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Background: The endoplasmic reticulum oxidoreductin-1-like (ERO1L) gene encodes an
endoplasmic reticulum luminal localized glycoprotein known to associated with hypoxia,
however, the role of ERO1L in shaping the tumor immune microenvironment (TIME) is yet
to be elucidated in lung adenocarcinoma (LUAD).

Methods: In this study, raw datasets (including RNA-seq, methylation, sgRNA-seq,
phenotype, and survival data) were obtained from public databases. This data was
analyzed and used to explore the biological landscape of ERO1L in immune infiltration.
Expression data was used to characterize samples. Using gene signatures and cell
quantification, stromal and immune infiltration was determined. These findings were used
to predict sensitivity to immunotherapy.

Results: This study found that ERO1L was significantly overexpressed in LUAD in
comparison to normal tissue. This overexpression was found to be a result of
hypomethylation of the ERO1L promoter. Overexpression of ERO1L resulted in an
immune-suppressive TIME via the recruitment of immune-suppressive cells including
regulatory T cells (Tregs), cancer associated fibroblasts, M2-type macrophages, and
myeloid-derived suppressor cells. Using the Tumor Immune Dysfunction and Exclusion
(TIDE) framework, it was identified that patients in the ERO1Lhigh group possessed a
significantly lower response rate to immunotherapy in comparison to the ERO1Llow group.
Mechanistic analysis revealed that overexpression of ERO1L was associated with the
upregulation of JAK-STAT and NF-kB signaling pathways, thus affecting chemokine and
cytokine patterns in the TIME.

Conclusions: This study found that overexpression of ERO1L was associated with poor
prognoses in patients with LUAD. Overexpression of ERO1L was indicative of a hypoxia-
induced immune-suppressive TIME, which was shown to confer resistance to
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immunotherapy in patients with LUAD. Further studies are required to assess the potential
role of ERO1L as a biomarker for immunotherapy efficacy in LUAD.
Keywords: ERO1L, tumor microenvironment, biomarker, immunotherapy, lung adenocarcinoma
INTRODUCTION

Lung cancer is a leading cause of cancer-relatedmortality and lung
adenocarcinoma (LUAD) accounts for approximately 50% of all
reported cases (1). In recent years, as precision medicine
is becoming a reality, LUAD treatments have gradually
evolved from empirical chemotherapy to personalized
therapies. Immunotherapies, which have the advantage of high
efficiency, long duration, and low toxicity, have led to a paradigm
shift in cancer treatment. Immunotherapy has become the
standard of care for advanced LUAD. However, widespread
usage of immunotherapy is limited and drug resistance is
increasingly reported (2, 3). As a result, the identification of
biomarkers to enable patient selection is urgently required.

There is a growing body of evidence supporting the theory
that the tumor immune microenvironment (TIME) plays a
crucial role in the response to immunotherapy. The TIME
comprises a series of infiltrating cells, such as neoplastic cells,
immune cells, endothelial cells, fibroblasts. Different infiltration
components are associated with different clinical outcomes.
Based on immune score, recent research has classified TIME
into three subtypes: immune-inflamed (I-I TIME), immune-
desert (I-D TIME), and immune-excluded (I-E TIME) (4).
Patients with I-I TIME are frequently reported to be infiltrated
with an abundance of inflammatory cells. This indicates that they
will have a significant clinical response to immune checkpoint
inhibitor (ICI) therapy. Contrastingly, I-D TIME and I-E TIME
are both be considered noninflamed TIME. As such, these
patients are rarely responsive to ICI therapy (5). The
differential responses of these subtypes present the need to
develop individualized treatment strategies. However, two key
challenges remain. Firstly, determination of the threshold for an
inflamed or noninflamed TIME. And secondly, the lack of
appropriate biomarkers that are able to distinguish TIME
subtypes (6).

