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Acute pancreatitis (AP) is a leading cause of death and is commonly accompanied by
systemic manifestations that are generally associated with a poor prognosis. Many
cytokines contribute to pancreatic tissue damage and cause systemic injury.
Interleukin-17 (IL-17) is a cytokine that may play a vital role in AP. Specifically, IL-17 has
important effects on the immune response and causes interactions between different
inflammatory mediators in the AP-related microenvironment. In this literature review, we
will discuss the existing academic understanding of IL-17 and the impacts of IL-17 in
different cells (especially in acinar cells and immune system cells) in AP pathogenesis. The
clinical significance and potential mechanisms of IL-17 on AP deterioration are
emphasized. The evidence suggests that inhibiting the IL-17 cytokine family could
alleviate the pathogenic process of AP, and we highlight therapeutic strategies that
directly or indirectly target IL-17 cytokines in acute pancreatitis.
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BACKGROUND

Acute pancreatitis (AP) is an inflammatory disorder of the pancreas related to tissue damage and
includes a cascade of adverse cellular events (1, 2). Starting from the initial premature activation of
enzymes with the involvement of the immune system in a potential systemic inflammatory reaction and
organ failure, acute pancreatitis has a high lethality and poor prognosis. Currently, there is no effective
therapeutic agent that reduces the risks and consequences of AP, which has a mortality rate of up to 30%
(3, 4). Over the past decade, immune system activation has been identified as a key trigger and regulator
of inflammatory injury in the pancreas, affecting the extent of pancreatic necrosis, organ failure and
disease deterioration (5, 6). AP leads to overactivation of leukocytes and increased neutrophil metastasis
to inflammation, with a consequent release of proinflammatory factors, including several forms of
leukocyte interleukins, procalcitonin, transforming growth factor, and tumor necrosis factor (7, 8).
The elevated expression of cytokines seems to provide objective evidence in the progression of AP and is
paralleled by a pronounced immune response that amplifies disease severity.

Interleukin-17 (IL-17) is an important proinflammatory cytokine produced by T helper 17 (Th17)
cells, gd T cells and natural killer (NK) cells (9). The primary function of IL-17 is to mediate responses
to pathogens and symbioses through various targets, all of which balance the inflammatory response
with the immune system (10). In addition to its potential role in regulating the immune response to
balance cytotoxic and tolerant immune profiles, it also results in acute injury. As a proinflammatory
cytokine, IL-17 essentially incorporates a complicated network of cytokines that is responsible for
various inflammatory conditions and pathogenesis (11–14). The inflammatory response and cytokine
org September 2021 | Volume 12 | Article 6748031
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production are particularly crucial in the progression of AP. To
date, few studies have systematically described the role of the IL-17
family in AP. This review outlines the biological properties of IL-
17 and its impacts on the pathogenesis of AP. Our review proposes
to broaden the treatment of AP by targeting IL-17.

IL-17 FAMILY AND RECEPTORS

Commonly, the IL-17 family has six members, in alphabetical order,
biologically labeled IL-17A through IL-17F (Figure 1). Among
them, IL-17A is a proinflammatory cytokine participating in the
primary responses to fungi and bacterial infections, followed by its
close homolog IL-17F (15, 16). Novel research demonstrated that
intestinal epithelial cell-derived IL-17D, as the least studiedmember,
serves as a critical factor in regulating group 3 innate lymphoid cell
(ILC3) functions and intestinal homeostasis by binding the receptor
CD93 (17). These results further expand the biological role of the
IL-17 family. IL-17 is a characteristic cytokine of T helper 17 (Th17)
cells, and it can also be produced by other innate and adaptive
immune cells, including CD8+ T cells, gd T cells, innate lymphoid
cells and dendritic cells (18–20). To signal, the biological impacts of
IL-17 occur through interactions with its receptor, which is broadly
distributed in different tissues and cells of the immune system (21).
IL-17RA to IL-17RE are five subtypes of the IL-17 receptor family
(IL-17R) (22). Due to the wide expression of IL-17RA and IL-17RC
multichain receptors in most cell types, IL-17 has crucial impacts at
the local and systemic levels. The activation of IL-17RA and/or IL-
17RC signaling upregulates many inflammatory genes, including
proinflammatory cytokines and neutrophil-specific chemokines.
Frontiers in Immunology | www.frontiersin.org 2
Many studies suggest that upregulation of IL-17 contributes to
various acute injury microenvironments (23–26). In pulmonary
inflammation, overexpression of IL-17 or induction of exogenous
IL-17 through the airway induces severe tissue injury in the lung.
However, knockout models lacking critical elements of IL-17
signaling are protected from such damage (27). In acute kidney
injury, IL-17 triggers neutrophil recruitment to decrease Th17
activation, verifying the role of IL-17 in Th17 cell activation in
inflamed tissue (28). Numerous studies have shown that IL-17 is
present at sites of the inflammatory microenvironment and in
synergistic interactions, amplifying the inflammation induced by
other cytokines, including IL-1, IL-6, IL-8, and TNF-a (14, 29, 30).
Thus, current studies have provided a deep understanding of IL-17
and novel strategies for acute injury conditions.

