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Mailloux AW (2021) Inducible Tertiary
Lymphoid Structures: Promise and
Challenges for Translating a New

Class of Immunotherapy.
Front. Immunol. 12:675538.

doi: 10.3389/fimmu.2021.675538

REVIEW
published: 14 May 2021

doi: 10.3389/fimmu.2021.675538
Inducible Tertiary Lymphoid
Structures: Promise and Challenges
for Translating a New Class
of Immunotherapy
Shota Aoyama1†, Ryosuke Nakagawa1†, James J. Mulé2,3 and Adam W. Mailloux4*
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Tertiary lymphoid structures (TLS) are ectopically formed aggregates of organized
lymphocytes and antigen-presenting cells that occur in solid tissues as part of a
chronic inflammation response. Sharing structural and functional characteristics with
conventional secondary lymphoid organs (SLO) including discrete T cell zones, B cell
zones, marginal zones with antigen presenting cells, reticular stromal networks, and high
endothelial venues (HEV), TLS are prominent centers of antigen presentation and adaptive
immune activation within the periphery. TLS share many signaling axes and leukocyte
recruitment schemes with SLO regarding their formation and function. In cancer, their
presence confers positive prognostic value across a wide spectrum of indications,
spurring interest in their artificial induction as either a new form of immunotherapy, or as
a means to augment other cell or immunotherapies. Here, we review approaches for
inducible (iTLS) that utilize chemokines, inflammatory factors, or cellular analogues vital to
TLS formation and that often mirror conventional SLO organogenesis. This review also
addresses biomaterials that have been or might be suitable for iTLS, and discusses
remaining challenges facing iTLS manufacturing approaches for clinical translation.

Keywords: immunotherapy, tertiary lymphoid structure (TLS), cancer, bioengineering, biomaterials
INTRODUCTION

The presence of infiltrating immune cell populations is a prominent histological feature of most
solid tumors that with some exceptions (1, 2), often confers positive prognostic significance across a
wide spectrum of indications (3). This benefit is often contingent on the number and phenotypic
makeup of the immune infiltrate, and on the ratios of beneficial effector cells to immune suppressive
populations (3, 4). This may entail elevated numbers of activated CD8+ cytotoxic T cells (TC), type-I
polarized CD4+ helper T (TH1) cells, and B cells, signifying an adaptive anti-tumor immune
response (3, 5, 6). In a similar fashion, infiltrating antigen-presenting cells such as macrophage and
dendritic cells (DC) confer positive prognostic value in many tumor types (7, 8), and in particular
those antigen presenting cells with type I polarization attributes are especially equipped to support
anti-tumor immunity (9, 10). It is an important understated fact that elements associated with
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antigen presentation and immune polarization are found inside
solid tumors and confer prognostic benefit alongside effector
lymphocyte populations. This infers that active antigen
presentation, and the structural organization needed to support
it, must occur at the tumor site; thus, an anti-tumor immune
response is not limited to remote activation of effector
lymphocytes in draining secondary lymphoid organs (SLO),
but also occurs locally within and proximal to the tumor
mass (4).

It is now understood that many tumors are associated with the
presence of tertiary lymph node structures (TLS) (11). TLS consist
of structural features analogous to conventional SLO, including
discrete B cell zones, T cell zones, marginal zones with activated
macrophage and DC, reticular fibroblast cell (RFC) networks (or
RFC-like stromal networks), and vasculature permissive to
immune cell extravasation (11–13). In mature TLS, this high
level of organization can consist of networks of supportive
infrastructure are compartmentalized just as they are in SLO,
with activated mature DC supporting TH1 activation in T cell
zones (14, 15), and follicular DC localizing to B cell zones in
support of humoral immunity (16, 17). TLS form de novo in the
microenvironment of solid tissues in response to protracted
inflammatory stimuli, and may dissipate upon the resolution of
inflammation (18). TLS can additionally foster tumor antigen
presentation and T cell activation, including germinal centers (19,
20), B cell class switching (21), activated antigen presenting cells
(22), and T cell clonal expansion (23, 24). In human cancers, TLS
are associated with better disease outcomes across a broad
spectrum of indications including ovarian (25, 26), metastatic
melanoma (27, 28), breast (29, 30), colorectal (11, 31), and non-
small cell lung cancers (7, 14), and can augment the efficacy of
immunotherapies such as imune chackpoint inhibitors (28). In
murine models, TLS can reduce orthotopic growth of colon
carcinoma (32), melanoma (33), and fibrosarcoma (34). These
associations and clear demonstrations of beneficial anti-tumor
immunity by TLS embody a majority of scenarios that are
overwhelmingly positive in nature and that provide a strong
basis for pursuing the artificial induction of TLS as a therapeutic
modality. However, there are reports in which TLS are associated
with negative prognostication or disease progression. This is best
exemplified in hepatocellular carcinoma (HCC) (35), and suggests
that while TLS represent an integral part of the anti-tumor
immune response, their function is likely influenced by a
number of contextual signals, including those afforded by local
stroma, secreted inflammatory factors, other resident immune
populations, local vasculature, and epithelium (36). This may also
indicate that different types of TLS exist that are susceptible to
immune polarization or can even serve an immune suppressive
role depending on and subsequent to microenvironmental context
(37). This review will focus on approaches that can be taken to
artificially induce TLS as a novel immunotherapy or as a means of
augmenting immunotherapies. The prognostic value of TLS has
been well reviewed (38, 39).