The endoplasmic reticulum oxidoreductin-1-like (ERO1L)
gene, which is located on chromosome 14 in humans, is
considered to be the primary source of the endoplasmic
reticulum. ERO1L is an endoplasmic reticulum luminal
localized glycoprotein which favors disulfide bond formation
via the selective oxidization from protein disulfide isomerases
(7). Hypoxia is a hallmark of the tumor microenvironment and is
reported in the majority of tumors overexpressing ERO1L (8).
Hypoxic stress has been described to cause immunosuppression
by controlling angiogenesis. This is predicted to result in
resistance to ICI therapy (9). What’s more, ERO1L is known to
promote programmed death-ligand 1 (PD-L1) expression by
increasing the expression of hypoxia-inducible factor1a (HIF-
1a) and subsequently facilitating oxidative protein folding within
PD-L1. Ultimately, this results in immune escape (10). The role
org 2
of ERO1L in the crafting of the tumor immunological
microenvironment is yet to be elucidated.

In this study, the association between ERO1L expression and
TIME was investigated in LUAD. Bioinformatics techniques
including cell quantification algorithms and gene expression
profi l ing were used. This study identified that the
overexpression of ERO1L is a feature in an immune-
suppressive TIME. This provided insight into the potential
association between ERO1L and tumor-immune interactions.
MATERIALS AND METHODS

mRNA and Protein Expression Analyses of
ERO1L Using Public Databases
The ERO1LmRNA expression in pan-cancer was analyzed in the
Oncomine database (www.oncomine.org) with the following
thresholds: p-value of 0.001, a fold change of 1.5, and a top
10% gene ranking (11). The expression data belonging to four
datasets (GSE7670, GSE31210, GSE32863, and GSE19188) were
downloaded from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/). Expression profiles were normalized by z-scores of
log2(count+1). Using the limma package in R-4.0.3, batch
normalization was also completed. Protein expression levels
were analyzed using the HPA database (http://www.
proteinatlas.org). Antibodies used in the HPA database
included HPA026653 (Sigma-Aldrich), HPA030053 (Sigma-
Aldrich) and CAB034294 (Santa Cruz Biotechnology). These
three antibodies were all validated by orthogonal method
(antibody staining mainly consistent with RNA expression data
across 41 tissues) and by independent antibodies (protein
distribution across 45 tissues similar between the independent
antibodies HPA026653 and HPA030053).

TCGA Database Analysis
TCGA LUAD data was downloaded from the UCSC Xena
database (http://xena.ucsc.edu/). This data included
information on: RNA-seq (HTSeq-FPKM), DNA methylation
(Illumina Human Methylation 450), and clinical profiles
(including both phenotype and survival data). Expression levels
were normalized using the z-score of log2(FPKM+1) to exclude
potential bias. Patients were assigned into ERO1L-high and
ERO1L-low groups based on the median expression value
according to the RNA sequencing data. In terms of
methylation analysis, we included 18 methylation sites (Table
S4). These sites were mapped to the ERO1L gene using the UCSC
Genome Browser HG19 RefSeq database (http://genome.ucsc.
edu). The methylation level of each CpG site was recorded as a b
value. This value indicated the ratio of the methylated signal
intensity over the sum of the methylated and unmethylated
July 2021 | Volume 12 | Article 677169

http://www.oncomine.org
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://www.proteinatlas.org
http://www.proteinatlas.org
http://xena.ucsc.edu/
http://genome.ucsc.edu
http://genome.ucsc.edu
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. ERO1L Shapes the Immune-Suppressive Microenvironment
intensities at each locus. Each locus with an average b-value of
less than 0.20 was considered a hypomethylation site. In
addition, Kaplan-Meier survival curves were plotted to show
differences in survival time. For this data, log-rank p-values
reported in the survival package in R-4.0.3 were used to
determine statistical significance. Path analysis was performed
in the ggalluvial in R-4.0.3. Visualization was performed using
the OriginPro 2019b software (version 9.6.5.169).

Organoid Culture
Mouse lung tissue was carefully dissected avoiding other tissue
contamination, then minced with surgical scalpels and incubated
in Trypsin (Gibco) at 37°C for 40-50 min. The digestion was
terminated with 10% serum (Gibco), and digested tissues were
filtered with a 70 mm cell strainer in order to filter out debris that
had not been fully digested. Cells were resuspended with
Matrigel (Corning) and plated in 48 well plates. Then the
Matrigel was solidified in an incubator at 37°C for 15-20 min
and overlaid with 150-200 mL medium. Organoid medium
contains advanced DMEM/F12, FGF 100 ng/mL, EGF 10 ng/
mL, B27 supplement (2 X final), N2 supplement (1 X final),
Noggin 100 ng/mL, RSPO-1 (10% final), Wnt-3a (10% final),
Y27632 10 mM,A83-01 10 mM, Glutamax (1 X final) and
Penstrep (1 X final). Cultures were kept at 37°C, 5% CO2 in
an incubator and the medium was exchanged every 4-8 days
according to the number of spheres. For passaging, the Matrigel
containing organoids was dissolved in 3-5 mL TrypLE at 37°C
for 10 min, and pipetted vigorously (80-100 times) to dissociate
organoids into single cells. Cells were filtered with 70 mm cell
strainer, centrifuged at 1,500 rpm for 10 min and resuspended
with Matrigel.