THE ROLE OF IL-17 IN AP

Novel insights into AP pathophysiology have demonstrated the
importance of the immune response on the inflammatory
progression of AP (31). Previous studies have shown that the
innate immune system is critical in mediating the progression of
AP (32, 33). In AP, several types of granulocytes, such as
neutrophils, mast cells, macrophages, dendritic cells and
platelets, all are the basis for the pathogenesis and development
of AP (34, 35). In addition to innate immune cells, T cells are also
present in the site of inflamed pancreatic tissue. Immune paralysis
occurs, as a result of T cell apoptosis, triggering a breakdown of
defense mechanisms during systemic inflammation (36). During
AP, cellular damage caused by pancreatic self-digestion can induce
FIGURE 1 | IL-17 family, IL-17 receptors and signal transduction. The IL-17 family is composed of six homologous dimeric proteins (IL-17A to F), while the receptor
family consists of five members, IL-17RA to E. IL-17A and IL-17F bind either as individual homodimers or as a heterodimer to a dimeric IL17RA–IL17RC complex.
Act1 has been shown to be the key signal-transducing molecule downstream of IL17RA and C, recruiting TRAF6 to further trigger downstream signaling pathways.
Act1 has also been identified in IL-17C- and IL-17E-mediated signaling. Specifically, IL-17RA/RD acts only as a receptor for IL-17A/A. IL-17C associates with
IL17RA/E, whereas IL-17E binds to IL-17RA/B.
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the aggregation of CD4+ T helper cells producing IL-17 and
stimulate an inflammatory response, which is characteristic of
this disease. Thus, recruitment of various immune cells will result
in further damage to acinar cells as well as multiple
proinflammatory cytokines releasing (37).

IL-17 as a Novel Biomarker of AP
Studies have found that IL-17A upregulates the transcription of
proinflammatory and neutrophil-mobilizing cytokines or
chemokines in acute inflammatory diseases (38–40). To date,
some researchers have confirmed the correlation between IL-17
and AP and suggest that IL-17 is a predictive marker of AP and
correlates with the severity of organ failure (Table 1) (41, 42). The
serum level of IL-17 correlates with the severity of AP and is a
valuable prognostic factor in assessing disease progression in AP
patients (P < 0.01) (43). Compared with healthy controls, AP
patients had a significant increase in IL-17 during the first 24
hours, with a positive predictive value of 85.3% (44). In a previous
study, researchers reported that higher serum IL-17 is an
independent risk factor for adverse outcomes in severe acute
pancreatitis (SAP) and is related to excessive bacterial load.
Furthermore, IL-17 could be applied as a prognostic factor for
length of stay, organ dysfunction, and mortality in SAP patients
with continuous blood purification therapy (45). A combination of
different proinflammatory factors can provide more comprehensive
information to diagnose and treat AP. The serum levels of IL-17 in
the progression of AP were correlated with CRP and IL-23 levels.
Consistent with current clinical evidence, animal models also
confirmed that AP induces the expression of various
proinflammatory cytokines, including IL-17, which reach a high
level during the first week of AP (46). Although IL-17A is associated
with the initiation of systemic inflammatory response syndrome in
AP, IL-17A may not be the cause of sepsis in the second stage
(pancreatic infection and necrosis) (47). Considering its high
prognostic value and rapid availability, IL-17 is considered a
promising reference marker among single indicators and
enhances the predictive validity of AP.

IL-17A Induces Pancreatic Acinar
Cell Damage
Clinically, inflammation, edema, necrosis of pancreatic tissue and
extrapancreatic organs are the main pathobiological courses of AP.
Apoptotic death represents the capacity of acinar cells to
Frontiers in Immunology | www.frontiersin.org 3
recombine their genetic program after the initial phase of mild
AP, and necrosis is the main process of SAP cell death (48, 49).
Indeed, acinar cells synthesize and release cytokines and
chemokines that recruit immune cells, such as neutrophils and
macrophages (50). Subsequently, an uncontrollable inflammatory
event within acinar cells develops into systemic inflammatory
response syndrome (SIRS), which eventually contributes to the
high incidence rate and poor prognosis.

