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Immune checkpoint inhibitors(ICIs) that activate tumor-specific immune responses bring
new hope for the treatment of hepatocellular carcinoma(HCC). However, there are still
some problems, such as uncertain curative effects and low objective response rates,
which limit the curative effect of immunotherapy. Therefore, it is an urgent problem to
guide the use of ICIs in HCC based on molecular typing. We downloaded the The Cancer
Genome Atlas-Liver hepatocellular carcinoma(TCGA-LIHC) and Mongolian-LIHC cohort.
Unsupervised clustering was applied to the highly variable data regarding expression of
DNA damage repair(DDR). The CIBERSORT was used to evaluate the proportions of
immune cells. The connectivity map(CMap) and pRRophetic algorithms were used to
predict the drug sensitivity. There were significant differences in DDR molecular
subclasses in HCC(DDR1 and DDR2), and DDR1 patients had low expression of DDR-
related genes, while DDR2 patients had high expression of DDR-related genes. Of the
patients who received traditional treatment, DDR2 patients had significantly worse overall
survival(OS) than DDR1 patients. In contrast, of the patients who received ICIs, DDR2
patients had significantly prolonged OS compared with DDR1 patients. Of the patients
who received traditional treatment, patients with high DDR scores had worse OS than
those with low DDR scores. However, the survival of patients with high DDR scores after
receiving ICIs was significantly higher than that of patients with low DDR scores. The DDR
scores of patients in the DDR2 group were significantly higher than those of patients in the
DDR1 group. The tumor microenvironment(TME) of DDR2 patients was highly infiltrated
by activated immune cells, immune checkpoint molecules and proinflammatory molecules
and antigen presentation-related molecules. In this study, HCC patients were divided into
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the DDR1 and DDR2 group. Moreover, DDR status may serve as a potential biomarker to
predict opposite clinical prognosis immunotherapy and non-immunotherapy in HCC.
Keywords: Immune checkpoint inhibitors, hepatocellular carcinoma, DNA damage repair, tumor
microenvironment, immunotherapy
INTRODUCTION

Hepatocellular carcinoma (HCC) accounts for 75%~85% of
primary liver cancer cases, ranking sixth among the most
common cancers in the world and fourth in terms of cancer-
related deaths (1). However, traditional treatment is not ideal for
patients with advanced HCC (2). As an inflammation-related
tumor, HCC features an immunosuppressive tumor
microenvironment (TME) that can promote immune tolerance
through various mechanisms. There have been a series of advances
in immunotherapy, and immunotherapy that activates the tumor-
specific immune response brings new hope for the treatment of
HCC (3–5). However, there are still some problems, such as
uncertain curative effects, low objective response rates (ORRs),
many adverse reactions, and even drug resistance after initial
patient response (6, 7). Therefore, how to use molecular typing to
improve the immune microenvironment, modify the immune
response of patients, and guide the choice of immunotherapy or
combination therapy scheme to effectively improve the efficacy of
immunotherapy is an urgent problem to be solved and a future
direction for the development of accurate treatments for HCC.

Various HCC-related risk factors can cause DNA damage. If
damaged DNA is not repaired correctly in time, it can lead to gene
changes and genome instability, which are generally considered
common features of human HCC. Dysfunction of the DNA
damage repair (DDR) process is related to susceptibility to
HCC, and this process is often enhanced in HCC, resulting in a
poor anticancer treatment effect against HCC cells (8).
Chemotherapy is one of the few choices for most patients with
advanced HCC who do not need surgery, and HCC shows
different degrees of drug resistance to most chemotherapy
regimens; as such, few chemotherapy drugs are available
for HCC (9, 10). Many conventional chemotherapy drugs
produce effects by inducing DNA double-strand breaks. HCC
cells counteract the DNA damage caused by chemotherapy drugs
by strengthening their DDR ability, which often leads to
chemotherapy resistance (11, 12).

Mutations in members of DDR pathways may affect the
efficacy of immunotherapy. Alterations in DDR signaling
pathway members can lead to genomic instability and
increased mutation frequency. Mutations can be used as
potential biomarkers for the efficacy of immunotherapy. High
mutation loads are closely related to increases in neoantigen
loads (NAL) and tumor-infiltrating lymphocytes (TILs) (13, 14).
Among the possible biomarkers, mismatch repair deficiency
(MMR-D), homologous recombination gene mutations and
POLE mutations (which affect the DDR signaling pathway)
play an important role in the efficacy of immune checkpoint
inhibitors (ICIs). The main mechanism is that mutations in
repair genes are related to increases in NAL, CD4+ and CD8+
org 2
TILs, and the expression of cytotoxicity-related genes, PD-1 and
PD-L1 (15, 16). However, the molecular status of the DDR
pathway, the activity of the DDR pathway and the efficacy of
immunotherapy in HCC are not clear. Therefore, it is
particularly important to explore the potential significance of
DDR pathway molecular typing and DDR pathway activity in
predicting response to immunotherapy or routine treatment
in HCC.
METHODS