The clear benefit of TLS has prompted investigation into their
potential therapeutic use, both as a standalone treatment or
as an adjuvant to adoptive transfer-based cell therapies (40, 41).
Frontiers in Immunology | www.frontiersin.org 2
As such, artificial or inducible TLS (iTLS) hold great promise as
a novel immunotherapy, but significant challenges must first be
overcome that preclude their advent. These challenges range
from knowledge gaps in basic TLS biology to complexities
associated with clinical grade biomaterials and autologous cell
processing. This review provides an overview of what strategies
have been and might be employed to artificially induce TLS, how
iTLS may be employed as a novel therapeutic, and what technical
difficulties must be addressed prior to manufacturing iTLS at a
clinical level.
LESSONS FROM SLO ORGANOGENESIS:
STRATEGIES FOR THERAPEUTIC
TLS INDUCTION

TLS formation is a complex process incorporating many
processes that overlap conceptually with conventional SLO
organogenesis (42), although multiple contextual and spacial
constraints add complexity to TLS formation. In addition, not all
TLS develop to the same level of structural and functional
maturity. The level of TLS organization, what ectopic factors
contribute to their function and development and how these
factors play into prognostication have been well reviewed (36). In
this review, we focus on approaches to artificially induce TLS
formation, which have thus far been guided by our
understanding of shared pathways between SLO organogenesis
and natural TLS formation. Any successfully implemented iTLS
will likely be subject to the same functional and organizational
variations as seen in natural TLS caused by diverse
microenvironmental cues present in different organs and
indications. Thus, any clincial translation of iTLS must expect
disease-specific challenges and variations regarding efficacy.

SLO initiate during embryogenesis following expression of
lymphotoxin alpha-1, beta-2 (LTa1b2) on specialized lymphoid
tissue inducer cells (LTi) (43) that binds to lymphotoxin beta
receptor (LTBR) expressed on lymphoid tissue organizer cells
(LTo), an early mesenchymal-derived fibroblast (42).
Engagement of LTBR induces the expression of numerous
NF-kB target genes (44, 45) that orchestrate the recruitment of
different immune cells. NF-kB signals via two separate pathways,
canonical and non-canonical. Canonical signaling leads to the
translocation of p50/RelA dimers to the nucleus, where they
induce CCL4, CXCL2, and CCL2 among other gene targets,
while non-canonical NF-kB signaling leads to the translocation
of p52/RelB dimers to the nucleus inducing CXCL13, CCL19,
and CCL21 (44). This results in the recruitment of early CD11c+

myeloid populations followed by mass immigration of B and T
cells which segregate into discrete T cell zones and B cell follicles
(46, 47). This influx of lymphocyte subsets coincides with the
LTBR-dependent development of high endothelial venules
(HEV), and is followed by the LTBR-dependent appearance of
antigen-presenting cells such as follicular DC (FDC) (48–50). As
the SLO develops, LTo cells differentiate into RFC through
continued LTBR signaling (51). Importantly, SLO formation
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requires both NF-kB signaling pathways to properly develop,
although the non-canonical pathway appears more indispensable
(45). In adults, there is no clear evidence that LTi or LTo cells
persist, and so for TLS formation it is less clear which cell types
fill these roles. However, overexpression of LTa1b2 markedly
increase TLS (2), whereas LTBR blockade prevents TLS in
murine models (52); this suggests that any cell expressing
LTa1b2 has the potential to function as a LTi analogue, and
any LTBR+ stromal cell capable of chemokine production has the
potential to function as a LTo analogue. Importantly, most
mesenchymal-derived stroma throughout the body expresses
LTBR (53), including RFC (54). Additionally, LTa1b2 is
expressed on activated T cells, B cells, and dendritic cells (55),
giving this signaling axis wide-reaching potential for TLS
induction if the correct environmental inflammatory cues are
met. Importantly, engagement of LTBR on many types of
mesenchymal-derived stroma induces analogous expression of
both canonical and non-canonical NF-kB target genes as
compared to LTo, including the lymphoid tissue homeostatic
cytokines CXCL13, CCL19 and CCL21 necessary for SLO
development (1). In addition to LTa1b2, another LTBR ligand,
homologous to lymphotoxin, exhibits inducible expression and
competes with HSV glycoprotein D for binding to herpesvirus
entry mediator, a receptor expressed on T lymphocytes (LIGHT)
effectively elicits chemokine gene targets on LTBR+ stroma
through NF-kB (56). LIGHT signaling can also lead to TLS
formation, and while also binding to other receptors such as
Herpesvirus entry mediator (HVEM), LIGHT acts analogous to
LTa1b2 in its capacity to induce TLS formation (34, 57).