Pancreatic resident cells, pancreatic acinar cells and pancreatic
stellate cells (PSCs) can produce inflammatory mediators (51). In
AP, damaged acinar cells and recruited inflammatory monocytes/
macrophages release IL-1b and IL-6 to recruit naïve CD4+ T cells
into pancreatic tissue, which differentiate into Th17 cells to
produce IL-17 acting on IL-17 receptor-positive cells to release
various inflammatory mediators exacerbating AP. The IL-17A
receptor is a heterodimer complex consisting of IL-17RA and IL-
17RC and is broadly expressed in acinar cells, stellate cells,
monocytes/macrophages, neutrophils and other immune cells.
Mechanistically, IL-17A interacts with acinar cells, infiltrating
immune cells, and other cytokines to aggravate the progression
of AP and related complications. Acinar cells express DC-SIGN, a
phenotype of dendritic cell, promoting the differentiation of naïve
CD4+ T cells into CD4+/IFN-g+ Th1 and CD4+/IL-17A+ Th17
cells in pancreatic tissues during AP (52).

In addition, neutrophils and macrophages directly induce
intra-acinar cellular protease activation and acinar necrosis to
determine the severity of AP (53). The inflammatory and immune
activation of AP is thought to be characterized by neutrophil
infiltration and the production of various proinflammatory
cytokines (54). IL-17A strengthens neutrophil recruitment to the
area of sepsis, thus ameliorating bacterial clearance (55).
Neutrophil consumption assays characterized neutrophils as
crucial promoters of acinar cell necrosis and inhibitors of acinar
cell apoptosis during AP (56). Thus, IL-17A may amplify the
inflammatory cascade during AP by recruiting neutrophils and
macrophages to the damaged area, contributing to the severity of
AP. Neutrophil extracellular traps (NETs), the second bactericidal
mechanism of neutrophils, promotes pancreatic tissue injury and
plays key role in the pathophysiological mechanisms of AP (57).
IL-17 could enhance reactive oxygen species concentrations and
NETs production in neutrophils during AP (58). Leppkes et al.
also found that IL-17 recruits neutrophils in a PADI4-dependent
manner to induce AP (59). Inhibition of PADIs prevents NETs
TABLE 1 | IL-17 as a novel biomarker of AP with current clinical results.

Research Year Patients Severity of AP Serum IL-17 P value Therapy

Jia et al 2014 85 MAP+SAP 170 pg/ml <0.05
Chen et al 2019 68 PEP 9.04 ± 2.75 pg/ml <0.05
Sotirios et al 2014 150 MAP+SAP PPV (85.3%) <0.001
Gao et al 2018 92 SAP 12.86 ± 2.28 ng/L <0.001 CRRT
Dai et al 2015 36 SAP 186.4 ± 110.7 pg/ml <0.05 CVVH
Guo et al 2019 42 SAP 36.6 ± 16.0 pg/ml <0.05 HVHF
Zhang et al 2018 65 MAP+SAP 28 ng/L <0.01
Xie et al 2018 35 AP 91.63 ± 3.33 pg/ml < 0.01
September 202
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SAP,Severe acute pancreatitis; MAP, Mild acute pancreatitis; PEP, Post−endoscopic retrograde cholangiopancreatography pancreatitis; HVHF, High-volume hemofiltration; CVVH,
Continuous veno-venous hemofiltration; CRRT, Continuous renal replacement therapy; PPV, Positive predictive value.
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formation (60). Both animal and clinical studies have shown that
IL-17A is elevated during the primary phase of AP and induces
pancreatic injury with acinar cell necrosis (61). Notably, IL-17A
analogs also damage acinar cells directly and stimulate these cells to
secrete inflammatory cytokines and chemokines, thereby amplifying
the cascade of AP. The accumulation of inflammatory mediators is
responsible for pancreatic acinar cell necrosis and multiple organ
dysfunction (62).

IL-17 Acts in Synergy With Other
Proinflammatory Mediators
IL-17A has the ability to act in synergy with other potent
proinflammatory mediators to promote the inflammatory
response (63). The impacts of IL-17 originate from its capacity to
enroll immune cells by producing chemokines and to induce the
expression of receptors, particularly the TNF receptor (64), and its
synergistic effects with other cytokines. Different proinflammatory
factors have their own characteristics in AP. The combination of
different proinflammatory factors can provide more comprehensive
information for the diagnosis and treatment of AP. IL-17 mainly
interacts with nonleukocytic cells, including epithelial cells,
endothelial cells and macrophages (65). IL-17 activates the
production of other proinflammatory cytokines, such as IL-1,
TNF-a, IL-6 and granulocyte-macrophage colony stimulating
factor, collectively resulting in an influx of neutrophils (18).

