immunosuppressive via reducing Th1 cytokine production in
activated PBMCs (Supplementary Table 1) (188). Together,
these findings indicate that exosomes contribute to immune
tolerance through the presentation of MHC molecules or other
surface ligands.
EXOSOMES IN PREGNANCY
COMPLICATIONS

Pregnancy-associated complications such as preeclampsia,
gestational diabetes mellitus and preterm birth, are the major
threats to human reproductive health. Despite advances in
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technology and understanding of pregnancy, the rates of
pregnancy-related morbidity and mortality increased slightly
over the last two decades (189). The current preventive and
prognostic approaches for these complications are limited. Thus,
a comprehensive understanding of pregnancy-related
complications is much needed for better diagnosis
and treatment.

Peripheral blood represents the most widely used biological
sample for clinical diagnosis. Circulating fetal DNA in maternal
plasma and serum has been used for non-invasive prenatal
diagnosis (190). Alterations in pEXO have been demonstrated
in pregnancy complications. Thus, pEXO might be a promising
alternative for screening the following disorders in pregnancy.

Preeclampsia
Preeclampsia, characterized by new onset of hypertension and
proteinuria, is one of the most severe complications in pregnancy
affecting 5% of pregnant women globally (45). Nonetheless, the
most effective treatment for preeclampsia is delivery. For
decades, its pathogenesis has largely been attributed to 1)
compromised trophoblast invasion (191); 2) dysregulated
maternal immune tolerance (192) and 3) endothelial
dysfunction (193). However, preeclampsia patients often have
more than one defect. It is not clear, to what extent, how each of
these causes contributed to preeclampsia as a whole. Considering
the growing body of evidence that pEXO are key in modulating
maternal homeostasis, we hereby summarize these studies to
provide new insight on preeclampsia treatment.

pEXO levels in maternal blood of preeclamptic patients are
remarkably increased compared to those of normal pregnancy.
Moreover, omics data found that the molecular signatures of
pEXO are largely different between preeclampsia and normal
pregnancy. For example, proteomic analysis of exosomes isolated
from maternal plasma by cholera toxin B chain and annexin V
binding show that exosomes from preeclamptic patients have a
higher expression of serpin peptidase inhibitor (PAI)-1,
porphyria cutanea tarda (PCT), S100 calcium-binding protein
B (S100b), TGF-b, VEGFR1, natriuretic peptide B (BNP),
placental growth factor (PGF) (194, 195). Non-coding RNA-
seq of plasma exosomes reveals that miR-486-1-5p and miR-486-
2-5p are significant enriched in the preeclampsia group and
could be used as potential diagnosis biomarkers (196). More
importantly, exosomes from preeclamptic patients elicit
preeclamptic symptoms (hypertension and proteinuria) in
mice when injected via tail veins (197), indicating their
indispensable role in preeclampsia occurrence.

Trophoblast invasion and migration are critical in spiral
artery remodeling and placentation. In preeclamptic patients,
miR-210 is highly enriched in the plasma exosomes compared
with that in normal pregnancy, and this in turn contributes to
preeclampsia by inhibition of trophoblast invasion through
downregulating the potassium channel modulatory factor 1
(198). In addition to the comprised trophoblast function, the
miRNA profile is disrupted in preeclampsia exosomes as well.
For instance, high levels of miR-517-5p, miR-518b and miR-
520h are associated with late-onset preeclampsia (199).
Controversially, another study observed that down-regulation
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of miR-517-5p, miR-520a-5p and miR-525-5p in patients are
related to late-onset of preeclampsia (200). The discrepancy
might be due to differences in sample preparation, donor
ethnicity and gestational age. Given that pEXO only accounts
for a small proportion (15-20%) of the total circulating exosomes
and remarkable differences in miRNA profiles between pEXO
and total plasma exosomes, the data should be interpreted
with caution.

