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Glioblastoma is a highly lethal brain cancer with a median survival rate of less than 15
months when treated with the current standard of care, which consists of surgery,
radiotherapy and chemotherapy. With the recent success of immunotherapy in other
aggressive cancers such as advanced melanoma and advanced non-small cell lung
cancer, glioblastoma has been brought to the forefront of immunotherapy research.
Resistance to therapy has been a major challenge across a multitude of experimental
candidates and no immunotherapies have been approved for glioblastoma to-date. Intra-
and inter-tumoral heterogeneity, an inherently immunosuppressive environment and
tumor plasticity remain barriers to be overcome. Moreover, the unique tissue-specific
interactions between the central nervous system and the peripheral immune system
present an additional challenge for immune-based therapies. Nevertheless, there is
sufficient evidence that these challenges may be overcome, and immunotherapy
continues to be actively pursued in glioblastoma. Herein, we review the primary
ongoing immunotherapy candidates for glioblastoma with a focus on immune
checkpoint inhibitors, myeloid-targeted therapies, vaccines and chimeric antigen
receptor (CAR) immunotherapies. We further provide insight on mechanisms of
resistance and how our understanding of these mechanisms may pave the way for
more effective immunotherapeutics against glioblastoma.
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INTRODUCTION

Glioblastomas are grade IV gliomas of the central nervous system (CNS) and are the most common
and most aggressive type of brain maligancy (1). Patient prognosis is extremely poor, with a median
survival of less than 15 months with the current standard of care (SOC), which consists of surgical
debulking followed by radiation and chemotherapy (temozolomide) (2). Glioblastomas are
currently considered incurable, and all patients inevitably experience and succumb to tumor
recurrence, highlighting the urgent need to identify new therapeutic options (3).

The 2016 World Health Organization (WHO) classification of CNS tumors broadly groups
glioblastomas based on the mutational status of isocitrate dehydrogenase 1/2 (IDH) (4). Most
glioblastomas are IDH-wildtype (wt), which typically arise in older patients (age >50) and are
org May 2021 | Volume 12 | Article 6763011
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associated with poor prognosis (4). A small subset of
glioblastomas (~10%) are IDH-mutant (mut), which are often
secondary tumors that arise from the progression of lower grade
gliomas and are associated with better survival compared to
IDH-wt (4). Glioblastomas can be further classified into classical,
mesenchymal, and proneural subtypes based on unique
molecular signatures (5, 6). Classical tumors are characterized
by EGFR amplification as well as lack of TP53 mutations and
homozygous deletion of CDKN2A (5, 6). Mesenchymal tumors
have the worst prognosis and are characterized by expression of
NF1, often co-mutated with PTEN (5, 6). Proneural tumors have
the best prognosis and are characterized by PDGFRA expression
(5, 6). Whilst it was previously thought that a fourth subtype
(neural) existed, this notion was revised after the neural signature
could not be found in tumor cells (5, 6). Glioblastoma tumors are
highly heterogenous, with multiple subtypes making up different
regions of a single tumor (7, 8). Moreover, each subtype is
functionally distinct with unique immunological landscapes
including differences in T cell infiltration and macrophage/
microglia composition (9). For example, loss of NF1 (i.e.
mesenchymal subtype) is associated with a characteristic increase
in tumor-associated macrophages (TAMs) (9). Recurrent
glioblastomas tend to accumulate macrophages and resemble a
mesenchymal state as they become increasingly aggressive and
treatment-resistant (10). The immense heterogeneity and
microenvironmental evolution of glioblastoma tumors must be
considered when developing potential therapies.

Since the addition of temozolomide to glioblastoma SOC in
2005 (2), substantial research efforts and hundreds of clinical
trials have been initiated to in an effort to further improve SOC,
with very little success. Anti-angiogenic drugs such as
bevacizumab, an inhibitor of vascular endothelial growth
factor-A (VEGF-A), and cilengitide, an inhibitor of ⍺Vb3 and
⍺Vb5 integrin, have been highly pursued in glioblastoma clinical
trials, however both of these compounds failed to improve
survival of newly diagnosed and recurrent glioblastoma (11–
13). In fact, out of the hundreds of clinical trials that have been
initiated for glioblastoma in the last decade, few have improved
overall survival. Among those that have been moderately
successful is the tumor-treating fields (TTF) device, which was
approved by the U.S. Food and Drug Administration (FDA) in
2011 for recurrent or refractory glioblastoma (14). TTF involves
the local delivery of low-intensity electric fields to disrupt mitosis
of glioblastoma cells. In phase III clinical trials, patients with
newly diagnosed glioblastoma treated with TTFs in combination
with maintenance chemotherapy had a median overall survival
of 20.9 months compared to 16 months with maintenance
chemotherapy alone (14). Despite this modest success, TTFs
have not been incorporated into SOC due to ongoing skepticism
amongst the medical community regarding the unblinded nature
of TTF trials, as well as issues with patient compliance, which is
critical for treatment efficacy (15).