The role of chemokines in both SLO organogenesis and in
TLS formation cannot be understated. For SLO, the narrow set of
homeostatic chemokines required for organogenesis reflects the
chemokine receptor patterns expressed by naïve and resting
memory T cells, and coincides with the chemokine receptors
expressed by DC and macrophage (58). Activated lymphocytes
follow different trafficking patterns throughout the periphery
owing to the downregulation of SLO-homing chemokine
receptors and the up-regulation of alternative chemokine
receptor sets that allow for emigration from SLO and
Frontiers in Immunology | www.frontiersin.org 3
infiltration into inflamed peripheral sites (59). It is thus
unsurprising that gene signatures associated with TLS
formation in tumors encompass not only SLO-associated
homeostatic chemokines, but many other chemokines capable
of recruiting lymphocytes in various stages of activation and
effector function and that are associated with peripheral
lymphocyte trafficking (13). A TLS gene signature which
incorporates 12 chemokines (12CK-GES) that was associated
with better patient survival independent of tumor staging, was
first identified in patients with colorectal carcinoma (11) and was
soon after used to predict the presence of TLS in wide range of
tumor types including melanoma, lung, breast, and colorectal
(13, 29). Importantly, nine of the chemokines identified in the
12CK-GES have reported up-regulation by LTBR signaling in
mesenchymal-derived stroma through canonical or non-
canonical NF-kB signaling, whereas the remaining three are
hallmark products of tumor-associated macrophages (TAM),
or type-II polarized macrophages (60–64) which themselves
are recruited by multiple members of the 12CK-GES (Table 1).
Insights from the 12CK-GES, and the parallels to SLO
organogenesis can easily lead one to speculate that TLS form
via a sequential or semi-sequential recruitment of immune
subsets in response to chronic LTBR stimulation, and that any
chemokines in the 12CK-GES not directly produced by LTBR+

stroma might be indirectly accounted for by subsequently
recruited immune populations. In addition to TLS-associated
chemokines, LTBR signaling also regulates the expression of a
number of homeostatic cytokines and growth factors important
to SLO organogenesis and to TLS formation, including IL-7, IL-
15, and B cell activating factor (BAFF) (44, 72). However, to
prove that any components of TLS organization form through
sequential recruitment steps requires an experimental model of
TLS formation in which temporal data can be acquired. When
considering TLS induction as an anti-cancer therapeutic, such
models may be necessary to deduce which components of TLS
formation are required for anti-tumor activity, and which
component might be expendable for anti-tumor effect.

Strategies for iTLS can either utilize methods to initiate
sustained LTBR signaling, thereby taking advantage of the same
TABLE 1 | 12CK-GES and associated NF-kB signaling pathways.

Chemokine signature LTBR target NF-kB pathway Reference Recruitment potential Cognate Receptor(s)

CCL2 Yes Canonical (44) T, M, MDSC, TAM CCR2, CCR3,
CCL4 Yes Canonical (44) M, MDSC, TAM CCR5
CXCL10 Yes Canonical (65) T, NK, TAM CXCR3
CXCL11 Yes Canonical (66) T, NK, TAM CXCR3,
CCL5 Yes Non-canonical (67, 68) T, M CCR1, CCR3, CCR5
CCL19 Yes Non-canonical (44) T, DC CCR7
CCL21 Yes Non-canonical (44) T, DC CCR7
CXCL13 Yes Non-canonical (44) B CXCR5
CCL3 Yes Canonical (69) M, T, NK, DC CCR1, CCR5
CCL8 No Canonical (69) M, NK, T, B, DC CCR2
CCL18 No No (70) DC CCR8
CXCL9 No No (71) T, NK CXCR3
May 2021 | Volu
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me 12 | Article 675538