Inmice with acute pancreatitis, dendritic cells (DCs) are essential
for pancreatic viability and might protect organs against cell stress
(66). A recent study reported that Th17 cells from patients with
inflammation potently induce the differentiation and activation of
DCs that preferentially promote the IL-17 response in a positive
feedback loop (67). As an initiator, IL-17 is also involved in T cell-
mediated inflammation. In the primary phase of infection or
inflammation, IL-17 accelerates proinflammatory cytokine and
chemokine release, amplifying inflammatory reactions (68). IL-17
synergizes with other mediators to activate tissue-infiltrating
neutrophils and helps eliminate invading pathogenic bacteria. NF-
kB, a central molecule, links initial acinar injury to systemic
inflammation and perpetuates inflammation in AP (69). IL-17
directly stimulates inflammatory responses or indirectly induces
the production of IL-6 by stabilizing IL-6 mRNA through activation
of the NF-kB and ERK1/2 MAP kinase pathways (70–72). As a
target of IL-17A, IL-6 is necessary for the RORgt-dependent
differentiation of Th17 cells (73), suggesting that IL-17A induces
positive feedback. In addition, IL-17A triggers the production and
release of various cytokines during AP (74), and these cytokines in
turn enhance the synergistic secretion of IL-6 and IL-17A in
fibroblasts. Yang demonstrated that IL-17 is increased in the early
phase of SAP, confirming that the adaptor protein Card9
coordinates IL-17 to balance immune reactions in SAP
pathogenesis (75). By activating the IL-23/IL-17/neutrophil axis,
IL-17A exacerbates virus-induced AP (76). Thus, the combination
of biomarkers will help clinicians develop and adjust the clinical
treatment of AP.

IL-17A Induced Chemokines
Chemokines, a subtype of chemotactic cytokines, are necessary
in the recruitment and expression of inflammatory responses
Frontiers in Immunology | www.frontiersin.org 4
(77). Another major target gene of IL-17A is chemokines,
particularly C-X-C chemokines, including CXCL1, CXCL2,
CXCL4, CXCL5, CXCL8, and others (78). According to a
recent study, the mRNA levels of CXCL1, CXCL2, and CXCL5
in acinar cells and CXCL1 in PSCs were increased after
stimulation with rIL-17A in vitro. Platelet secretion of CXCL4
is a powerful stimulator of pancreatic neutrophil infiltration and
tissue damage, and is mainly formed by CXCL2 (79). These
chemokines induced by IL-17A are also involved in the
proliferation, maturation, and chemotaxis of neutrophils.
These results suggest that IL-17 participates in pancreatic
injury by regulating the expression of inflammatory cytokines
and chemokines during AP (80).
INTERACTION BETWEEN GUT
MICROBIOTA AND IMMUNE CELLS IN AP

Innate myeloid cells are crucial in the activation and differentiation
of innate and adaptive immune cells in the intestinal mucosa (81,
82). The inflammatory reaction driven by Th17 cells protects the
host from harmful microorganisms, while their overactivation is
related to the pathogenesis of intestinal inflammation. A recent
study reported that ketogenic diet-related microbiota reduce the
levels of intestinal proinflammatory IL-17 (83). Fecal microbiota
transplantation (FMT) reduced Th17 cells in mice colonized by
donors with Crohn’s disease (84). These studies suggest that the
gut microbiome appears to be capable of mediating host immune
responses to inflammatory diseases (85, 86). Previous studies
demonstrated that dysbiosis of intestinal microbiota was often
associated with intestinal barrier dysfunction and metabolic
disorders was observed during AP (87). Decreased beneficial
bacteria and increased potentially pathogenic bacteria, such as
E.coli and Enterococcus, may contribute to dysbiosis of intestinal
microbiota and bacterial translocation (88). To confront the
microenvironment dysbiosis, the intestine must develop a
complex immune protection network including a variety of
immune cells. In general, we classified the signals of intestinal
microbiota to IL-17 into the following four categories during AP:
intestinal barrier function, bacterial components, bacteria-derived
metabolites and microbiota-propelled Th17 Cells in AP. Thus, the
roles of IL-17 in acute pancreatitis are summarized in Figure 2.