Overall, the failure of past therapeutic candidates to improve
glioblastoma SOC is in part a reflection of the rapid and
aggressive progression of this disease. Therefore, major
research efforts are being made to better understand the brain
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tumor microenvironment (TME), which holds untapped
potentia l for novel cancer therapies . The immune
compartment of glioblastomas is quite substantial, with the
majority of cells coming from the myeloid lineage (16). Despite
this, glioblastomas are effective at escaping host immune
surveillance. Indeed, one of the hallmarks of cancer is the
ability to evade cellular immunity (17). Immunotherapies seek
to re-direct immune cells against a tumor by exploiting a
patient’s immune system. Many immunotherapies such as
immune checkpoint inhibitors (ICIs) and chimeric antigen
receptor (CAR) T cell therapy have been enormously
successful for other aggressive cancers and are now being
investigated as potential therapies for glioblastoma (18–22).
Herein, we review several ongoing immunotherapeutic
approaches for glioblastoma with a focus on ICIs, myeloid-
targeted therapies, tumor vaccines, and CAR immunotherapies.
We further discuss some key challenges facing immunotherapy
in glioblastoma including mechanisms of resistance, which
must be overcome in order for the next generation of
immunotherapeutics to bring meaningful benefit to patients.
IMMUNE PRIVILEGE AND THE CENTRAL
NERVOUS SYSTEM: A CASE
FOR IMMUNOTHERAPY

The unique relationship between the brain and the immune
system is central to the use of immunotherapy in brain diseases
such as glioblastoma. Historically, the brain has been viewed as a
tightly sealed organ, guarded by a closely regulated blood brain
barrier (BBB), and devoid of any lymphatics or immune
surveillance. However, this notion of “immune privilege” was
disputed when it was discovered that allo-antigens could illicit an
immunological response in the brain (23). Several subsequent
isograft versus allograft studies further substantiated this field-
shifting discovery (24, 25). As a result of technological advances
such as intravital imaging, it is now known that immune
surveillance and specifically, the priming and activation of T
cells, largely takes place in the meningeal compartment of the
CNS (26). However, it only became clear in the last decade how
the CNS connects to the peripheral immune system. In 2015, two
seminal studies showed for the first time a network of functional
lymphatic vessels that line the dural sinuses, which drain into the
deep cervical lymph nodes, and serve as a gateway for T cell
trafficking between the periphery and the cerebrospinal fluid
(CSF) of the CNS (27, 28). While once thought to be immune
privileged, it is now appreciated that the brain receives constant
immune surveillance and communication with the peripheral
immune system, allowing the possibility of immunotherapy as a
means of treating diseases of the CNS.

Despite these potential opportunities, one remaining
challenge for glioblastoma treatment efficacy is overcoming the
BBB. This tightly regulated barrier between the peripheral blood
and CNS functions to facilitate the movement of ions,
neurotransmitters, and nutrients while shielding the CNS from
May 2021 | Volume 12 | Article 676301
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neurotoxins and most macromolecules (29). Thus, while small
(<400Da), lipid-soluble (<8 hydrogen bonds) drugs may be able
to passively diffuse across the BBB (30), large or water-soluble
drugs are largely excluded by a network of extremely tight
junctions (29). This presents a significant challenge for
systemic immune-based therapies that rely on effective
antibody delivery into tumors or peripheral transfer of cells.
Interestingly, one of the hallmarks of brain tumors is a loss of
BBB integrity and subsequent increased tight junction
permeability (31). In glioblastoma, this characteristic is
attributed to loss of claudin-3 and altered levels of claudin-1
and claudin-5, which are the major structural proteins that
regulate BBB tight junction permeability (32, 33). While
disruption of the BBB may seemingly be advantageous for
drug delivery, especially for drugs that depend on the
recruitment of peripheral immune cells, loss of BBB integrity
may also enhance tumorigenicity by enabling the infiltration of
pro-tumorigenic cel ls such as peripheral ly-derived
immunosuppressive macrophages (34). This double-edged
sword is further complicated by the fact that the BBB is not
ubiquitously disrupted, and in fact remains completely intact
within specific regions of glioblastoma tumors (35). Therefore,
systemic therapies for glioblastoma must be able to overcome
these complex limitations in order to be effective.