Endothelial function is fundamental in modulating blood
pressure. Nitric oxide (NO) mediates vasorelaxation via an
endothelium-dependent pathway. While the diminished
activity of endothelial nitric oxide synthase (eNOS), a key
enzyme for NO production, is observed in endothelial cells
after treatment with preeclamptic pEXO (201). Moreover,
preeclamptic patients have a higher level of miR-155 in plasma
compared to healthy control and further study showed that it can
inhibit eNOS expression in human umbilical vein endothelial
cells (HUVEC) (55). An in vitro study showed that the macro-
EVs from normal pregnancy but not preeclampsia could protect
endothelial cells from activation (138). Moreover, an animal
study found that human pEXO could relax mesenteric arteries
after injection into pregnant mice (202). Another study showed
that trophoblast-derived exosomes could promote vascular
smooth muscle cell migration (203).

Disrupted maternal immune tolerance is another hallmark of
preeclampsia. Syncytin-1/2, which can inhibit T cell activation and
proliferation, is reduced in exosomes from preeclamptic patients
(204). PD-L1, involved in decidual macrophage polarization and
Treg cell differentiation, was found to be remarkably reduced in the
placenta and pEXO of preeclamptic patients. Although the
proteomic data on pEXO is rare, tissue proteomic results could be
an alternative for the exosome study. For example, the expression of
neprilysin (NEP), a membrane-bound metalloprotease associated
with hypertension, is increased in the preeclamptic placenta at
delivery. Interestingly, Manjot et al. recently demonstrated that
exosomes from preeclamptic placenta have a higher expression of
active NEP when compared to that of in normal placenta (60).

Gestational Diabetes Mellitus
Gestational diabetes mellitus (GDM) is one of the most common
metabolic disorders during pregnancy. It affects ~13.2% of the
pregnant mothers in developed countries (205). Without
treatment, it may lead to preterm birth, fetal death and other
pregnancy complications due to poor placentation induced by
hyperglycemia. Although GDM is usually preventable and
manageable, infants of mothers with GDM are at increased
risk for heart disease, obesity or type 2 diabetes (205–207).

GDM patients have a relatively higher level of total exosomes
and pEXO level in maternal plasma (46). Moreover, an in vitro
study showed that exosomes from GDM patients induced
endothelial activation, indicating the importance of pEXO in
modulating maternal vascular homeostasis. miRNA compositions
in urine-derived exosome and explant culture are different.
Exosomes isolated from the urine of GDM patients in the 3rd
trimester of gestation have a low level of miR-516-5p, miR-517-3p,
miR-518-5p, miR-222-3p and miR-16-5p (208). Those from
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placental explant culture express another group of miRNAs (miR-
125a-3p, miR-99b-5p, miR-197-3p, miR-22-3p and miR-224-5p)
(209). Dipeptidyl peptidase IV (DDPIV) modulates glucose
hemostasis by cleavage of glucagon-like peptide 1 (GLP-1) and
DDPIV inhibitors are used for type 2 diabetes treatment. Manu
Vatish et al. found that exosomes isolated from GDM placenta
through perfusion had an upregulation of DDPIV by 8-fold (210).
Moreover, exosomes from GDM pregnancy remarkably reduce
migration and glucose uptake of skeletal muscle cells (209).
Similarly, plasma exosomes from GDM patients also induce
glucose intolerance, reduce glucose-induced insulin secretion and
cause poor insulin responsiveness in mouse model (211).

GDM may arise from metabolic dysregulation of adipose
tissue, which is critical in the modulation of insulin sensitivity
(212). In general, normal pregnancy is accompanied by increased
total adipose mass. Maternal body mass index (BMI) has a strong
association with the risk of GDM, indicating excessive adipocytes
are a potential stressor for placentation (213). Adiponectin and
leptin, mainly produced by the placenta during pregnancy, have
a wide range of functions in adipose tissue such as
vascularization, adipocyte enlargement and expansion (207).
Exosomes from adipose tissue of GDM patients altered
placental glucose metabolism by increasing gene expression of
the glycolysis and gluconeogenesis pathways (214). Thus, pEXO
may participate in maternal metabolism via modulating the
activity of adipose tissue.