IL-17 Induced Impaired Intestinal
Barrier Function
Impairment of intestinal barrier function is an adverse event in AP,
which leads to the translocation of gut microbes and endotoxin. The
excessive release of inflammatory cytokines during AP is a primary
reason for intestinal barrier injury (89). Under AP conditions, the
expression of ZO-1, claudin-1 and occludin is decreased, changing
the tight connections between cells and promoting the translocation
of gut microbes. Damage to the intestinal barrier is related to
intestinal microcirculation disturbance, excessive release of
inflammatory cytokines, intestinal epithelial cell damage and
intestinal microorganism disturbance. As a magnifying agent of the
inflammatory reaction, recent research has indicated that increased
September 2021 | Volume 12 | Article 674803
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IL-17 inAP is harmful tomaintaining intestinal barrier function and
epithelial cells. IL-17 functions at mucosal interfaces, such as the gut
epithelial lining, maintaining intact physical barrier and inducing
antimicrobial peptides to promote invasion by intestinal bacteria
(90). Furthermore, IL-17 results in edema of the intestinal wall, and
destruction of the mucosal epithelial barrier via expression of CCR6
in enterocytes andmobilization of Th17 cells in the intestines (91). A
recent study revealed that IL-17 induces tight junction expression
through the ERK-MAPK signaling pathway to alter intestinal
permeability (92). Additionally, the level of serum IL-17 is also
closely related to bacterial overload, illustrating that the
overproduction of IL-17 damages intestinal barrier function,
contributing to organ failure in AP.

IL-17 and Host Gut Microbiota in AP
IL-17A is a key mediator of mucosal monitoring and barrier
integrity by promoting the production of antimicrobial factors
necessary to contain pathogens (93). IL-17A is involved in
inducing an appropriate immune response against resident
bacteria in the gastrointestinal tract through a variety of
mechanisms, including promoting intestinal IgA responses and
the expression of epithelial cell-related innate immune receptors,
such as Toll-like receptors (TLRs) and antimicrobial peptides (94).
The accumulation of proinflammatory and anti-inflammatory
immune cells is regulated by the various commensal microbiota
populations within the gut. However, gut dysbiosis can lead to
disruptions in immune cell activity. Dysbiosis of the intestinal
Frontiers in Immunology | www.frontiersin.org 5
microbiota contributes to excessive release of inflammatory
cytokines, common in both the immune system and intestine in
the progression ofAP (95). Pathogenic bacteria, such as Escherichia
coli and Enterococcus, enriched in AP showed a positive
correlation, while beneficial bacteria, such as Bifidobacterium,
Lactobacillus and Bacteroides, showed a downward trend (96).
Intestinal Th17 cells can be induced by specificmicrobes, including
Escherichia coli and Bifidobacterium. Escherichia coli was
positively correlated with the proportion of RORgt+ and IL-17A+

Th17 cells in the colon, while the proportion of IL-17A+ Th17 cells
in the colon of mice lacking only Escherichia coli was significantly
reduced (97). Bifidobacterium and Lactobacillus inhibited the
expression of IL-6 and IL-17 while facilitating the protein
synthesis of major tight junction proteins (98). In addition to
strengthening the intestinal epithelial barrier, the microbiome
also modulates the immune system and transmits advantages to
the host (99). FMT and probiotics, which are both designed to
reverse microbial disorders and renew a broader structural status,
may provide promising insights into inflammatory and immune
response networks, facilitating the recovery of AP.

IL-17 and Host Gut Microbiota-Derived
Metabolites in AP
Metabolites from the microbiota are involved in maintaining
intestinal homeostasis or the pathogenesis of inflammation by
regulating IL-17 during AP. Short-chain fatty acid (SCFA)
attenuated AP, as evidenced by reduced serum amylase and
FIGURE 2 | Roles of IL-17 in acute pancreatitis. Etiology for AP include gallstones, alcohol and hypertriglyceridemia, which cause pathophysiological changes of AP.
IL-17A induce pancreatic acinar cell damage through synthesizing and releasing cytokines and chemokines which recruit immune cells, such as neutrophils and
macrophages. IL-17 also directly induce chemokines and activate innate immune cells, releasing pro-inflammatory mediators. Different inflammatory factors act in
synergy with each other to aggravate AP. Furthermore, the intestinal microbiota-derived signals to IL-17 include microbiota alteration, bacteria-derived metabolites
and impaired intestinal barrier function. Systemic injury develops early due to IL-17 involving inflammatory response and may precede necrosis, and late secondary
organ failure due to infected pancreatic necrosis (IPN) induce sepsis.
September 2021 | Volume 12 | Article 674803
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lipase levels and improved pancreatic morphology (100). The
regulation of T cells by SCFAs depends on the cytokine
environment and immunological microenvironment. In fact,
acetate boosts IL-10-producing T cells in a stable state and
affects Th1 and Th17 cells in active immune responses. Butyrate
depletion appears to play a central role in disease progression
towards necrotizing pancreatitis (101). The decrease in butyrate
production was associated with the phylum Proteobacteria and the
genera Escherichia/Shigella and Streptococcus increasing in
patients with AP. Butyrate prophylaxis could mediate the
differentiation of CD4+ T cells towards Treg cells, resulting in
production of the anti-inflammatory cytokine IL-10 (102). Bile
acid metabolites might also regulate the intestinal immune
landscape through the balance of Th17 cells and Treg cells (103,
104). Wan found that supplementation with bile acids could
relieve pancreatic and intestinal damage, which may be related
to the gut microbiome (105). Moreover, the administration of bile
acid to an animal model led to a decrease in Th17 cells and an
increase in Treg cells in the small intestine lamina propria (103).
Tissue-specific anti-inflammatory mechanisms during AP suggest
that modulation of gut microbiota-derived metabolite levels could
become a potential strategy to improve AP.