Immune Checkpoint Inhibitors (ICIs)
The discovery of immune checkpoint molecules PD-1 and CTLA-
4 has undoubtedly transformed the field of cancer immunotherapy
(36, 37). Anti-CTLA-4 and anti-PD-1/PD-L1 ICIs have been
extremely successful for aggressive cancers such as advanced
melanoma and non-small cell lung cancer (NSCLC) (18–20),
and there is growing interest in the utility of ICIs as a potential
treatment for glioblastoma. In chronic inflammatory conditions
such as cancer, prolonged T cell activation leads to increased
CTLA-4-expressing Tregs and upregulation of CTLA-4 on
cytotoxic T lymphocytes (CTLs), which interacts with the B7
family of receptors and leads to reduced T cell proliferation and
survival (Figure 1) (38). In gliomas, this immunosuppression is
bolstered by the upregulation of PD-L1 on tumor cells and
circulating monocytes/macrophages, which further inhibits
CD8+ and CD4+ T cell activation (39, 40). Prolonged T cell
activation also causes upregulation of PD-1, which recognizes
PD-L1 on antigen-presenting cells (APCs) and tumor cells, and
results in T cell exhaustion and reduced survival (Figure 1) (38).
These immune signatures, including the upregulation of multiple
immune checkpoints and an increased fraction of Tregs, are highly
characteristic of the glioblastoma TME, and warrant investigation
of ICIs as a potential means of restoring T cell responses (41–44).

Accordingly, several studies have explored the use of ICIs
in experimental models of glioma and results have been
promising (45–49). For example, in an implanted mouse
model of glioma using SMA-560 cells, anti-CTLA-4 conferred
long-term survival in 80% of mice, and reduced the fraction of
infiltrating Tregs (49). Additionally, anti-PD-1 eradicated
44% of orthotopic GL261 tumors when used alone, and 100%
when combined with temozolomide (45). In a glioblastoma
Frontiers in Immunology | www.frontiersin.org 3
stem cell (GSC) mouse model, triple combination therapy with
anti-CTLA-4, anti-PD-1 and an IL-12 expressing oncolytic
virus (G47D-mIL12) cured 89% of mice, with 100% of the
cured mice alive at 96 days post-tumor re-challenge, suggesting
establishment of immunological memory with this combination
therapy (50).

Although preclinical work has been promising, ICI efficacy in
glioblastoma patients has been limited. There have been a
number of case studies reporting dramatic responses in
glioblastoma patients receiving nivolumab (anti-PD-1) (51, 52),
most striking of which is the case of a 60-year-old patient with
recurrent glioblastoma who received nivolumab for 2 years
without any progression, toxicity or need for corticosteroid
treatment (52). Despite these exceptional cases, overall, ICI
clinical trials in glioblastoma have been disappointing.
Checkmate 143 trial was the first randomized trial testing ICIs
for recurrent cases of glioblastoma. The initial phase I study
assessed the safety of nivolumab (anti-PD-1) and ipilumamab
(anti-CTLA-4) in 40 patients with recurrent disease, and results
showed that nivolumab alone was better tolerated compared to
the dual therapy, with adverse advents associated with
ipilumumab (53). Unfortunately, the subsequent open-label
randomized phase 3 trial comparing nivolumab to
bevacizumab failed to improve overall survival in 369 patients
with recurrent glioblastoma (54). Additionally, a recent phase II
clinical trial assessing pembrolizumab (anti-PD-1) with or
without bevacizumab in recurrent glioblastoma patients failed
to meet the primary endpoint of 6 months progression-free
survival (PFS) with either therapeutic approach (55). Attention
has since shifted to newly diagnosed glioblastoma, where a pre-
surgical dose of nivolumab followed by post-surgical
continuation of treatment was reported to provide long-term
survival benefit in two patients with newly diagnosed
glioblastoma, who were alive at 33 and 28 months post-surgery
(56). However, all clinical studies to-date evaluating nivolumab
in primary glioblastoma, including Checkmate 498 and
Checkmate 548 trials, have failed to meet primary endpoints.