HCC Cohort and Immunotherapy Cohort
We downloaded the The Cancer Genome Atlas-Liver
hepatocellular carcinoma (TCGA-LIHC) cohort data, which
includes mutation data, expression data and clinical data, from
the TCGA database (https://portal.gdc.cancer.gov/) using the
“TCGAbiolinks” R package (17). Additionally, we collected
data from another LIHC cohort (Mongolian-LIHC, N = 70)
(18), which included mutation data, expression data and clinical
data, from published literature. We collected data from a bladder
cancer cohort (ICI-treated BLCA, N = 348) receiving
immunotherapy, which included mutation data, expression
data and immunotherapy prognosis data (19), by using the
IMvigor210CoreBiologies R package. Data from another
melanoma cohort receiving ICIs were obtained from the Gene
Expression Omnibus (GEO) database (GSE78220, N = 27) (20).
These two immunotherapy cohorts were used to verify the
potential utility of DDR typing for predicting immunotherapy
response. See Figure 1A for the detailed analysis flow of
this study.

DDR Clustering and DDR Score
Construction
The R package “ConsensusClusterPlus” was used to identify
subtypes of DDR-related genes with highly variable expression
(Median(-)> 1) in the TCGA-LIHC cohort, Mongolian-LIHC
cohort and ICI-treated cohort (21). After unsupervised
clustering (using the following parameters: maxK=8, reps=1,000,
pItem=0.8, pFeature=0.8, clusterAlg=“km”, distance=“Euclidean”,
innerLinkage=“average”, and finalLinkage=“average”), we
obtained two types of DDR clusters. Then, we used the “limma”
R package to analyze the differences in expression data in different
DDR molecular subclasses in the TCGA-LIHC cohort,
Mongolian-LIHC cohort and ICI-treated cohort (22). Single-
sample gene set enrichment analysis (ssGSEA) algorithm and
DDR-related gene sets were used to construct the DDR signature
(23, 24). ssGSEA was similar to GSEA. For a given signature G of
size NG and single sample S, of the data set of N genes, the genes
are replaced by their ranks according to their absolute expression
July 2021 | Volume 12 | Article 676922
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from high to low: L = {r1,r2,…,rN}. An enrichment score ES(G,S) is
obtained by a sum (integration) of the difference between a
weighted ECDF of the genes in the signature PGw and the
ECDF of the remaining genes PNG (25):

ES(G, S) =oN
i=1 = ½Pw

G(G, S, i) − PNG(G, S, i)�

where Pw
G(G, S, i) =orj∈G,j≤i

jrjja
Srj∈G

jrjja
and PNG(G, S, i) = o

r∉G,j≤i

1
(N�NG)

This calculation is repeated for each signature and each sample in
the data set.

Immune Correlation Analysis
The CIBERSORT algorithm (https://cibersort.stanford.edu/
index.php) was used to evaluate the relative abundances of 22
immune cells in the TME of patients with LIHC (26). Immune-
related genes and immune signatures were collected from
published literature (27). The GSEA algorithm evaluates the
difference in the enrichment degree of immune pathways,
metabolic pathways and pathological pathways between
different groups according to expression differences between
the groups. Pathways with a P value less than 0.05 were
considered to have statistically significant differences (28).

Compound-Targeting Analysis
To identify which inhibitors/compounds may be useful for
targeting cells with TP53 and RB1 co-mutations, we employed
the Broad Institute’s connectivity map (CMap) build 02 (29),
which is a publicly available online analytical tool (https://
portals.broadinstitute.org/cmap/) that allows the analyzer to
predict potential inhibitors/compounds based on upregulated
and downregulated genes in a gene expression signature.

To further discover the mechanism of action (MoA) (30) and
inhibitors/compounds, we used CMap tools (https://clue.io/).
The CMap method is similar to GSEA, which can identify
similarities and interactions (range: -1 to 1) based on
differential gene expression data.

By using the pRRophetic R package (31), we constructed a
ridge regression model based on the Genomics of Drug
Sensitibity in Cancer (GDSC) cell line expression profile (www.
cancerrxgene.org) (32) and the TCGA-LIHC, Mongolian-LIHC
and ICI-treated cohort gene expression profiles to predict the
half maximal inhibitory concentration (IC50) values
of compounds/inhibitors.