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Aoyama et al. Inducible Tertiary Lymphoid Structures: Challenges
cascade of events that leads to naturally occurring TLS, by
introducing cellular components engineered with constitutively
active LTBR or with transgenic expression of LTBR gene targets,
by some combination of the above approaches, or by complete
TLS manufacture ex vivo prior to adoptive transfer/retransfer
(Figure 1). iTLS methods that involve the introduction of
isolated or cultivated cellular components have an additional
appeal beyond the iTLS itself. The central role that antigen
presenting cells play in TLS formation and function (73) and
the effector cell-recruiting potential TLS create in the tumor
microenvironment (57) make iTLS an ideal platform for the
delivery of DC-based anti-tumor vaccines or as an adjuvant for
chimeric antigen receptor-transduced T cell (CAR-T) or tumor-
infiltrating lymphocyte (TIL) adoptive transfer therapies. Given
the breadth of possible approaches, novel iTLS-based therapies
can be designed with goals ranging from early interventional to
multi-modal combination therapies that bridge cellular
therapies, immunotherapies, and/or chemotherapeutic and
radiation therapies.

Early demonstrations that the LTBR-chemokine axis can be
utilized for iTLS occurred in transgenic model systems in which
mice overexpressing chemokines or LTa developed lymph node-
like structures in certain tissues (74). In mice expressing LTa
under the rat insulin promoter, a promotor with transgene
expression limited to pancreatic beta cells and proximal tubule
of the kidney, TLS formation was observed in both the pancreas
and kidney, especially in proximity to vasculature where the
Frontiers in Immunology | www.frontiersin.org 4
formation of HEV was evident (74). Under the same promoter,
transgenic CCL21 induced HEV-containing TLS in the pancreas
as well (75, 76), but using a promoter with skin-specific CCL21
expression did not result in TLS; these data suggest that
additional cues or microenvironmental constraints are needed
for TLS beyond CCL21 expression alone (75). Other examples
include LTBR ligand targeting strategies, such as delivery of
recombinant LIGHT tagged to vascular-targeting peptide. This
chimeric compound induced TLS in pancreatic neuroendocrine
tumors and in glioblastoma in areas surrounding dense
vasculature that contain discrete B cell zones, T cell zones,
macrophage, HEV, and DC (32, 77). Delivery of LTBR ligands
to induce TLS is also possible via adoptive cell transfer of
transgenic cells. DC transduced with the type-I polarizing
transcription factor T-bet induced the expression of LIGHT
and LTa, and subsequently CCL21, when injected into murine
colon adenocarcinoma, slowing tumor growth (73, 78). Lastly,
delivery of LTBR+ stroma demonstrates functional TLS
formation when injected subcutaneously juxtaposed to
established MC-38 murine colon carcinoma tumors, slowing
tumor growth and actively priming T cell response (79). Despite
the precedent that TLS can be induced by taking advantage of the
LTBR-chemokine axis, the greatest benefit from iTLS will likely
result from injectable or implantable preparations that do not
require additional microenvironmental cues from the recipient
host. This way, they may be applied to a wider range of tissues
and organs as part of a microenvironment reprogramming
FIGURE 1 | A summary schematic of potential therapeutic use of inducible tertiary lymphoid structures (iTLS). iTLS preparations may include cellular components
such as dendritic cells, or reticular fibroblasts modified to engage the LTBR pathway, or co-delivered with soluble LTBR-ligands via a delayed-release platform such
as liposomes, nanoparticles, or micelles. Injectable or implantable iTLS preparations could be administered at the site of tumor resection to induce TLS and
subsequently control residual disease or counteract reoccurrence.
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strategy. Discussed below are biocompatible matrixes and micro/
nanoparticles that may be suitable as scaffolding material for
iTLS or for the sustained release of biologics aimed at TLS
induction respectively.
BIOMATERIALS WITH PROPOSED
SUITABILITY FOR ITLS

A variety of three-dimensional materials that are permissible to
cellular infiltration and that may allow for cell-scaffold interactions
have been used for tissue engineering, regenerative medicine, and
ex vivo scientific investigation (80). Some bio-scaffolds derived
from animal or cell-based products such as Matrigel® (Corning
Life Sciences) have a decades-long precedent. These products
isolate entire acid-soluble constituents of tumor cell line-derived
extracellular matrix, and thus represent a more physiologically
complete microenvironment than synthetic scaffolds. However,
such products are not immunologically inert, and contain growth
factors and biologically active components that have well
described angiogenic, adipogenic, and inflammatory properties
(81). This is even true of “growth factor reduced” product versions
(albeit improved) (81, 82). As such, use of such cell or animal-
derived matrixes often invites scientific scrutiny (83), and thus
more advanced synthetic alternatives are typically sought for
bioengineering endeavors which contain less lot-to-lot variation,
display a more immunologically inert background, and lack any
confounding variables caused by biologically active carryover
components (81).