Overall, ICIs have failed to demonstrate a significant benefit in
glioblastoma thus far and several explanations have been proposed
(Figure 1). Glioblastomas are inherently immunologically
“cold”, containing few T cells and predominantly occupied by
pro-tumorigenic TAMs, particularly in IDH-wt tumors (57, 58).
While ICIs may initially restore T cell function, the overwhelming
presence of immunosuppressive myeloid cells remains a prevailing
source of resistance to treatment (59). Immunologically “hot”
tumors, characterized by high T cell infiltration and immune
activation, have generally been more responsive to ICIs, and there
is ongoing research aimed at understanding how to turn
immunologically cold tumors, like glioblastoma, into hot
tumors, in order to improve ICI efficacy (60, 61). Moreover,
only 3.5% of glioblastomas exhibit a high tumor mutational load
(62), which influences sensitivity to ICIs (63), suggesting that a
very small minority of glioblastoma patients are likely to benefit
from this treatment.

Another potentially overlooked mechanism of resistance to
ICIs is iatrogenic resistance in response to chemotherapy or
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steroids. The combination of ICIs with chemotherapy is
receiving widespread attention as a mechanism to induce
tumor mutations (neo-antigens) (64). However, systemic
chemotherapy, including temozolomide, is inherently
immunosuppressive and causes lymphodepletion and
myelotoxicity in preclinical models and in cancer patients (64).
This may be particularly harmful for glioblastoma patients as
tumor-infiltrating lymphocytes are already rare. Studies have
explored the possibility of local chemotherapy using implanted
slow-release polymers (65, 66), which avoids systemic
lymphodepletion and significantly enhances response to ICIs
in preclinical models by increasing tumor antigen-specific T cells
(67). In addition, corticosteroids are routinely prescribed for
cancer patients to manage symptoms, including dexamethasone,
which is given to glioblastoma patients to manage cerebral
edema. However, corticosteroids are anti-inflammatory, and
may antagonize the therapeutic effects of ICIs; in fact, they are
Frontiers in Immunology | www.frontiersin.org 4
used to treat immune-related adverse events from ICIs (68).
Alternative therapies for cerebral edema have been proposed,
such as bevacizumab or mannitol. However, both agents come
with significant drawbacks, including the need for repeated
intravenous infusions, elevated bleeding risk (69), impaired
perioperative healing (69), hypertension (70), and diminished
efficacy with prolonged use (71). Therefore, it is unclear how to
effectively integrate ICIs with current SOC treatments that are
critical for glioblastoma management.

Finally, glioblastoma tumors can adapt to immune
checkpoint blockade by upregulating alternative checkpoints
such as TIM-3 following ICI treatment (72). Combining anti-
PD-1 with TIM-3 blockade may potentially overcome this
acquired resistance. For example, combining anti-PD-1 with
anti-TIM-3 improved overall survival from 28% (anti-PD-1
alone) to 60% (dual therapy) in preclinical GL261 models, and
this was further enhanced to 100% when combined as a triple
FIGURE 1 | The current landscape of major glioblastoma immunotherapies and mechanisms of resistance. Immune checkpoint inhibitors (ICIs) target T cell
exhaustion through blockade of immune checkpoints PD-1 and CTLA-4 to restore T cell function and antitumor activity. Myeloid-targeted therapies such as CSF-1R
inhibitors reprogram immunosuppressive microglia (MG) or monocyte-derived macrophages (MDMs) (pro-tumorigenic) to become more anti-tumorigenic. Peptide
vaccines, dendritic cell (DC)-vaccines and personalized vaccines educate T cells to target tumor neoantigen(s). Chimeric antigen receptor (CAR) immunotherapies
involve genetically engineering a patient’s own T cells or non-patient NK-92 cells to express neoantigen-specific CARs, which are expanded in culture and adoptively
transferred to the patient. Glioblastoma is highly resistant to therapy, and currently, none of the depicted immunotherapies have succeeded in improving treatment,
although many clinical trials are currently ongoing. The grey boxes outline major mechanisms of resistance that are barriers to each immunotherapeutic approach,
including intrinsic, adaptive and iatrogenic mechanisms. Image made with BioRender.com.
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therapy with stereotactic radiosurgery (SRS) (73). In addition to
the PD-1 pathway, recent work has identified expression of the
inhibitory receptor CD161 on intratumoral T cells in
glioblastoma, and blockade of CD161 enhanced T cell anti-
tumor activity both in vitro and in GL261 transplantable
mouse models (74). Interestingly, CD161 is encoded by the
NK cell gene, KLRB1, highlighting NK cell receptors as
potential targets for immunotherapy. Taken together, future
studies should explore novel targets and combination therapies
to improve ICI efficacy.