Statistical Analysis
For comparisons of factors such as immune cells and immune
gene expression between the DDR1 and DDR2 groups, we used
the Mann-Whitney U test. Fisher’s exact test and the chi-square
test were used to analyze the contingency table. The Kaplan-
Meier (KM) method and the log-rank test were applied in the
survival analysis. When carrying out the survival analysis and
comparing the efficacy of immunotherapy with that of traditional
treatment, the survminer package (33) (surv_cutpoint function)
Frontiers in Immunology | www.frontiersin.org 3
was used to calculate the best cutoff for each cohort according to
the relationship between the survival result and the ssGSEA score
of DDR signaling. In this study, P < 0.05 was considered
statistically significant, and all statistical tests were two-tailed.
All statistical analyses and generation of visuals were performed
using R software (version 3.6.3).
RESULTS

Relationship Between DDR Type and
Clinical Prognosis
On the basis of the TCGA-LIHC expression data, we used the R
package “ConsensusClusterPlus” to identify subtypes of samples
based on the expression of DDR-related genes with highly
variable expression (MAD) by unsupervised clustering
(Figure 1B) and identified two main subtypes via heatmap
analysis (Figure 1C). The cluster with low expression of DDR-
related genes was called DDR1, while the cluster with high
expression of DDR-related genes was called DDR2. The
differential expression analysis of DDR-related genes between
DDR1 and DDR2 in the TCGA-LIHC cohort showed that DDR1
had significantly lower expression of DDR-related genes than
DDR2 (P < 0.05). The expression of DDR-related genes in the
DDR2 group was significantly higher than that in the DDR1
group (P < 0.05; Figure 2A). The result of this typing was also
verified in another cohort (Mongolian-LIHC), the samples of
which were also divided into a DDR1 group with low expression
of DDR-related genes and a DDR2 group with high expression of
DDR-related genes (Figure 2B). In the TCGA-LIHC cohort
receiving traditional treatment, the DDR2 group had a
significantly shorter OS time than the DDR1 group
(Figure 2C, P < 0.001, HR = 1.94; 95%CI: 1.26-2.99). In the
Mongolian-LIHC cohort receiving traditional treatment, the
DDR1 group had a shorter OS than the DDR2 group
(Figure 2D; P = 0.033, HR = 2.46, 95%CI: 1.08-5.6). In a
cohort of patients with advanced bladder cancer receiving
immunotherapy, we were also able to divide the patients into
two molecular subclasses: DDR1 patients with low expression of
DDR-related genes and DDR2 patients with high expression of
DDR-related genes (Figure 2E). Interestingly, among these ICI-
treated patients, DDR2-type patients had significantly longer
survival times from immunotherapy than DDR1-type patients
(Figure 2F, P= 0.043, HR = 0.76, 95%CI: 0.59-0.99). To
determine the associations between common clinical factors
and DDR type, we compared the ages and clinical stages of
patients in each DDR group. In the TCGA-LIHC cohort, DDR2
patients were significantly younger than DDR1 patients
(Figure 2G, P < 0.05). In terms of clinical stage, we found that
the DDR1 group had a higher proportion of early-stage patients
(stage I and II) than the DDR2 group (Figure 2H, P < 0.05).

Analysis of the Mutation Landscape in the
Different DDR Groups
The nonsynonymous mutation data of TCGA-LIHC and
Mongolian-LIHC were used to compare the mutations in the
July 2021 | Volume 12 | Article 676922
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different DDR groups. The analysis of driving genes showed that
in the TCGA-LIHC cohort, the DDR2 group had more patients
with TP53 mutations than the DDR1 group, and the mutation
frequencies of other driver mutations were not significantly
different between the DDR1 and DDR2 groups (Figure 3A).
Some nondriver mutations had high frequencies; the top 10
genes with the highest frequencies of driver mutations (Top10
genes) were TTN, ALB, PCLO, RYR2, ABCA13, APOB, FLG,
OBSCN, and XIRP2 and HMCN1 (Figure 3A). Among these
Frontiers in Immunology | www.frontiersin.org 4
mutations, most were missense mutations. In the Mongolian-
LIHC cohort, we found that patients in the DDR2 group had a
higher mutation frequency of TP53 than patients in the DDR1
group. Similarly, the mutation frequencies of the Top10 genes
were not significantly different between the DDR1 and DDR2
groups (Figure 3B). Then, we performed mutual exclusion/
cooccurrence analysis on the mutations in each cohort. In the
TCGA-LIHC cohort (Figure 3C), TP53 mutation was mutually
exclusive with MUC16 or CTNNB1 mutation. In the Mongolian-
LIHC cohort (Figure 3D), TP53 mutation and FAT3 or LRP1B
mutation were cooccurring mutations. The above results suggest
that there is no significant difference in the frequencies of high-
frequency nonsynonymous mutations in driver genes between
the with DDR1 and DDR2 groups.