Collagen Matrixes
Collagens constitute the major framework of the extracellular
matrix (ECM) with distinct primary, secondary, tertiary, and
quaternary structures that create a range of ECM scaffold
superstructures in different tissues and organs from rope-like
fibrils to web-like networks, anchoring structures, and can even
complex with transmembrane collagens (84). In vertebrates, at
least 29 types of collagen are coded by at least 45 separate genes
(85). Given the complexity of collagen, tissues from animals or
human-sourced raw materials are often used to make collagen-
based scaffolding materials (86). Recombinant sources of
collagen monomers or peptides are commercially available (87)
but small yields and the lack of the tertiary and quaternary
structural complexity that would be afforded by multi-collagen
type complexes limit their use as a scaffold for bioengineering
(86). Most collagen products are manufactured in one of two
ways: from decellularization of existing ECM, resulting in an
intact ECM superstructure (88), or through the breakdown,
solubilization, extraction, and reformulation of collagen,
often with the addition of crosslinking agents such as
glycosaminoglycans (89, 90), elastins (91, 92), or chitosans (93,
94). The precise methodologies used to manufacture commercial
collagen matrix products should be carefully considered prior to
implementation in iTLS approaches since most collagen-based
matrixes are derived from animal or human tissues (86). While
more purified than bulk ECM products like Matrigel®,
biologically active impurities may still carry over from raw
Frontiers in Immunology | www.frontiersin.org 5
materials (95). A major strength of collagen-based matrixes is
their versatility in available formats, including sheets, sponges,
disks, granulated tablets, or even nano-scale spheres (96).

One of the first successful demonstrations of iTLS using
implantable artificial matrix was performed by Suematsu and
Wantanabe using a collagen sponge biomatrix impregnated with
a thymus-derived stromal cell line modified to constitutively
express LTa. Following implantation, functionality of iTLS
was demonstrated by vaccination with 4-hydroxy3-
nitrophenylacetyl-ovalbumin (NP-OVA). Three weeks after
subcutaneous implantation, discrete B cell and T cell zones
formed in the stromal cell-impregnated collagen sponge with
interacting DC, as well as HEV-like structures. Recipient mice
that were vaccinated with NP-OVA produced anti-NP-OVA
IgG-producing B cells within iTLS. This effect was bolstered
if NP-OVA-pulsed DC were included in preparations.
Furthermore, these NP-OVA-primed iTLS could be resected
after their formation, and transplanted to syngeneic recipient
mice wherein they could mount effective secondary response
to NP-OVA (97). These iTLS were later shown to be able
to produce a potent secondary immune response when
transplanted into severe combined immunodeficiency (SCID)
recipient mice, repopulating SLO and bone marrow with anti-
NP-OVA IgG-producing B cells (98). An alternative approach
using chemokine and VCAM-1-loaded collagen matrix instead
of stromal cells soon followed, recapitulating the successes of
stromal-cell line-loaded collagen sponges. These chemokine-
induced TLS incorporated B cell zones, T cell zones, and
supporting DC and were able to prime a similar anti-NP-OVA
response. HEV were not interrogated in these iTLS (99).