Microbiota-Propelled T Helper 17
Cells in AP
T helper 17 cells are a subset of T lymphocytes with many functions
in immune adaptation and have a double-edge sword in pathological
and physiological processes. The microbiota is a potent promoter of
proinflammatory Th17 cells expressing the lineage-specific
transcription factor RORgt (106). Increasing evidence indicates that
gut microbiota dysbiosis often occurs in the “second hit” induced by
AP gut-derived infection (87, 107, 108). Upon microbiota antigen
stimulation, Th17 cells produce several proinflammatory effector
molecules which mediate inflammatory cells infiltration and tissue
destruction, including proinflammatory cytokines (IL-17A, IL-17F
and IFN-g), chemokines, and matrix metalloproteases (109, 110).
Proinflammatory cytokines further stimulate innate immune cells
and epithelial cells to produce IL-1, IL-6, and G-CSF, inducing
neutrophil recruitment and impairing intestinal barrier function
(111, 112). The imbalance between Th17 cells and Tregs is
common and relevant to the severity and prognosis of AP. Recent
study confirmed that the proportion of Th17/Treg was significantly
higher in SAP patients and more pronounced in the multiple organ
failure group (P<0.05) (113). The homeostasis of the pancreatic
microenvironment and rapid response to invaders are tightly
regulated by the continuous adjustment between harmful Th17
cells and immunosuppressive Tregs, which establishes an ecological
niche for bacterial intestinal border-dwelling bacteria (114). Thus,
inhibiting pathogenic Th17 cells and balancing the differentiation of
T-cell toward Treg are critical for host defense (115–117).

In conclusion, gut microbiota and metabolic disorders in AP
often lead to the imbalance of Th17 and Treg, resulting in the
increase of IL-17A. Subsequently, IL-17A recruit neutrophils and act
in synergy with other proinflammatory mediators to promote the
inflammatory response, which destruct intestinal microcirculation
and mucosal intestinal barrier. Based on intestinal barrier damage,
Frontiers in Immunology | www.frontiersin.org 6
IL-17A further leads to a pathological bacterial and metabolic
translocation, and eventually promote a positive feedback loop to
aggravate pancreatic injury (118–120) (Figure 3).
THERAPEUTIC IMPLICATIONS OF AP

In AP, a cascade of responses starts with the discharge of
endogenous molecules as a result of tissue damage and leukocyte
activation. In addition to conservative supportive treatment, drug
therapy targeting immunomodulation has achieved promising
results. The accumulated discoveries from early clinical research
with anti-IL-17 agents yielded strong evidence for the role of IL-17
signaling within the pathophysiology of inflammatory diseases and
the potential utilization of these operators in AP therapy (121, 122)
Based on the above discussion, this approach represents a strategic
therapeutic concept to balance this cascade response.

Targeting the Th17 Pathway in AP
Moderate blockade of the inflammatory pathway and regulation of
the cascade response through different mechanisms may be an
effective approach in developing pharmacological drugs for AP.
Inhibition of Th17 cell differentiation could reduce IL-17 secretion
and delay the progression of AP. Currently, most drugs that block
Th17 differentiation are inhibitors targeting IL-23 and RORgt. IL-
23 inhibitors are specific antibodies against the p19 subunit of IL-
23, including tidrakizumab, guselkumab and AMG139 (123, 124).
These antibodies are in clinical trials in patients with autoimmune
diseases and have shown remarkable effectiveness for targeting
psoriasis. In addition to targeting downstream effectors of Th17
pathways, the primary transcriptional regulator RORgt could be a
promising therapeutic target. Several RORgt antagonists are used
in ongoing clinical trials, such as GSK805 and TAK-828F, which
both have shown prospective efficacy in preclinical models and
animal models of inflammatory diseases (125, 126). However,
several questions remain about RORgt antagonism, including
potential mechanisms of action, key target cells and effects on
the homeostatic balance within Th17 cells and Treg cells (127).
Furthermore, miR-155 is closely related to the differentiation of
CD4+ T cells to Th17 cells. Pretreatment of human CD4+ T cells
with a miR-155 inhibitor might reduce the transition from CD4+

T cells to Th17 cells, thereby reducing the secretion of IL-17 and
relevant pathological damage to the pancreas (128).