Analysis of the Immune Microenvironment
in the Different DDR Types
The immune microenvironment is one of the key factors
affecting the efficacy and clinical benefits of cancer patients
receiving ICIs. Therefore, we explored the differences in the
immune microenvironment in different DDR molecular
subclasses in terms of the proportions of immune cells, the
expression levels of immune-related genes, the immune status
and the enrichment degree of specific pathways. CIBERSORT
analysis showed that DDR2 patients had significantly increased
proportions of activated immune cells (Figure 4A; P < 0.05),
such as memory B cells, activated memory CD4+ T cells, M0
macrophages, plasma cells and T follicular helper cells (Tfhs).
Checkpoint molecules are an important target of ICIs, and we
analyzed the expression of checkpoint molecules in different
DDR types. Compared with the DDR1 type, the DDR2 type had
significantly increased expression of immune checkpoint
molecules (Figure 4B; P < 0.05), such as CD274, HAVCR2,
LAG3, CD276, CTLA4, TIGIT and PDCD1. Additionally,
inflammatory factors and proteins with other immune
functions (antigen presentation and other functions) also play
a key role in the response to immunotherapy. The expression
levels of genes related to antigen processing and presentation
(HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-DQB1. HLA-
DQB2, and HLA-DRA), chemokine genes (CX3CL1 and
CXCL9) and proinflammatory molecule genes (TNFSF9, IL1B,
IL1A, and IFNG) in the DDR2 group were significantly higher
than the respective levels in of the DDR1 group (P < 0.05;
Figure 4C). The result of immune signature analysis showed that
the DDR2 group had significantly higher immune scores,
indicating characteristics such as BCR richness, BCR Shannon
diversity, TCR richness and Th2 cell features, than the DDR1
group (P < 0.05; Figure 4D). In contrast, the stromal score of
patients in the DDR1 group was significantly higher than that of
patients in the DDR2 group (P < 0.05; Figure 4D). In the TCGA-
LIHC cohort, GSEA was used to analyze and compare the
enrichment of pathways in DDR1 and DDR2 patients. For
some DDR-related signaling pathways (such as the nucleotide
excision repair pathway), immune-related pathways (such as
pathways related to the positive regulation of interleukin-6
biosynthetic processes, B cell activation, the positive regulation
A

B

C

FIGURE 1 | (A) Overview of the data processing in this study. (B) Mean
coclustering ratio vs MAD threshold (in = mean pairwise coclustering within a
cluster, out = mean pairwise coclustering across clusters), which was used as
the objective function to find the optimal solution. (C) Coclustering matrix for a
solution with 2 clusters and MAD threshold = 1.
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FIGURE 2 | (A) Heatmap showing normalized expression levels of DDR-related signature genes (rows) across subjects (columns) classified into two molecular
subclasses, DDR1 and DDR2, which were determined by an unsupervised approach (consensus clustering), in the TCGA-LIHC cohort. Each signature gene is
significantly upregulated or downregulated in one subclass relative to the other subclasses, as indicated by the annotation bars on the left side. Clinical annotations
are shown at the top. (B) Overall survival for subjects grouped according to molecular subclass (DDR1 and DDR2) in the TCGA-LIHC cohort. (C) Heatmap showing
normalized expression levels of DDR-related signature genes (rows) across subjects (columns) classified into two molecular subclasses (DDR1 and DDR2), which
were determined by an unsupervised approach (consensus clustering), in the Mongolian-LIHC cohort. Each signature gene is significantly upregulated or
downregulated in one subclass relative to the other subclasses, as indicated by the annotation bars on the left side. Clinical annotations are shown at the top.
(D) Overall survival for subjects grouped according to molecular subclass (DDR1 and DDR2) in the Mongolian-LIHC cohort. (E) Heatmap showing normalized
expression levels of DDR-related signature genes (rows) across subjects (columns) classified into two molecular subclasses (DDR1 and DDR2), which were
determined by an unsupervised approach (consensus clustering), in the ICI-treated BLCA cohort. Each signature gene is significantly upregulated or downregulated
in one subclass relative to the other subclasses, as indicated by the annotation bars on the left side. Clinical annotations are shown at the top. (F) Overall survival for
subjects grouped according to molecular subclass (DDR1 and DDR2) in the ICI-treated cohort. (G) Comparison of the proportions of patients in different clinical
stages between two molecular subclasses (DDR1 and DDR2) in the TCGA-LIHC cohort. (H) Comparison of age between two molecular subclasses (DDR1 and
DDR2) in the TCGA-LIHC cohort (**P < 0.01; ****P < 0.0001).
Frontiers in Immunology | www.frontiersin.org July 2021 | Volume 12 | Article 6769225
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of T cell activation, TCR signaling, antigen processing and the
presentation of peptide antigen via MHC class II) were
significantly activated in the DDR2 group compared with the
DDR1 group. In contrast, the activities of some immune
Frontiers in Immunology | www.frontiersin.org 6
depletion-related pathways (such as pathways related to lipid
biosynthetic processes and fatty acid metabolic processes) were
significantly higher in the DDR1 group than in the DDR2 group
(Figure 4E). Additionally, the above GSEA results were also
A