Myeloid-Targeted Therapies
Macrophages are the most abundant cell type in glioblastoma,
accounting for up to 30% of the tumor, and are highly associated
with disease progression (16, 75). In glioblastoma, macrophages
can be either yolk sac-derived tissue-resident microglia (MG) or
monocyte-derived macrophages (MDMs) from the periphery
(34, 76, 77), with infiltrating MDMs representing the majority
of TAMs (78). In addition to having distinct ontogenies, TAMs
also adopt a variety of activation states that are not restricted to
the conventional M1/M2 designations (77, 79). Interestingly,
glioblastoma stem cells (GSCs) have been shown to recruit
TAMs by secreting periostin and cytokines associated with
alternative activation (80, 81). Once recruited, TAMs further
drive disease progression by enhancing the invasion of GSCs
through TGF-b1 signaling (82). In addition to the direct
protumorigenic effects of TAMs, they can also indirectly
mediate tumor progression by promoting T cell exhaustion via
the PD-L1/PD-1 pathway (Figure 1) (83). Moreover, infiltrating
TAMs in glioblastoma lack essential costimulatory molecules for
T cell activation (CD80, CD86, CD40), which further contributes
to an immunologically inactive tumor (84). Finally, TAMs play
an important role in tumor angiogenesis and have been
associated with resistance to anti-angiogenic therapies such as
bevacizumab (Figure 1) (85–87). Angiogenic factors not only
facilitate tumor progression, but also suppress APCs, DCs and T
cells, while augmenting the effects of TAMs and Tregs, resulting in
a continuous cycle of immunosuppression (88). Taken together,
therapies that target the myeloid compartment may be an
effective approach to reversing active immunosuppression in
the TME and preventing tumor progression.

There are many approaches to targeting TAMs in
glioblastoma, one of which is inhibition of colony stimulating
factor 1 receptor (CSF-1R), an important receptor for
macrophage differentiation and survival (89, 90). In mice, CSF-
1R inhibition re-educates macrophages to adopt an anti-tumor
phenotype, leading to tumor regression and increased survival,
with a particularly profound effect in proneural glioblastoma (89,
90). However, despite dramatic improvements in survival, drug
resistance eventually develops via alternative pathways such as
PI3K signaling (Figure 1) (91). In a phase II clinical study,
treatment with CSF-1R inhibitors in recurrent glioblastoma
patients failed to meet primary endpoint of 6 months PFS (92),
which may be attributable to the high frequency of PTEN and
PI3K pathway mutations among glioblastoma patients (5, 93).
Although CSF-1R inhibitors have generated little clinical success
Frontiers in Immunology | www.frontiersin.org 5
as monotherapies, emerging studies have suggested that TAM-
targeted therapies may be synergistic with radiotherapy, which
may serve as a more effective approach for targeting the myeloid
compartment (94, 95). In GL261-implanted glioblastoma mice,
irradiation enhanced survival when combined with local delivery
of lipid nanoparticles directed against PD-L1-expressing TAMs
and dinaciclib, a cyclin-dependent kinase 5 inhibitor (95).
Moreover, in preclinical mouse models of glioblastoma driven
by PDGFB overexpression and/or p53 knockdown, irradiation
combined with daily CSF-1R inhibition drastically increased
survival compared to either treatment alone (94). Despite these
promising preclinical studies, a phase 1b/2 clinical trial
evaluating CSF-1R inhibit ion in combination with
radiotherapy and temozolomide for newly diagnosed
glioblastoma did not improve median PFS or overall survival
compared to historical controls (NCT01790503) (96). Although
a comprehensive review of why this clinical trial failed is
currently ongoing, preclinical studies demonstrated that daily
dosing was critical to the efficacy of CSF-1R inhibition and
unfortunately, patient tolerability restricted dosing to 5 days/
week in the clinical setting (94).