Organoid Infection
Organoids were dissociated into single cells as described above,
resuspended with 200 mL medium ae well as 2-3 mL virus
particles, and added polybrene to 1 X final. After being
centrifuged at 2,000 rpm, 37°C for 1 hour, the cells were then
incubated at 4°C, 5% CO2 for 2-3 hours. Finally, an organoid
culture was performed as described above.

Co-Expression Module Identification and
Pathway Analysis
Firstly, genes which were co-expressed were identified in the
Oncomine and TCGA databases respectively. By overlapping the
results from these two databases, we identified a co-expression
module consisting of 17-genes. STRING (version 10.5) was used
to construct a protein-protein interaction (PPI) network. The 17
genes within the module were subjected to pathway enrichment
analysis using DAVID (https://david-d.ncifcrf.gov/) (12). Results
were visualized using the Hmisc and ggplot2 packages in R-4.0.3.
Gene set enrichment analysis (GSEA) was performed using the
GSEA software (version 4.1.0) and Broad’s GSEA algorithm (13).

Immune Infiltration Analysis
The relationship between ERO1L expression levels and immune
infiltration was initially determined using the TIMER2.0
database (http://timer.comp-genomics.org). The TIMER2.0
Frontiers in Immunology | www.frontiersin.org 3
database utilizes immunedeconv, which is an R package
integrating six state-of-the-art algorithms. These algorithms
include: TIMER, xCell, MCP-counter, CIBERSORT, EPIC, and
quanTIseq (14). These algorithms were systematically
benchmarked, and each was found to have unique properties
and strengths. ERO1L expression was analyzed in the presence of
seven types of immune infiltrating cells, including B cells, CD4+

T cells, CD8+ T cells, NK cells, macrophages, CAFs, and MDSCs.
During immune infiltration analysis, adjustments were also
made for tumor purity. The online tool CIBERSORTx (https://
cibersortx.stanford.edu) was used to estimate different immune
cell proportions (15).

Correlation analysis between the expression of ERO1L,
immune cell markers and cytokines as well as chemokines was
also performed using the TIMER2.0 database, specifically using
the Gene_Corr module. The functionality of this module allows
users to uncover the co-expression pattern of genes across TCGA
cancer types. When provided with one initial gene of interest and
up to 20 other genes, the TIMER2.0 database generates a
heatmap table of Spearman’s correlation of gene expression
between the gene of interest and the other input genes. After
adjustment for tumor purity, a Spearman’s r >0 with
p-value <0.05 was considered as a positive correlation and a
Spearman’s r <0 with p-value <0.05 was considered as a positive
correlation. Secondary confirmation of correlation analysis was
performed using GEPIA (http://gepia.cancer-pku.cn) (16).
Tertiary confirmation of correlation analysis was performed
using TCGA expression data from the GEPIA database (http://
gepia.cancer-pku.cn/index.html).

Single-Cell Sequencing Analysis
Processed gene expression data was download from the GEO
database (GSE99254). This project consists of deep single-cell
transcriptome data with complete T cell receptor information,
which identified multi-dimensional characteristics of infiltrating
lymphocytes (17). Single-cell transcriptome data was analyzed
based on t-SNE dimension reduction using the R package Rtsne.
Additionally, the Tumor Immune Single-cell Hub (TISCH)
database was used to analyze the correlations between ERO1L
expression and infiltrating immune cells (18). TISCH is a
scRNA-seq database focusing on the tumor microenvironment.
This database includes 79 datasets and 2,045,746 cells. TISCH
provides detailed cell-type annotation at the single-cell level,
enabling detailed exploration of the tumor microenvironment
across various different cancer types.