B

D

C

FIGURE 3 | (A) Oncoplot showing mutated driver genes (rows) across subjects (columns) split into two molecular subclasses (DDR1 and DDR2) in the TCGA-LIHC
cohort. The top panel shows the genes selected as the top 10 genes with driver mutations, while the bottom panel shows the top 10 additional genes with
mutations that were not driver mutations. Clinical annotations are shown at the bottom. (B) Oncoplot showing mutated driver genes (rows) across subjects (columns)
split into two molecular subclasses (DDR1 and DDR2) in the Mongolian-LIHC cohort. The top panel shows the genes selected as the top 10 genes with driver
mutations, while the bottom panel shows the top 10 additional genes with mutations that were not driver mutations. Clinical annotations are shown at the bottom.
(C) Heatmap showing mutually exclusive and cooccurring mutations in the genes from (A) in the TCGA-LIHC cohort. Ribbon plot showing cooccurrence or mutually
exclusive relationships between pairs of genes from (A) in the TCGA-LIHC cohort. (D) Heatmap showing mutually exclusive and cooccurring mutations in the genes
from (B) in the Mongolian-LIHC cohort. Ribbon plot showing cooccurrence or mutually exclusive relationships between pairs of genes from (A) in the Mongolian-
LIHC cohort.
July 2021 | Volume 12 | Article 676922
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verified in the Mongolian-LIHC cohort (Figure S1). We further
demonstrated the differences in the expression levels of genes in
the above pathways between the DDR1 and DDR2 groups via
heatmap analysis (Figures S2, S3).
Frontiers in Immunology | www.frontiersin.org 7
Relationship Between DDR Score and
Clinical Prognosis
To explore the relationship between the DDR score and the
prognosis of LIHC patients receiving traditional treatment, we
A

B

D

E

C

FIGURE 4 | (A) Comparison of the proportions of 22 immune cells estimated by CIBERSORT between two molecular subclasses (DDR1 and DDR2) in the TCGA-
LIHC cohort. (B) Comparison of the expression levels of immune checkpoint molecules between two molecular subclasses (DDR1 and DDR2) in the TCGA-LIHC
cohort. (C) Heatmap depicting the mean differences in immune-related gene mRNA expression between two molecular subclasses (DDR1 and DDR2) in the TCGA-
LIHC cohort. The y-axis indicates the gene names. Each square represents the fold change of or difference in each indicated immune-related gene between DDR1
and DDR2 tumors in the TCGA-LIHC cohort. Red indicates upregulation, while blue indicates downregulation. (D) Comparison of the immune signature scores
between two molecular subclasses (DDR1 and DDR2) in the TCGA-LIHC cohort. (E) Biological function pathways, such as DNA repair, immune-related and immune-
exhausted pathways, identified as enriched between DDR1 and DDR2 tumors in the TCGA-LIHC cohort. GSEA of hallmark gene sets downloaded from MSigDB. All
transcripts were ranked by the log2 (fold change) value between DDR1 and DDR2 tumors. Each run was performed with 1,000 permutations. Pathways with
significant enrichment between DDR1 and DDR2 tumors are shown. (ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; Mann-Whitney U test).
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determined the DDR score using the ssGSEA algorithm and
DDR-related gene sets. In TCGA-LIHC, patients with higher
DDR scores had significantly reduced OS compared with those
with lower DDR scores (Figure 5A, P < 0.001, HR = 2.23, 95%CI:
1.51-3.28). Similarly, in the Mongolian-LIHC cohort, patients
with high DDR scores had shorter OS than patients with low
DDR scores (Figure 5B; P = 0.001, HR = 3.54, 95%CI: 1.35-9.27).
Next, we analyzed the difference in DDR scores in different DDR
Frontiers in Immunology | www.frontiersin.org 8
groups. In both the TCGA-LIHC and Mongolian-LIHC cohorts,
DDR2 patients had higher DDR scores than DDR1 patients (P <
0.0001, Figures 5C, D). This result was consistent with the
analysis of DDR classification and clinical prognosis. To
further verify the utility of the DDR score in patients receiving
ICIs, we also determined the DDR scores in an ICI-treated BLCA
cohort. In the ICI-treated BLCA cohort, patients with high DDR
scores had significantly longer OS after immunotherapy than
A B