In contrast to CSF-1R inhibitors, which target bulk
macrophages, little is known about the potential benefit of
targeting specific macrophage phenotypes and/or their
recruitment. New studies have enabled the investigation of MG
and MDMs and their distinct contributions to glioblastoma
based on identifying distinguishing markers such as MDM-
specific expression of CD49d and expression of Tmem119,
CX3CR1 and SiglecH on MG (34, 97, 98). In accordance with
these findings, anti-CD49d has been shown to selectively reduce
tumor MDM numbers in preclinical glioblastoma models (94).
Interestingly, while anti-CD49d monotherapy had no impact on
survival, combining this treatment with irradiation prolonged
survival in both mouse models, warranting further investigation
(94). In the GL261 mouse model of glioblastoma, histological
analyses have shown that MDMs are more readily recruited to
perivascular tumor regions compared to MG, which is a niche for
GSCs (78). Moreover, selectively limiting MDM infiltration
through genetic Ccl2 reduction prolongs survival of GL261
tumor-bearing mice (78). Although targeting CCL2-mediated
recruitment of MDMs has not yet been clinically explored,
combining CCL2 inhibition with anti-PD-1 treatment
prolonged survival in GSC glioblastoma-bearing mice, and
may be a potential candidate for future studies (99).
Interestingly, Tie2-expressing MDMs have been identified as a
distinct hematopoietic lineage of cells that are actively recruited
to glioblastoma tumors and were shown to drive tumor
angiogenesis in an orthotopic xenograft model of human
glioblastoma (87). Remarkably, loss of Tie2-expressing MDMs
completely abrogated neovascularizat ion in human
glioblastoma-derived tumor-bearing mice, suggesting that
selectively targeting Tie2-expressing MDMs may be another
potential therapeutic avenue (87). Taken together,
reprogramming macrophage phenotypes and targeting specific
TAM recruitment may be a more effective approach to disease
control that has yet to be clinically explored.
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Vaccines
Oncogenic driver mutations and passenger mutations can give
rise to new proteins (neoantigens), which contain unique
sequences (neoepitopes) that can be recognized by T cells
when presented by major histocompatibility complex (MHC)
molecules on the surface of cancer cells or APCs (100). Vaccine-
based therapeutics facilitate the education of tumor-specific
CTLs by soliciting highly expressed tumor neoepitopes (Figure
1) (101). The most rudimentary approach to therapeutic
vaccines is to directly administer one or more peptides that
mimic the tumor neoepitope(s) of interest, although dendritic
cell (DC)-based vaccines and personalized vaccines are also
being explored as potential therapies in glioblastoma.

Approximately 40% of glioblastomas overexpress EGFR, with
the most common variant being EGFRvIII, arising from the loss
of exons 2-7 from the EGFR coding sequence (102–104). The
high frequency of EGFRvIII across glioblastoma patients has led
to the development of Rindopepimut (CDX-110), a synthetic 14-
amino acid peptide that mimics the EGFRvIII mutational site
coupled to keyhole limpet hemocyanin (KLH), an immunogenic
carrier protein (105). In 2015, the FDA granted rindopepimut
the “Breakthrough Therapy Designation”, supporting the
expedition of its approval for glioblastoma, given that clinical
studies demonstrate substantial benefit over other available
therapies. The single arm multicenter phase II trial (ACT III),
which administered rindopepimut and adjuvant chemotherapy
for newly diagnosed EGFRvIII+ glioblastoma patients, had
promising results with a median overall survival of 21.8
months compared to matched historical controls treated with
SOC (106). However, the subsequent randomized double-
blinded phase III trial (ACT IV) failed to demonstrate any
increase in survival and was terminated (107). Loss of
EGFRvIII expression following vaccination suggests that the
recurrent tumor can become resistant to EGFRvIII-targeting
memory T cells (Figure 1) (106). In fact, half of all
glioblastomas that are initially EGFRvIII+ lose EGFRvIII
expression upon recurrence (108). While overexpression of
EGFRvIII was once believed to be predictive of poor prognosis
(103), a recent study assessing the EGFR status of 106 patients
found no association between EGFRvIII and overall survival or
progression-free survival in either newly diagnosed or recurrent
glioblastoma (104). Taken together, these observations may
explain why EGFRvIII-targeted vaccines have failed to control
disease and improve survival.

DCs are an essential component of vaccination because of
their role in antigen presentation and the priming and activation
of T cells (101). It was once thought that DCs played little to no
role in the active immunity of the brain, with MG assumed to be
the predominating APCs (109, 110). However, DCs are
increasingly being recognized for their functional role in the
brain as APCs and it has been reported that they can even arise
from MG differentiation (111, 112). Interestingly, MG exhibit a
great amount of plasticity and can be skewed towards
macrophage-like or DC-like cells by M-CSF or GM-CSF,
respectively (111). While traditional vaccines rely on the
activation of DCs and other APCs in vivo, DC-based vaccines
Frontiers in Immunology | www.frontiersin.org 6
deliver DCs pre-loaded with antigen by pulsing patient-derived
DCs ex vivo with either tumor lysate or predetermined
neoantigens (101). For glioblastoma, DC-based vaccines have
shown promise in early clinical studies (113, 114). A phase 1
clinical study investigating the dose-escalation of DCs pulsed
with tumor peptides in 12 newly diagnosed glioblastoma patients
demonstrated safety and tolerability of this therapy (113). The
double-blinded randomized phase II trial of ICT-107, involving
DCs pulsed with six synthetic peptides, increased overall survival
of newly diagnosed glioblastoma patients by 2 months compared
to placebo control, although it was not statistically significant
(114). Another DC vaccine, DCVax®-L, demonstrated safety and
tolerability in early studies and recently underwent phase 3
evaluation, but was unfortunately prematurely suspended due
to lack of funds (115). Interestingly, there appears to be subtype-
specific benefits of DC-based vaccines, whereby the
mesenchymal subtype is associated with heightened
responsiveness, including increased infiltration of CD3+ and
CD8+ T cells compared to other glioblastoma subtypes, and
increased survival compared to historical controls of the same
molecular subtype (116). Therefore, molecular subtyping may be
an important consideration for future study enrollment
and design.