Hydrogels
Hydrogel refers to a large class of biomaterials that are made of
three-dimensional crosslinked polymers with a large capacity for
water uptake and retention that are prepared in aqueous solution
(100). Depending on the types of polymers and crosslinking
reagents used, a wide variety of hydrogels can be prepared that
have different properties regarding biologic interactivity or
inertness, physical rigidity or elasticity, temperature sensitivity,
pH sensitivity, shape memory properties, or capacity to carry and
deliver soluble drugs or cellular payloads (101–103). Hydrogels
can be classified according to physical structure, charge, size or
chemical properties (102). Of relevance to iTLS efforts, most
hydrogel preparations can be injectable or transplantable
depending on the timing and chemistries of the crosslinking
steps, and can be formulated in large injection/implantation
volumes or in micro or even nanoscale particle preparations
(104). Because of their large capacity to hold aqueous solution,
many hydrogel preparation methodologies are widely
compatible with cell culture conditions so long as the
chemistries required for crosslinking do not stray from
physiologic pH, temperature, salinity, and other cell culture
ranges (105–107). For this reason, crosslinking chemistries that
utilize mild temperature or pH changes such as warming from
4°C to 37°C or changing from a slightly acidic solution to slightly
basic are ideal for injectable preparations, as such hydrogels
would crosslink after injection into living recipients (105, 107).
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When used as an in vitro model for iTLS, hydrogel preparations
with BAFF-producing stromal cells and IL-4 support the
compartmentalization, expansion, and class-switching of
primary B cells (108, 109). When used as a model of cell
therapy delivery, hydrogels have been successfully deployed to
carry CAR-T cells in conjunction with delivering stimulator of
IFN genes (STING) agonist cyclic di-GMP. This preparation was
then placed in resection sites of murine pancreatic tumors, or
alongside pancreatic tumors mimicking non-resectable masses.
These implants produced a significant anti-tumor effect
compared to intravenously delivered CAR-T, activated host
DC, and induced significant infiltration of immune cells at the
implantation sites (110).

Cryogels, a subset of hydrogels prepared at sub 0°C, may be of
particular interest to iTLS efforts. Their preparation creates a
larger pore size than typical hydrogels, which are typically
measured in the nanometer range. Such a small pore size
requires hydrogel breakdown or active turnover by infiltrating
populations to emigrate or infiltrate transferred materials,
significantly limiting cellular involvement (111, 112). Cryogels
are formed when polymer and cross linkers are displaced by ice
crystal formation, causing concentration spikes in localized
spaces in between ice crystals. When the cryogels are
subsequently thawed, the space occupied by the ice crystals
leaves a porous network measured on a micron scale or larger
(113, 114). Thus, cryogels provide a more cell-invasive
alternative to conventional cryogels, although, their freeze/thaw
preparation method requires any would-be cellular components
to be loaded after formation and precludes any formation post
injection, somewhat limiting their use to implantation. Cryogels
have been be used to deliver chemotherapies and cancer vaccines
(115), and when incorporated with DC activating components
and tumor antigen vaccination strategies, induces the
recruitment of DC and lymphocytes (113, 116, 117), although
the organization of these infiltrates was not investigated.

Other Solid or Semi-Solid Bio-Scaffolds
A wide array of scaffolding material distinct from hydrogels or
tissue-derived collagen matrixes have been derived for use in
tissue repair, wound-healing, or other bioengineering endeavors
(118). Among these are matrixes made from mesoporous silica
rods, which have been used to boost the immunogenicity of
tumor antigen peptide-based vaccine approaches in mice bearing
B16F10 melanoma or CT26 colon carcinoma tumors. In these
models, tumor associated antigen pools were loaded into
mesoporous silica rod matrixes and injected subcutaneously.
While the organization of infiltrates was not analyzed
histologically, vaccination using this matrix approach greatly
enhanced lymphocyte infiltration, and activation, as well as
mediated anti-tumor effects on lung nodule growth (119).
While not evidence of iTLS, this study does provide
precedence for silica as a biomaterial supportive of lymphocyte
recruitment, DC activation, and antigen priming. Another bio-
matrix that may be permissive to iTLS are polyamide fiber
preparations. In what represents one of the earliest attempt to
manufacture iTLS entirely in situ, non-woven sheets of
polyamide fibers were loaded with antigen-primed primed DC
Frontiers in Immunology | www.frontiersin.org 6
(in this case, cytomegalovirus lysate) and sealed inside a closed
and chambered bioreactor system in which lymphocytes isolated
from peripheral blood mononuclear cells (PBMC) were
continuously circulated. After two weeks, this bioreactor
approach resulted in TLS-like structures with discrete B cell
and T cell clusters around DC inside the polyamide fiber sheets.
Cytokine production suggests that these lymphocytes were
activated by the primed DC (120).