Immunotherapy Response Prediction
In the first instance, in order to estimate the presence of the
various immune cell populations in the LUAD tissues, the R
package ESTIMATE was used. Estimation of STromal and
Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE) is a tool that predicts tumor purity via the use
of gene signatures. The tool calculates three scores, including
stromal score, which predicts the presence of stromal cells in
tumor bulk; immune score, which infers the levels of immune
cells infiltration in tumor tissue; and estimate score, which
estimates tumor purity. Subsequently, the R package
July 2021 | Volume 12 | Article 677169
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MCPcounter was used to develop a more detailed idea of the level
of immune cell infiltration. Microenvironment Cell Populations-
counter (MCPcounter) is a quantification method that
determines the relative abundance of an immune cell in
heterogeneous tissues. This method uses marker genes
optimized for interrogating microarray data (19). In order to
predict the response to immune checkpoint blockade, Tumor
Immune Dysfunction and Exclusion (TIDE) score was
employed. TIDE is a computational method used to model two
primary mechanisms of tumor immune evasion. These
mechanisms are: the induction of T cell dysfunction in tumors
with high infiltration of cytotoxic T lymphocytes (CTL) and the
prevention of T cell infiltration in tumors with low CTL level (20,
21). Using this framework and RNA-Seq tumor expression
profiles, TIDE can predict the outcomes of non-small cell lung
cancer (NSCLC) patients treated with first-line anti-PD1 or anti-
CTLA4 more accurately than other biomarkers such as PD-L1
levels and mutational load.

Statistical Analysis
Chi-squared and Fisher’s exact tests were used to investigate the
significance of the correlation of ERO1L expression with
clinicopathological features in LUAD patients. Analysis was
performed using SPSS (version 23.0). ANOVA was used to
identify the ERO1L expression levels in different datasets (22).
Frontiers in Immunology | www.frontiersin.org 4
The correlation of gene expression was evaluated using
Spearman’s correlation coefficient (23). A p value <0.05 was
considered statistically significant.
RESULTS

Quantification of ERO1L mRNA Expression
in Pan-Cancer
In order to determine the mRNA expression profile of ERO1L in
pan-cancer, expression levels of ERO1L in the Oncomine
database were analyzed. Comparisons of mRNA expression
levels of ERO1L in pan-cancers versus normal tissue identified
nine types of cancer in which ERO1L mRNA expression levels
were elevated. These types of cancer included bladder, brain,
central nervous system, colorectal, gastric, kidney, lung,
lymphoma, ovarian, and pancreatic cancer. In addition, three
types of cancer in which ERO1L mRNA expression levels were
diminished were identified. These types of cancer included
esophageal cancer, head and neck cancer, and leukemia
(Figure 1A). What’s more, lung cancer was found to be
associated with a significantly higher expression level of ERO1L
in comparison to normal tissue. The expression levels of ERO1L
were increased in seven datasets while no dataset possessed
decreased levels of ERO1L.
A B

D E

F G

C

FIGURE 1 | ERO1L expression levels in pan-cancer and LUAD. (A) Expression levels of ERO1L mRNA in pan-cancer, compared with normal tissues in the
Oncomine database. The number in each cell denotes the number of datasets. (B) Expression levels of ERO1L mRNA in pan-cancer, compared with normal tissue
from the TCGA database. (C) Expression levels of ERO1L mRNA in LUAD across four GEO datasets. (D-G) Expression levels of ERO1L protein in four patients with
LUAD from the HPA database. Scale bar: 50 µm. *p < 0.05; **p < 0.01; ***p < 0.001.
July 2021 | Volume 12 | Article 677169
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To further investigate the mRNA expression levels of ERO1L
in pan-cancers, RNA-sequencing data from The Cancer Genome
Atlas (TCGA) program was analyzed. Interestingly, it was
discovered that ERO1L mRNA expression levels were
somewhat increased in pan-cancers in comparison to normal
tissues (Figure 1B). This finding is consistent with our analysis
of data from the Oncomine database, which revealed
significantly elevated expression levels of ERO1L in lung
adenocarcinoma (LUAD; p <0.001) and in lung squamous cell
carcinoma (LUSC; p <0.001).