D E F

G IH

C

FIGURE 5 | (A) Overall survival for subjects grouped according to DDR score subtype (high DDR score and low DDR score) in the TCGA-LIHC cohort. (B) Overall
survival for subjects grouped according to DDR score subtype (high DDR score and low DDR score) in the Mongolian-LIHC cohort. (C) Comparison of the DDR
scores between two molecular subclasses (DDR1 and DDR2) in the TCGA-LIHC cohort. (D) Comparison of the DDR scores between two molecular subclasses
(DDR1 and DDR2) in the Mongolian-LIHC cohort. (E) Overall survival for subjects grouped according to DDR score subtype (high DDR score and low DDR score) in
the ICI-treated BLCA cohort. (F) Comparison of the DDR scores between two molecular subclasses (DDR1 and DDR2) in the ICI-treated BLCA cohort. (G) Overall
survival for subjects grouped according to DDR score subtype (high DDR score and low DDR score) in the ICI-treated melanoma cohort. (H) Comparison of TMB
between two molecular subclasses (high DDR score and low DDR score) in the TCGA-LIHC cohort. (I) Comparison of TMB and NAL between two molecular
subclasses (high DDR score and low DDR score) in the ICI-treated cohort. (*P < 0.05; ***P < 0.001; ****P < 0.0001; Mann-Whitney U test).
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patients with low DDR scores (Figure 5E, P = 0.03, HR = 0.75,
95%CI: 0.57-0.99). Additionally, patients with the DDR2 type
had higher DDR scores than patients with the DDR1 type
(Figure 5F, P < 0.0001). In another ICI-treated melanoma
cohort, compared with the survival time of patients with low
DDR scores, the survival time of patients with high DDR scores
was significantly prolonged (Figure 5G, P = 0.037, HR =0.33). In
the TCGA-LIHC cohort, patients with high DDR scores had
significantly higher TMB levels than those with low DDR scores
(P < 0.05; Figure 5H). Similarly, in a BLCA cohort receiving
immunotherapy, we also found that patients with high DDR
scores had higher immunogenicity than patients with low DDR
scores, and the patients with high DDR scores showed increased
TMB and NAL levels (Figure 5I, all P < 0.05).

Association Between the DDR Score and
Sensitivity to Other Drugs
We used CMap analysis to predict therapeutic drugs and targets
for the high DDR score group. CMap is a gene expression profile
database containing gene expression data developed by the
Broad Research Institute that is mainly used to reveal
functional relationships between small molecule compounds,
genes and disease states. The relationships between these
factors are evaluated by a score, which ranges from -1 to 1.
The results are arranged in descending order from high to low.
The closer the value is to -1, the more likely the small molecules
are to be an antagonist in patients with a high DDR score
(Figure 6A). Therefore, these antagonistic small molecules can
be candidate drugs for the treatment of patients with high DDR
scores. We found that 8-azaguanine, bufexamac, estriol (an
estrogen receptor agonist), oxetacaine, pyrvinium, repaglinide
(an insulin secretagogue), rimexolone (a glucocorticoid receptor
agonist) and trazodone (an adrenergic receptor antagonist) may
be candidate drugs for treating patients with high DDR scores
(Figure 6B). Additionally, we predicted the drug sensitivity of
TCGA-LIHC patients by using the pRRophetic algorithm and a
ridge regression model. Targeting the cell cycle (CGP-60474,
GW 843682x, BI-2536, and CGP-082996), PI3K/mTOR
signaling (JW-7-52-1, MK-2206, and A-443654), RTK
signaling (sunitinib and PHA-665752) and WNT signaling
(CHIR-99021) was significantly more effective in high DDR
score patients than in low DDR score patients (Figure 6C).

Differences in Pathway Activation Degree
in the High and Low DDR Score Groups
In the TCGA-LIHC cohort (Figure 7A), we found that LIHC
patients with high DDR scores showed significant activation of
DNA repair-related signaling pathways (pathways related to
nucleotide-excision repair, DNA gap filling, nucleotide excision
repair, and DNA double-strand break repair), immune pathways
(pathways related to downstream TCR signaling and positive
regulation of activated T cell proliferation), cell cycle-related
pathways (pathways related to G2/M checkpoints, the G2/M
transition, and the G1/S transition of the mitotic cell cycle), and
traditional drug resistance pathways (pathways related to
MAPK6/MAPK4 signaling and PIP3, which activate AKT
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signaling) compared with patients with low DDR scores. In
contrast, the activity of some pathways, such as pathways
related to fatty acid metabolic processes, lipid catabolic
processes and cholesterol transport, was significantly higher in
patients with low DDR scores than in those with high DDR
scores. In the Mongolian-LIHC cohort, the activity of DNA
repair and immune-related pathways in the immune
microenvironment of patients with higher DDR scores was
significantly higher than that of patients with lower DDR
scores. However, LIHC patients with low DDR scores showed
a significant decrease in the activity of immune depletion and
drug resistance-related pathways (Figure 7B). The above GSEA
results were verified in the ICI-treated BLCA cohort in the same
way (Figure 7C). We further confirmed the differences in the
expression levels of the genes in the above pathways between the
low DDR score group and the high DDR score via heatmap
analysis (Figures S4–S6).
DISCUSSION