Neoantigen-targeted vaccines for glioblastoma are extremely
limited by the high level of inter- and intra-tumoral
heterogeneity of these tumors (Figure 1) (7, 8). Tumor cells
also actively evade T cell immunosurveillance by altering surface
MHC expression and antigen presentation pathways (Figure 1)
(117). Thus, while the identification of neoantigens is critical,
immunization against a single molecular target, such as
EGFRvIII (rindopepimut), selectively eliminates neoantigen-
expressing cells, leaving the remaining tumor resistant to the
activated T cells (106, 118). As an alternative approach,
personalized vaccines may be more appropriate in highly
heterogenous tumors like glioblastoma (100). The personalized
vaccine pipeline involves first characterizing the mutational
profile of an individual’s tumor through comparative
sequencing, followed by selection of patient-specific targets and
finally, vaccine production (100). This personalized approach
effectively circumvents patient-to-patient variability and seeks to
maximize the affected tumor area by generating T cell immunity
against many targets. Preliminary studies using personalized
vaccines in newly diagnosed glioblastoma patients have been
generally positive (119, 120). In a phase I/Ib trial, patients were
immunized post-radiation with up to 20 synthetic long peptides
generated based on tumor DNA/RNA sequencing, and given an
immunostimulant, poly-ICLC. Neoantigen-specific T cell
responses were observed in patients who did not receive
dexamethasone and multiplex immunofluorescent staining of
tumor specimens revealed increased CD8+ and CD4+ T cell
infiltration in these responsive patients (119). Combining
personalized neoantigen vaccines with vaccination against
unmutated antigen (GAPVAC) have shown similarly
promising results where immunization generated sustained
central memory CD8+ T cell responses against unmutated
antigen, as well as neoepitope-specific Th1 responses in CD4+
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T cells (120). There are currently over 50 ongoing clinical trials
for various forms of vaccines against glioblastoma, with results
expected to be rolled out in the coming years.

CAR Immunotherapies
CAR T cell therapy is a highly personalized form of adoptive T
cell therapy that takes advantage of a patient’s own T cells and
strategically engineers them to express CARs, which target
cancer cells (Figure 1). CARs consist of an intracellular T cell
activation domain and an extracellular antigen-recognition
domain, which are joined together by a transmembrane
domain connected to a hinge (121). For refractory hematologic
cancers such as acute lymphoblastic leukemia (ALL) and diffuse
large-B-cell lymphoma (DLBCL), CAR T cell therapy has been
transformational (21, 22), however translating this therapy to
solid tumors comes with a unique set of challenges and no CAR
T cells have been approved for solid cancers to-date (122). Since
their inception, CARs have quickly evolved from basic CD3z-
signaling in the first-generation, to incorporating co-stimulatory
domains such as CD28, 4-1BB, OX40 and ICOS in second and
third-generations, followed by the addition of cytokine-
expressing domains in fourth-generation CARs (TRUCKs) and
most recently, cytokine receptor-expressing domains in fifth-
generation CARs (121–123). Despite the successful engineering
of more potent and immunogenic CAR-T cells, off-target effects,
poor tumor infiltration and a highly immunosuppressive TME
remain major barriers to the clinical efficacy of CAR T cells for
solid tumors (121).

There are several ongoing CAR T cell candidates for
glioblastoma including CARs directed against EGFRvIII,
IL13Ra2 and HER2. In an orthotopically transplanted human
glioblastoma xenograft model, third generation EGFRvIII-
specific CAR T cells prolonged survival of tumor-bearing mice
by up to 55 days compared to untreated mice (124). However,
clinical benefit has yet to be observed in patients where tumor
adaptations, including loss of EGFRvIII expression and post-
treatment infiltration of Tregs, invariably leads to resistance
against EGFRvIII-directed CARs (118, 125). Alternatively,
CAR T cell therapies can target IL13Ra2, which is
overexpressed in 58% of glioblastomas and is associated with
poor prognosis and a mesenchymal gene signature (126).
IL13Ra2-specific CAR T cells have been clinically well-
tolerated, and structurally optimized to prevent off-target Fc
interactions (127, 128). This therapeutic candidate, which is
currently being clinically evaluated (NCT02208362) (129), was
reported to cause dramatic tumor reduction and a sustained
complete clinical response (7.5 months) in a patient bearing
seven highly aggressive recurrent glioblastoma tumors (128).
HER2-targeted CAR T cells have demonstrated similar promise
in early phase clinical trials, where careful engineering has
improved tumor-specificity and reduced off-target effects
(130, 131).