Expression Profiles of ERO1L mRNA and
Protein in LUAD
In order to study the mRNA expression levels of ERO1L in
LUAD, further analysis was performed on datasets from the
Gene Expression Omnibus (GEO) database. In this analysis, four
datasets (GSE7670, GSE31210, GSE32863, and GSE19188)
comprising a total of 526 samples were included. This included
356 tumoral and 170 paired normal biopsies (Table S1). After
normalizing the expression profile, it was identified that ERO1L
mRNA expression levels in LUAD was significantly elevated in
comparison to normal tissues. This was observed in all of the
datasets analyzed. Interestingly, expression fold changes ranged
from 2.8 to 4.1 times (Figures 1C and S1A). In addition, the
mRNA expression of ERO1L in LUAD was investigated using
the TCGA program. Similarly, significantly elevated expression
levels of ERO1L mRNA were observed in LUAD in comparison
to normal tissues. This was observed when the analysis was
performed using both TCGA program and the Genotype-Tissue
Expression (GTEx) program (Figure S1B).

These elevated ERO1L mRNA expression levels were
confirmed in LUAD. As a logical next step, the protein
expressions of ERO1L in LUAD were then investigated. Analysis
Frontiers in Immunology | www.frontiersin.org 5
using The Human Protein Atlas (HPA) program revealed that
ERO1L was positively detected via immunohistochemistry (IHC)
staining in patients with LUAD. Eleven patients with LUAD were
identified in the HPA database, all of these patients possessed
positive ERO1L protein expression (Figures 1D–G). Out of these
patients, the intensity of IHC staining is as follows: three patients
were associated with strong intensity, six with moderate, and two
with weak intensities of IHC staining (Table S2).
Overexpression of ERO1L Is Associated
With a Poorer Prognosis in LUAD
In order to study the correlation between ERO1L expression and
prognosis in LUAD patients, six cohorts of patients were
obtained from the PrognoScan database (Table S3). Via the
analysis of hazard ratios (HR) and 95% confidence intervals (CI),
four cohorts of LUAD patients (HLM, Nagoya, UM, and
NCCRI) with high expression of ERO1L were identified. This
high expression of ERO1L was associated with worsened
prognoses in these patients as measured by overall survival
(OS) and recurrent-free survival (RFS). Similarly, analysis was
performed on survival data from the Kaplan-Meier plotter
database. This is based on the Affymetrix microarrays with
probe ID 218498_s_at for the ERO1L gene. These results
showed consistently that overexpression of ERO1L was
associated with worse prognoses in patients with LUAD in
terms of OS (HR: 1.52, 95% CI: 1.27-1.82; Figure 2A) and RFS
(HR: 1.93, 95% CI: 1.47-2.53; Figure 2B).

The following hypothesis was proposed: ERO1L is a potential
biomarker in patients with LUAD. To investigate this hypothesis,
survival analysis was applied to the RNA-sequencing data obtained
from the TCGA program. This analysis revealed that there was a
significant correlation between ERO1L overexpression, shorter
A B

D

E

F G

C

FIGURE 2 | Overexpression of ERO1L predicts a poorer prognosis in LUAD. (A, B) Survival analysis comparing low and high expression levels of ERO1L in the
Kaplan-Meier plotter database. Overexpression of ERO1L was correlated with significantly poorer overall survival (A) and relapse-free survival (B). Overexpression
of ERO1L was correlated with significantly poorer overall survival (C) and disease-free survival (D). (E) Association between the expression of ERO1L and
clinicopathological characteristics in patients with LUAD. (F) Fluorescence images of ERO1L-overexpressed organoids show an increase in the number of chimeric
organoids over passaging. (G) Quantification of ERO1L upregulated organoids relative to the average number of organoid spheres in four random fields. **p < 0.01
July 2021 | Volume 12 | Article 677169
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overall survival (HR: 2.20, 95% CI: 1.71-2.56; Figure 2C) and
disease-free survival (HR: 1.43, 95% CI: 1.10-1.79; Figure 2D).
Interestingly, via correlation andmultiple linear regressionanalysis,
it was found that the expression level of ERO1L correlated with
specific clinicopathological characteristics in LUAD patients
(Figure 2E). As shown in Table 1, ERO1L overexpression was
significantly correlated with tumor recurrence, pathologic N
stage, primary treatment outcome, tumor histology, and
tumor stage.