Micro and Nanoparticles in iTLS
While bio-scaffolds can, in some instances, impart delayed
release of soluble factors, another class of biomaterials has
been refined over time with delayed-release of soluble factors
as one of several defining characteristics. Microparticles or
nanoparticles represent entire fields of materials science in
their own right (121). Here, microparticles and nanoparticles
are proposed as cooperative biomaterial elements that can be
used as an incorporated element within bio-scaffolding to
mediate controlled release of chemokines, LTBR ligands, or
other TLS-inducing factors. Of these, liposomes represent the
most studied and characterized class of micro or nanoscale
biomaterials that can serve as carriers for a wide range of
compounds. Liposomes form when lipid components assemble
into spherical bilayers leaving an aqueous compartment that
carry a water-soluble payload (122). The physical properties of
liposomes can be easily controlled by altering the types of lipids
used for incorporation (123–126), and their size can be
controlled by deploying different production methods such as
sonication, which delivers liposomes in the 20-40 nm range
(127), microfluidic mixing in the 20-80 nm range (128, 129),
high pressure homogenization in the 20-140 nm range (130),
flow focusing in the 50-150 nm range (131), and extrusion in the
70-415 nm range (132). Many liposomes are already
incorporated as part of FDA-approved drugs (133, 134) giving
precedent to their clinical translatability and patient safety, and
there are now multitudes of methodologies that can deliver on a
wide range of specifications, cost, uniformity, and bulk
manufacturing requirements (135).

Unmodified liposomes were first described 55 years ago (136),
and while successful, have limitations due to their unprotected
outer lipid surface, making them subject to fusion with other
liposomes as natural result of surface tension reduction (137,
138). Unmodified liposomes are also susceptible to opsonization
of serum protein following injection which can lead to
phagocytic uptake, or clearance in the liver (139, 140). Any
such alteration manipulates drug release kinetics or limits
payload delivery to intended targets. A second generation of
liposomes was created by modifying liposomal surfaces with
integrated polymers, providing structural stabilization and
interfering with serum protein binding (139, 141), the most
successful of which has been polyethylene glycol (PEG) (142,
143). Additional modification strategies have been employed to
liposomes within the last 20 years that not only aim to stabilize
liposomal formulations, but to also impart drug target selectivity
or more precisely control drug release. Examples of such
modifications include liposomes with surface-attached
bioactive ligands, such as aptamers, peptides, or most
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commonly immunoglobulin or immunoglobulin fragments
(144). By incorporating moieties with known affinities for
antigens expressed on target tissues (or tumors), liposomes can
then specifically interact with intended targets. Such
incorporations can be accomplished by including recombinant
protein products in the initial lipid formulations that either
naturally contain hydrophobic regions or that are themselves
modified to contain hydrophobic regions, or by covalent binding
to hydrophilic regions of incorporated lipids (145). Of particular
relevance to iTLS, liposomes can offer extended release kinetics
of their payloads, or even be designed for content release in
response to an external trigger, such as temperature (146),
magnetic fields (147), or light (148, 149). In addition,
liposomes are compatible with other bio-scaffolding materials
such as hydrogels, cryogels, or polymeric matrixes (150), and
have a demonstrated ability for delayed release of chemokines
such as CXCL13 (151).

Other nanoscale particles capable of delivering or releasing
inflammatory mediators include micelles which are created by self-
assembling amphiphilic polymers (152, 153). Micelles have proven
capacity to deliver cytokines (154), antigens (155), and interfering
RNAs (156, 157), and thus represent a plausible alternative to
liposomes to deliver factors for iTLS. In addition, nanoparticles
made from aliphatic polyesters (PLGA) are also an attractive
option to incorporate delayed-release of soluble factors, and are
already FDA-approved in many clinical contexts (158–160). PLGA
nanoparticles are biodegradable, and like micelles, are capable of
tumor antigen delivery (161, 162) and immunotherapeutic
biologics (163, 164). In what is perhaps the most robust example
of iTLS generated in animal models, Kobayashi and Watanabe
combined microscale gelatin-based hydrogels loaded with LTa1b2,
CCL19, CCL21, CXCL12, CXCL13, and soluble RANKL inside a
macroscale implantable collagen sponge. This preparation was
then implanted onto the kidney capsule of recipient mice, and
after three weeks produced mature iTLS with discrete T cell zones,
B cell zones, RFC networks, FDC in what appears to be a marginal
zone, HEV, and lymphatic vasculature. These iTLS were also able
to prime primary and secondary IgG responses to NP-OVA (165).
Another example of combined biomaterial approaches utilized
lipid-coated silica microspheres harboring IL-15/IL-15Ra fusion
proteins and anti-CD3, anti-CD18, and anti-CD137 antibodies to
act as artificial antigen-presenting cells inserted into alginate
hydrogels loaded with NKG2D-CAR-expressing murine T cells.
This construct, when implanted next to partially resected
established subcutaneous 4T1 breast cancer tumor-bearing mice,
elicited significant anti-tumor reactivity and slowed tumor growth
(166). While not necessarily iTLS, this study further establishes
precedent that combination biomaterials can deliver and expand
effector lymphocytes.
Challenges Awaiting iTLS for
Clinical Translation
Avoiding Foreign Body Response for Incorporated
Biomaterials
One general drawback to the use of biomaterials is the induction
of a foreign body response (FBR), an acute inflammatory
Frontiers in Immunology | www.frontiersin.org 7
reaction against the material itself (167). FBR can result in a
wide range of unintended consequences including but not
limited to vascularization, fibrotic encapsulation, and
infiltration of innate immune cells (168, 169). Neutrophils and
macrophages are among the earliest effector cells responding to
the FBR and can destroy implanted biomaterials through the
release of cytotoxic granules, reactive oxygen species, proteolytic
enzymes, and phagocytosis (170–173). Of particular importance
to iTLS, recruited and activated macrophages and neutrophils
produce high levels of chemokines associated with FBR such as
CXCL8, CCL2, CCL4 (174, 175). While CCL2 and CCL4 are part
of the 12CK-GES associated with TLS presence in human
tumors, CXCL8 is not (11), and none of these chemokines
encompass the SLO homeostatic chemokines CXCL13, CCL19
and CCL21 previously used for iTLS, as discussed above. In
addition, physical macrophage adherence to many biomaterials
polarizes them to a M2 phenotype, which may be detrimental to
iTLS formation for anti-tumor immunity (176). To avoid a FBR,
it is advantageous to select biomaterials with low antigenicity
that have little or no carryover of soluble factors from animal
sources (167). In addition, biomaterial topography has also been
identified as a contributing factor to FBR, and thus biomaterial
size, shape, and texture can be modified to minimize FBR (177,
178). However, any such measure would need to be weighed
against the need to recruit cellular infiltrate as part of the iTLS.