In this study, we found that there were significant differences in
the activation of pathways in different DDR groups in HCC
cohorts, and DDR1 patients had low expression of DDR-related
genes, while DDR2 patients had high expression of DDR-related
genes. After receiving traditional treatment, DDR2 patients had
significantly shorter OS than DDR1 patients. In contrast,
patients in the DDR2 group had significantly longer OS after
receiving ICIs than those in the DDR1 group. After traditional
treatment, patients with high DDR scores had worse survival
prognoses than those with low DDR scores. However, the
survival of patients with high DDR scores after receiving ICIs
was significantly higher than that of patients with low DDR
scores. The DDR score of patients in the DDR2 group was
significantly higher than that of patients in the DDR1 group. To
further explore the differences in the TME in different DDR
groups, we further explored the potential molecular mechanism
underlying the increased response to immunotherapy in the
DDR2 group in terms of immune cells, immune-related gene
expression, immune signatures and activation of specific
pathways. The TME of DDR2 patients has highly infiltrated
with activated immune cells and had high expression of immune
checkpoint molecules, proinflammatory molecules and antigen
presentation-related molecules. GSEA showed that the activity of
immune-related pathways, DNA repair pathways and traditional
drug resistance pathways in DDR2 patients was significantly
higher than that in DDR1 patients, while the activity of some
immune depletion pathways in DDR1 patients was significantly
higher than that in DDR2 patients. Similarly, the activity of
immune pathways, DDR-related pathways and traditional drug
resistance pathways was significantly higher in patients with high
DDR scores than in those with low DDR scores. Additionally, the
CMap algorithm and a heuristic algorithm were used to predict
potential drugs for LIHC patients (of the DDR2 type or with a
high DDR score).
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Patients with DDR1 HCC had lower DDR scores and
benefited more from traditional treatment than patients with
DDR2 HCC, which may be related to the low DDR activity, cell
cycle activity and traditional drug resistance pathway activity in
the DDR1 group. Studies have shown that high activity of the
MAPK or PI3K/AKT pathway is related to chemotherapy
resistance in cancer patients (34). Additionally, when DNA
damage occurs, intracellular damage receptors, such as ataxia
telangiectasia mutated protein (ATM), Rad3-related protein and
the Rad9-Rad1-Hus1 protein complex, detect DNA damage and
initiate the signal transduction cascade involving checkpoint
kinases 1 and 2 and cell cycle regulators. These cell cycle
regulators can block the G1 and S cell cycles stages and the
G2/M cell cycle transition by activating p53 and inhibiting cell
cycle-dependent kinases, enabling the cells to re-enter the cell
cycle after successful repair. Once the DNA in cells cannot be
repaired, the apoptosis pathway will be activated in the cells,
inducing self-directed apoptosis to prevent the damaged DNA
from being transmitted to the offspring (35). Yang et al. found
Frontiers in Immunology | www.frontiersin.org 10
that the overexpression of XRCC4-like factor (XLF), a key gene
in the DDR pathway, was significantly related to the poor OS rate
of HCC patients receiving traditional treatment. Knocking out
XLF increased the sensitivity of HCC to chemotherapy by
inhibiting DNA repair (36). Chen et al. showed that reducing
the DNA repair ability of HCC cells can further enhance the
cytotoxicity of radiotherapy and chemotherapy (11).

Patients with DDR2 cancer had a higher DDR score and
benefited less from traditional treatment than patients with
DDR1 cancer, but the DDR2 type was significantly related to a
longer survival time with immunotherapy. This increased
survival in the DDR2 group may be related to the TME of
patients in the DDR2 group or patients with a high DDR score,
who were more likely to receive immunotherapy. Patients with
the DDR2 type had higher proportions of activated immune cells
and higher expression of immune checkpoint molecules,
chemokines (CXCR3 and CXCL9), proinflammatory factors
(such as IFNg), and antigen processing- and presentation-
related molecules (HLA-related molecules) than patients with
A