Furthermore, we applied an organoid model to study the
biological function of ERO1L. We designed a protocol for
Frontiers in Immunology | www.frontiersin.org 6
organoid infection through dissociating organoid spheres into
single cells and then co-culturing with virus particles. By
introducing cDNA encoding ERO1L (labeled with mCherry)
into organoids (labeled with eGFP), we obtained ERO1L-
overexpressed organoids labeled in different colors. Organoids
would turn red when transduced with cDNA, indicating the
overexpression of ERO1L (Figure 2F). Using this, we detected
infected organoids and calculated the ratios of chimeric
organoids from passage 1 to 4. The initial percentage of
chimeric organoids was about 16%, and it gradually increased
to 75% after passaging three times (Figure 2F). Besides,
TABLE 1 | Correlation between ERO1L and clinicopathological characteristics in patients with lung adenocarcinoma.

Clinicopathological Characteristics ERO1L Expression p-value

Low High

Age (year) 65.13 ± 10.10 63.86 ± 10.74 0.262
Smoking status
Years smoked 31.65 ± 13.23 28.31 ± 12.71 0.168
Cigarettes/day 2.23 ± 1.51 2.19 ± 1.34 0.855

Tumor dimension
Intermediate dimension 0.79 ± 0.33 0.80 ± 0.33 0.832
Longest dimension 1.24 ± 0.54 1.22 ± 0.61 0.791
Shortest dimension 0.39 ± 0.18 0.38 ± 0.15 0.593

Tumor recurrence 91 (28.4%) 40 (43.0%) 0.008
Tumor stage 0.026
Stage I 211 (59.2%) 49 (45.8%)
Stage II 79 (22.1%) 32 (29.9%)
Stage III 51 (14.3%) 22 (20.6%)
Stage IV 16 (4.4%) 4 (3.7%)

T stage 0.574
T1 131 (36.7%) 32 (29.9%)
T2 183 (51.3%) 61 (57.0%)
T3 31 (8.7%) 9 (8.4%)
T4 12 (3.4%) 5 (4.7%)

N stage 0.020
N0 248 (69.3%) 60 (55.6%)
N1 66 (18.4%) 27 (25.0%)
N2 44 (12.3%) 20 (18.5%)
N3 0 (0.0%) 1 (0.9%)

M stage 0.746
M0 227 (93.8%) 73 (94.8%)
M1 15 (6.2%) 4 (5.2%)

Primary treatment outcome 0.040
Progressive disease 44 (15.7%) 22 (28.6%)
Stable disease 27 (9.6%) 4 (5.2%)
Partial remission 4 (1.4%) 0 (0.0%)
Complete remission 205 (73.2%) 51 (66.2%)

Tumor histology 0.028
Adenocarcinoma 203 (56.5%) 76 (70.4%)
Adenocarcinoma with mixed subtypes 80 (22.3%) 15 (13.9%)
Acinar cell carcinoma 17 (4.7%) 3 (2.8%)
Bronchiolo-alveolar carcinoma, non-mucinous 17 (4.7%) 1 (0.9%)
Papillary adenocarcinoma 16 (4.5%) 4 (3.7%)
Mucinous adenocarcinoma 15 (4.2%) 2 (1.9%)
Bronchiolo-alveolar carcinoma, mucinous 4 (1.1%) 1 (0.9%)
Micropapillary carcinoma 2 (0.6%) 0 (0.0%)
Bronchiolo-alveolar adenocarcinoma 2 (0.6%) 1 (0.9%)
Solid carcinoma 2 (0.6%) 4 (3.7%)
Signet ring cell carcinoma 1 (0.3%) 0 (0.0%)
Clear cell adenocarcinoma 0 (0.0%) 1 (0.9%)

Prior malignancy 61 (17.0%) 15 (13.9%) 0.444
Synchronous malignancy 7 (2.2%) 2 (2.0%) 0.943
July 2021 | Volume 12 | Article
 677169

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. ERO1L Shapes the Immune-Suppressive Microenvironment
the doubling time of organoid cells decreased from five to six
days at passage 1 to two to two and a half days at passage 4.
Transduction of cDNA of ERO1L in organoids was also
performed. One thousand cells in each group were seeded and
cultured for fourteen days (passage 2). Sphere formation was
enhanced from cells overexpressing ERO1L compared with the
control (Figure 2G). Hence, we concluded that organoids with
ERO1L overexpression gradually gained an advantage in
development, which could be extended over time.