Generating cGMP Materials for iTLS Manufacture
As ever more complex components and methodologies are used
to innovate iTLS as a potential therapy, so too do the challenges
associated with translating such approaches to the clinic. To fully
qualify for the Food and Drug Administration’s (FDA) approval,
components used to make any would-be iTLS therapy need to
graduate to clinical-grade materials by the time pivotal trials are
conducted, meaning the components themselves must be
manufactured under cGMP conditions (179). Not only does
this add difficulty to the process, but in almost every scenario,
results in elevated manufacturing cost (180, 181). Cell therapies
utilizing one cell type with one gene modification can easily
exceed $400,000 per dose due in no small part to the elevated cost
of manufacturing cell therapies at a cGMP level (182). Given the
potentially multimodal processes involved in iTLS development,
this new class of immunotherapy may incur clinical-grade
manufacturing costs reflective of cell therapies, biomaterials,
and biologics combined. In addition to cost, there are also
regulatory challenges. Biomaterial products which contain no
cellular or bioactive components, such as an inert scaffolding
material, might be considered from a regulatory perspective as a
“medical device” depending on their mode of action, but should
such material be combined with cellular components or
biologics, it will most certainly be considered a drug (183).
Careful consideration will then need to be taken when defining
what components are drug product versus drug substance.
Conventionally, the drug substance is whatever components
entail the “active ingredient(s),” whereas the drug product is
the entirety of the components and compositions used in the
manufacturing process. These definitions are critical to the
regulatory success of new investigational drugs, but may be less
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clear for iTLS, which may combine novel biomaterials with
varying amounts of bioactivity (184), with active biologics and
cell therapies which may contain genetic modifications. Similar
to the advent of cell therapies over the past few decades, the
clinical translation of bioengineered constructs such as iTLS may
be codependent on the FDA’s creation of a new guidelines that
are developed in concert with the scientific field (185).
CONCLUDING REMARKS

The progress toward utilizing TLS as a therapeutic intervention
has made great strides over the last few decades and has come to
incorporate many new and technologies, particularly in the
biomaterials space. iTLS have to potential to become an entire
new class of immunotherapy combining elements of biologic
compounds, cellular therapeutics, and biofabrication techniques.
However, significant challenges and unanswered questions
remain. These include identifying the optimal bio-scaffold/
nanomaterial combinations for sustained release of TLS-
inducing soluble factors and identifying the minimal
combination of chemokines, LTBR ligands, and other soluble
factors required for robust iTLS formation. Another prominent
point of consideration is to further evaluate if stromal and/or DC
components are needed for iTLS approaches. Their involvement
Frontiers in Immunology | www.frontiersin.org 8
has been critical to early iTLS successes, but recent advances
demonstrate iTLS can be achieved using cell-free constructs
(165). This would have obvious benefits when translating to
clinical-grade manufacturing processes, and allow for less costly
clinical translation.
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