The propensity for glioblastoma tumors to quickly adapt
through antigen escape remains a major barrier to CAR T cell
therapy (Figure 1) (132). To minimize the risk of treatment
resistance, it is likely that CAR T cells should target multiple
antigens or be combined with a synergistic therapy. For
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example, a bispecific CAR molecule directed against both
IL13Ra2 and HER2 (TanCAR) has been shown to promote
tumor regression and increase survival in mice xenografted
with a HER2+ IL13Ra2+ human glioblastoma cell line
compared to CAR T cells against either target alone (133).
IL13Ra2 CAR T cells are also currently being clinically
evaluated in combination with nivolumab and ipilimumab
for recurrent and refractory glioblastoma (NCT04003649)
(134). Synergistic combinatorial approaches will be
instrumental in improving CAR T cell efficacy, since CAR T
cells alone have shown limited utility against solid tumors,
including glioblastoma, thus far.

As CAR T cell therapy continues to advance, CAR-NK cell
therapy has also gained attention as a potential tool for cancer
immunotherapy. In glioblastoma, NK cells can mediate tumor
cell killing and are associated with good prognosis (135). A
notable advantage of CAR-NK cell therapy is the ability to be
administered to an HLA-mismatched patient, thus allowing
the possibility of an off-the-shelf therapy (136). However, the
time and cost associated with NK cell expansion and
manufacturing remain a barrier for CAR-NK cell therapy
(137). Currently, NK-92 cells are the only NK cell line
approved by the FDA and are compliant with good
manufacturing practices (138). Remarkably, preclinical
testing of HER-2-specific NK-92 cells (NK-92/5.28.z) in an
orthotopic xenograft mouse model of gl ioblastoma
demonstrated a dramatic increase in survival (200.5 days)
compared to mice treated with control NK-92 cells (73 days)
(139). Intracranial injection of NK-92/5.28.z cells are being
evaluated in the ongoing CAR2BRAIN clinical trial for
recurrent glioblastoma, with no toxicities reported thus far at
three dose levels (NCT03383978) (140, 141). Although the field
of CAR-NK cell therapy is still relatively new, preliminary
results have been promising, and the first ever clinical trial of
CAR-NK cells for glioblastoma will indeed shed light on
whether this immunotherapy can bring benefit to patients.
CONCLUSIONS

The field of cancer immunotherapy is rapidly evolving to meet
the unique requirements and challenges of diverse cancer types.
While immunotherapies have revolutionized the clinical
management of NSCLC, melanoma, renal cancer, and several
hematological malignancies, it is becoming increasingly apparent
that mechanisms of efficacy are not one-size-fits-all. For
glioblastoma, conventional therapies provide limited benefit to
patients and most attempts to incorporate immunotherapeutics
have been futile thus far. Efforts to optimize immunotherapies
need to overcome many obstacles to achieve efficacy, including
physical barriers to drug delivery (e.g. BBB), prominent tumor
heterogeneity, abundant GSC niches, lymphocyte scarcity, and
the immunosuppressive effects of SOC treatments. Studying the
dynamics of different glioblastoma subtypes, as well as long-term
survivors, will be an important resource in understanding aspects
of the TME that promote survival. Finally, a prevailing challenge
in glioblastoma research is that the effects of immunotherapy in
May 2021 | Volume 12 | Article 676301

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yu and Quail Glioblastoma Immunotherapy: Progress and Challenges
animal models rarely recapitulate clinical observations.
Genetically-engineered and transplantable mouse models are
the best tools available, however, they fail to fully reflect tumor
heterogeneity and host antitumor immunity. Further efforts are
needed to generate preclinical models that more accurately
recapitulate human disease.

Taken together, there is a desperate need to identify new
therapeutic opportunities in glioblastoma in order to improve
SOC. While immunotherapies have the potential to transform
glioblastoma treatment, many are limited by the unique and
challenging characteristics of the tumor. With a better
understanding of glioblastoma TME dynamics and improved
preclinical tools, we can open doors for more personalized and
targeted treatments that ultimately have the potential to have a
meaningful impact on patient outcomes.
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