B

C

FIGURE 6 | (A) Heatmap showing the enrichment scores (positive in blue and negative in red) of each compound from the CMap analysis of the TCGA-LIHC,
Mongolian-LIHC and ICI-treated cohorts. The enrichment score (ES) ranged from -1 (negative connectivity) to 1 (positive connectivity). (B) Heatmap showing each
compound from the CMap analysis that shares MoAs (rows) sorted by the number of compounds with shared MoAs in the remaining high DDR score and low DDR
score tumors. (C) Heatmap depicting the mean differences in IC50 values between two molecular subclasses (high DDR score and low DDR score tumors) in the
TCGA-LIHC cohort. The y-axis indicates the drug names. Each square represents the fold change of or difference in each indicated IC50 value between high DDR
score and low DDR score tumors in the TCGA-LIHC cohort. Red indicates upregulation, while blue indicates downregulation. The drug types are shown on the left.
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the DDR1 type. Additionally, the activity of pathways related to
immune cell activation, proinflammatory factor secretion, and
antigen processing and presentation was significantly higher in
DDR2 patients than in DDR1 patients. Immune checkpoint
molecules are important targets for ICI therapy, and studies
suggest that high expression of immune checkpoint molecules is
related to superior immunotherapy efficacy (37, 38). TILs are an
important part of HCC TME. High levels of lymphocyte
infiltration, especially infiltration of CD4+ T cells and CD8+ T
cells, are related to superior prognosis after immunotherapy (39,
40). Andrea Necchi et al. showed that a high lymphocyte
infiltration level indicates a strong antitumor immune response
across cancers (41). CD8+ T cells are the main TILs in liver
cancer and can release perforin and granzyme B through the Fas/
FasL pathway or kill target cells by releasing IFN-g and TNF (42).
The expression of Fas/FasL in CD8+ T cells is positively
correlated with the antitumor immunity of liver cancer (43).
Additionally, cytokines in the TME play an important role in the
formation of the inflammatory immune microenvironment (44).
For example, chemokines (CXCL9 and CXCR3) can exert
antitumor responses by recruiting CD4+ T cells, CD8+ T cells,
NK cells and M1 macrophages into the tumor center (45–47).
Frontiers in Immunology | www.frontiersin.org 11
Additionally, IFN-g can not only promote TILs to exert
antitumor reactions but also mediate iron-induced death in
tumor cells (48). Additionally, an IFN-g-related gene
expression profile has also been significantly associated with
superior ICI efficacy (49). The activity of pathways related to
antigen processing and presentation in the TME will also affect
the immunogenicity of tumors, and an increase in antigen
processing and presentation activity is beneficial for improving
the body’s recognition of tumor antigens (50). Additionally, high
expression levels of tumor-specific MHC-II molecules are
significantly correlated with a superior immunotherapy
response (51). Studies have shown that an increase in lipid
metabolism can promote cancer metastasis and progression
(50). Additionally, the enhancement of cholesterol metabolism
will further inhibit T cells from enacting tumor cell killing.
Consistent with the published literature (50–52), the activity of
some immune exhaustion-related pathways (such as pathways
related to cholesterol metabolism and lipid metabolism) was
significantly decreased in patients in the DDR2 group.

However, this study also has some limitations. First, due to a
lack of an ICI-treated HCC cohort, the differences between the
DDR molecular subclasses (DDR1 and DDR2) and the DDR-
A

B

C

FIGURE 7 | Biological function pathways, such as DNA repair, immune-related, cell cycle, drug resistance, and immune exhaustion pathways, identified as enriched
between high DDR score and low DDR score tumors in the TCGA-LIHC cohort (A), Mongolian-LIHC cohort (B) and ICI-treated cohort (C).
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high and DDR-low score groups could not be further verified.
Second, the patients in the TCGA-LIHC and Mongolian-LIHC
cohorts may have heterogeneous tumors, which may have a
potential impact on the results of this study. We hope to collect
and include HCC patients receiving ICI treatment in future
research and further verify the influence of DDR molecular type
(DDR 1 and DDR2) and the DDR score on the outcomes of HCC
patients receiving immunotherapy.
CONCLUSIONS

In this study, through unsupervised clustering of the DDR-
related expression profiles of HCC samples, we found that
HCC patients could be divided into a DDR1 group (with low
activation of DDR pathways) and a DDR2 group (with high
activation of DDR pathways). Patients with the DDR2 type had
higher DDR scores than those with the DDR1 type. Intriguingly,
after traditional treatment, the OS of patients with DDR1 HCC
with a low DDR score was significantly prolonged. In contrast,
after immunotherapy, DDR2 patients with high DDR scores had
a better prognosis than those with low DDR scores. Based on the
analysis of the TME, we found that patients with high DDR2
scores had an inflammatory TME, which was characterized by
highly enrichment of activated immune cells, high expression of
proinflammatory cytokines, high levels of expression of immune
signatures and high immune-related pathway activity, while
patients with low DDR1 scores had molecular features that are
potentially more conducive to response to traditional treatment,
such as a low ability to repair DNA damage and low activity of
drug resistance pathways functioning in traditional
treatment response.
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Supplementary Figure 1 | Biological function pathways, such as DNA repair,
immune-related, drug resistance and immune exhaustion pathways, identified as
enriched between DDR1 and DDR2 tumors in the Mongolian-LIHC cohort. GSEA of
hallmark gene sets downloaded from MSigDB. All transcripts were ranked by the
log2 (fold change) value between DDR1 and DDR2 tumors. Each run was
performed with 1,000 permutations. Pathways with significant enrichment between
DDR1 and DDR2 tumors are shown.

Supplementary Figure 2 | Heatmap of core genes in significantly enriched
pathways between DDR1 and DDR2 tumors in the TCGA-LIHC cohort.

Supplementary Figure 3 | Heatmap of core genes in significantly enriched
pathways between DDR1 and DDR2 tumors in the Mongolian-LIHC cohort.

Supplementary Figure 4 | Heatmap of core genes in significantly enrichedpathways
between high DDR score and low DDR score tumors in the TCGA-LIHC cohort.

Supplementary Figure 5 | Heatmap of core genes in significantly enriched
pathways between high DDR score and low DDR score tumors in the Mongolian-
LIHC cohort.

Supplementary Figure 6 | Heatmap of core genes in significantly differentially
enriched pathways between high DDR score and low DDR score tumors in the ICI-
treated cohort.
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