Preterm Birth
Preterm birth, also known as premature birth, generally refers to
birth at less than 37 weeks of gestational age (215). Nowadays,
preterm birth is the leading cause of perinatal morbidity and
mortality and has a long-term effect on the health of the fetus
(216). For instance, premature infants are vulnerable to heart
defects, cognitive disabilities, and respiratory illnesses (217).
Nonetheless, the cause of preterm birth is still unclear.

Studies on pEXO of preterm birth are rare. Unlike preeclampsia
and GDM, the level of pEXO in preterm birth is significantly
decreased compared to full-term pregnancy (218). Placenta
senescence and fetal membrane inflammation are generally
believed to be the causes of preterm birth. Proteomic study of
exosomes from preterm plasma indicates that alterations in protein
composition are associated with inflammatory and metabolic
signals (219). A similar result was found in amniotic fluid-derived
exosomes of preterm patients (220). In animals, Plasma exosomes of
CD-1 mice from late-gestation (E18), not early-gestation (E9),
induce preterm labor in mice, indicating that exosomes might
function as one trigger in labor initiation (221). Moreover, the
exosomal miRNA profile of maternal plasma is different between
mothers delivering at term and preterm (222, 223). A
comprehensive analysis of the exosomal miRNAs reveals that the
miRNAs target genes are associated with TGF-b signaling, p53, and
glucocorticoid receptor signaling (222). Despite the inconsistency
and irreproducibility of miRNA sequencing results, exosomal
miRNAs are still suggested as an alternative approach for the
diagnosis of preterm birth. Together, these studies indicate that
pEXO participate in the processes of labor and delivery.
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DISCUSSION

Studies of exosome had been tremendously increased in the last
two decades and exosomes are gradually demonstrated to be a
perfect tool for drug delivery. However, our understanding of
exosome biogenesis and the underlying forces that navigate them
to their destination is still lacking.

Currently, most studies on pEXO are conducted in vitro due
to ethical constraints in regard to manipulation of the maternal-
feto-placental unit and lack of proper animal models. pEXO
isolated from placenta tissue at mid (Abortion)- or term
(Delivery)-gestation, may not represent it’s in vivo functions at
early pregnancy. Therefore, the content and biological activities
of pEXO at different gestation periods should be investigated.
Furthermore, the alternation of pEXO signatures observed from
late gestational samples in clinical studies would possibly be the
consequence rather than the cause of the pregnancy
complications. A large prospective study of the first trimester
pEXO isolated from plasma/placenta tissue from pregnant
women who develop pregnancy complications at late gestation
should be carried out. Apart from that, in vitro manipulations
(Such as perfusion and explant culture) during exosome isolation
may disrupt the molecular signature of pEXO. Thus, pEXO
isolated by different isolation methods should be compared in
order to establish a standard isolation technique and to set a
standard parameter for diagnostic purposes.

In summary, pregnancy is a complex physiological process
with a wide range of systemic adaptations in the mother’s body.
The placenta, the frontline of the maternal-fetal interface, makes
these happened in a coordinated way. Exosome, as a signal
Frontiers in Immunology | www.frontiersin.org 10
carrier, links the mother and the fetus and is a key player in
immune cell activation, differentiation, maturation and
endovascular homeostasis (Figure 3). Thus, advances in pEXO
research will deepen our understanding of pregnancy and may
provide new insight on the prevention and treatment of
pregnancy-related complications.
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FIGURE 3 | pEXO contribute to maternal tolerance toward the fetus during pregnancy. Exosomes from placenta, syncytiotrophoblast (STB) in particular, support
pregnancy via induction of Treg differentiation, restraint of cytotoxic activities of T cells and NK cells, promotion of decidual macrophage polarization, and endowing
endothelial cells with viral resistance. Disruption of maternal immune tolerance is associated with adverse pregnancy complications such as miscarriage,
preeclampsia. The specific cargoes within the pEXO represent the potential target for prenatal diagnosis and pregnancy-related disease screening.
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