Targeting IL-17 and Its Receptor in AP
IL-17A released by Th17 and gd T cells stimulates acinar cells,
stellate cells, and various immune cells to augment the release of
inflammatory cytokines, recruiting more immune cells, and
ultimately causing inflammatory cascades in AP. The
suppression of IL-17A secretion or specific blockade of IL-17A
receptors may offer a potential therapy for AP. Currently, an
anti-IL-17A antibody reduces the impact of IL-17A on
pancreatic stellate cells and attenuates pancreatic fibrosis in
chronic pancreatitis (129). Several molecules inhibiting IL-17
signaling, including antibodies targeting IL-17A (secukinumab
and ixekizumab), have been prepared with the target of IL-17
September 2021 | Volume 12 | Article 674803
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activity normalization to improve anti-inflammatory reactions.
Of note, no obvious safety issue was found with either
secukinumab or ixekizumab. IL-17RA inhibitors, such as
brodalumab, also block the anti-inflammatory reactions
regulated by IL-25 (IL-17E) by inhibiting the proinflammatory
impacts mediated by IL-17A, IL-17F and IL-17A/F (130). The
combination of IL-17R and different subtypes of IL-17 may upset
the anti-inflammatory or proinflammatory balance mediated by
IL-17 and produce certain side effects while controlling disease
progression. It is possible that anti-IL-17 and IL-17R treatment
may be a prospective therapeutic target for AP treatment in the
near future.

Inhibition of IL-17 Synergistic Cytokines
IL-17 and other inflammatory factors, including IL-22, IFNg,
TNF-a, and GM-CSF as well as other synergistic actions,
constitute a positive feedback circuit and promote recruitment
of inflammatory mediators, aggravating the inflammatory
response. TNF-a has been defined as a crucial cytokine that
mediates the systemic inflammatory response. Pentoxifyllin, an
oral TNF-a antagonist, reduced ICU admissions and shortened
hospital stays (131). IL-17 and TNF-a cooperate to induce the
expression of receptor activator of membrane protein nuclear
factor-k-ligand, which is involved in tissue remodeling and
dendritic cell maturation (132). The combination of IL-17 and
TNF-a inhibitors has shown better efficacy in inflammatory
diseases. In SAP, ellipticine attenuated NF-kB and MAPK
activation in response to IL-17A and TNF-a treatment,
inhibited Act1- and TRAF6-mediated NF-kB activation, and
blocked the interaction of Act1 with TRAF6 (133). The IL-6/
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STAT3 signaling pathway is a vital regulator of Th17 and Treg
cells by promoting Th17 cells and inhibiting the differentiation of
Tregs. Recent studies have shown that three novel small molecule
IL-6 inhibitors, madindoline-5 (MDL-5), MDL-16 and MDL-
101, significantly suppress IL-17 production (134). Targeting the
IL-23–IL-17 axis has shown encouraging results for psoriasis and
Crohn’s disease. Pancreas-specific deletion of IkBa leads to
nuclear translocation of RelA and diminishes AP induction
and trypsin activity (135, 136). (IkB)-z, an inhibitor of NF-kB,
promotes IL-17 downstream gene expression by inhibiting miR-
23b, which acts as a central regulator of the IL-17 signaling
pathway. RelA was constitutively activated in mice with
pancreatic-specific IkB deficiency, and the gene expression
profiling was consistent with NF-kB activation. Targeted
knockout of the (IkB)-z target gene may effectively inhibit the
IL-17-mediated inflammatory response. Thus, the combination
of other cytokines will help inhibit the progression of AP.
Interdicting the AP Cascade Reaction
Through Gut Microbiota
As IL-17 exacerbates AP through different mechanisms,
pharmacological blockade of the gut microbiota may exert a
partial effect on treating AP. Recent studies found that
oxymatrine plays an anti-inflammatory role in AP intestinal
injury by suppressing Th1/Th17 secretion of cytokines (137).
Probiotics have protective functions against intestinal mucosal
damage diseases. Oral administration of Enterococcus durans, as
a probiotic, to an animal model of colitis confirmed that the GM-
related bacterium suppresses the expression of IL-17A and alleviate
FIGURE 3 | Impact of the gut microbiota on IL-17 and Th17 immune responses. The intestinal microbiota-derived signals to immune cells are classified into the following
three parts: bacterial components, bacteria-derived metabolites and intestinal barrier function. Beneficial bacteria suppressed the expression of proinflammatory cytokine
IL-6 and IL-17 and promoted the expression of major tight junction proteins. On the contrary, colonization of pathogenic commensal bacteria induces generation of Th17
and downregulates Tregs immune responses. Beneficial bacteria produce short-chain fatty acids, which participate in the generation of Tregs and IL-10 by suppressing
proinflammatory cytokines. IL-17 injuries intestinal epithelium, releases inflammatory cytokines and cause intestinal microcirculation disturbance. IL-17 also induces
impaired intestinal barrier function, including edema of the intestinal wall and destruction of the mucosal epithelial barrier.
September 2021 | Volume 12 | Article 674803

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. Interleukin-17 in Acute Pancreatitis
disease development (138). The Th1/Th2 balance and Treg activity
are key elements in the immunomodulatory impacts of probiotics.
Recent research has confirmed that certain commensal bacterial
species (139), suchas segmentedfilamentous bacteria (SFB), initiate
the accumulation of Th17 cells within the digestive tract in
numerous species. Furthermore, probiotics changed the intestinal
microbial community towards certain advantageous microbes,
such as Streptococcus, Lactobacilli and Bifidobacteria, which
generated anti-inflammatory metabolites, suppressed Th17
polarization and promoted anti-inflammatory Treg/Tr1 cell
differentiation (140). Probiotic strains can potentially inhibit
Th17/IL-17 activity by enhancing Treg and/or Th1 subsets (139).
However, probiotics have been shown to prevent intestinal
infection while unintentionally increasing mortality, leading to
early termination of this trial. Fecal microbiota transplantation
means transplanting functional bacteria in the feces of healthy
controls to the gastrointestinal tracts of patients, and the new
microbiota appropriate for the receptors can be modified (141). A
few trials have confirmed the ability to improve intestinal function
in AP utilizing this strategy (142, 143), but advanced RCTs are
still needed.
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The Efficacy of Continuous Renal
Replacement of SAP With IL-17
Continuous renal replacement therapy (CRRT) is a new model of
renal replacement therapy and was first used in the treatment of
renal failure. In the comparisonof conventional therapy andCRRT,
Ning et al. found that IL-17 showed a continuous decrease at 6, 12,
and 24 hours after CRRT and was significantly lower than
conventional treatment at different time points (P<0.001) (144).
Dai reported that earlier and higher levels of IL-17 evaluated the
extended length of hospital stay, organ failure and death, possibly
due to a disruption of intestinal barrier function (45). Researchers
found that continuous veno-venous hemofiltration (CVVH)
removed IL-17 and other proinflammatory cytokines from
serum, improved intestinal barrier function, and relieved systemic
reactions. In addition, high-volume hemofiltration (HVHF)
effectively attenuated the Th17/Treg imbalance during SAP (113).
The Th17/Treg ratio and IL-17 were significantly reduced (P<0.05)
after HVHF, while no significant change was found in the non-
HVHF group. These alterations illustrate that IL-17 plays a key role
in the occurrence and development of removing excess
inflammatory mediators in SAP patients (Figure 4). Therefore,
FIGURE 4 | The clinical therapeutic significance of IL-17. IL-17 could boost deeper comprehend of AP and represents a novel immunotherapy for AP by targeting
the Th 17 cell/IL-17 immune axis, including targeting Th17 pathway in AP, targeting IL-17 and its receptor in AP, inhibition of IL-17 synergistic cytokines and
interdicting AP cascade reaction through gut microbiota. Continuous renal replacement therapy (CRRT), continuous veno-venous hemofiltration (CVVH) and high-
volume hemofiltration (HVHF) effectively attenuates the Th17/Treg imbalance and clear serum IL-17 in SAP patients.
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these results suggest the clinical significance of IL-17 and may
improve the outcomes of SAP.
CONCLUSIONS

Since the discovery of Th17 cells, the cytokine IL-17 has
undergone an increase in considerations and revelations.
According to the previous literature, IL-17 causes many acute
inflammatory diseases, but the precise mechanisms of its
contribution are not fully understood. IL-17 is correlated with
numerous cell types, acts on a number of cellular targets in tissue
and immune cells, and plays vital roles in innate and adaptive
immunity. Dysregulated cytokine systems are generally included in
AP, and targeted therapy with IL-17 is of great value. Inhibition of
IL-17A and its receptor or simultaneous inhibition of IL-17A and
IL-17F contributes to interruption of signaling pathways important
for AP development and maintenance. Accordingly, biologics
targeting IL-17 contribute to quick and dramatic prompts of
systemic symptoms during AP. We believe that IL-17 could lead
Frontiers in Immunology | www.frontiersin.org 9
to a deeper understanding of AP and represents a novel
immunotherapy for AP by targeting the Th17 cell/IL-17
immune axis.
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