Regulation of ERO1L mRNA Level via
Promoter Methylation
In order to elucidate the mechanism underlying ERO1L
expression, promoter methylation levels of ERO1L were
investigated in 503 samples. This was performed via analysis of
methylation profiles (Illumina Human Methylation 450) from
the TCGA program (Table S4). A significant decrease in the
methylation level of the ERO1L was identified in the promoter
region in LUAD tissues in comparison to normal tissues
(Figure 3A). Tumor stage subgroup analysis revealed that
levels of ERO1L promoter methylation were most significantly
decreased in stage IV patients (Figure 3B). In addition,
Frontiers in Immunology | www.frontiersin.org 7
correlation analysis revealed a significant negative correlation
between mRNA levels and methylation levels of ERO1L
(Spearman’s r: -0.25, p <0.001). This confirmed that ERO1L
mRNA expression was regulated by promoter methylation in
LUAD patients (Figure S1C).

In order to analyze the clinical outcomes associated with
methylation and expression of ERO1L, datasets of 468 patients in
the TCGA database were analyzed. These datasets all contained
data corresponding to methylation, expression, and survival
profiles. Path analysis via a Sankey diagram was performed.
This quantified and visualized the transitions with various lines
and widths, and described paths and patterns across tumor
stages, promoter methylation levels, ERO1L mRNA expression,
and survival status (Figure 3C). As a result, it was determined
that hypomethylation of the ERO1L promoter potentially
induced overexpression of ERO1L mRNA and finally led to
poor prognoses in individuals with LUAD. This pattern was
observed more significantly in patients with advanced stages of
cancer (Figure S2A). This data is consistent with the survival
analysis based on ERO1L expression. This provides compelling
evidence that ERO1L is associated with poor prognoses in
patients with LUAD.
A B

D

E F

C

FIGURE 3 | Promoter methylation of ERO1L and functional annotation of the ERO1L co-expression module. (A, B) Analysis of ERO1L methylation in the TCGA
database. Promoter methylation levels of ERO1L in tumor and normal tissues (A) according to tumor stage (B). (C) Path analysis in patients with LUAD across tumor
stage, promoter methylation, mRNA expression, and survival status. The line represents the group; the width of the lines represents the number of patients
transferred from one state to another (n=468). (D) PPI networks of the ERO1L co-expression module. (E, F) Functional annotation and pathway enrichment of the
ERO1L co-expression module. Top 10 terms of GO annotation (E) and KEGG pathway (F). *p < 0.05.
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Co-Expression Module of ERO1L in LUAD
In order to investigate proteins that were in close relationship to
ERO1L, a co-expression analysis of expression data from the
TCGA program and Oncomine database was conducted. Via
overlapping co-expression results and module mining, 29
proteins were found to be closely related to ERO1L (Figure
S2B). This included ERO1LB, GPX7, GPX8, P4HB, INS, PDIA3,
PDIA4, PDIA6, TXNDC5, and ERP44 among others. (Table S5).
Based on these results, the protein-protein interaction (PPI)
network of the ERO1L co-expression module was created
(Figure 3D, Table S6). Furthermore, the biological functions
of the module were investigated by Gene Otology (GO) analysis
(Figure 3E) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis (Figure 3F). Interestingly, it was found that
these genes showed strong associations with significant processes
such as response to endoplasmic reticulum stress, response to
reactive oxygen species, oxidation-reduction process, and
glycolytic process. Integrally, this module was shown to be
closely related to hypoxia responses as well as the HIF-1
signaling pathway. These might also play a role in shaping
the TIME.

Correlations Between ERO1L Expression
and Immune Cell Markers
To first understand the relationship between ERO1L and
infiltrating immune cells, a correlation analysis across ERO1L
and markers for immune cells was performed. These biomarkers
are widely used for the purpose of immune cell characterization
(Table 2). ERO1L expression showed strong correlations with
markers for infiltrating lymphocytes including regulatory T cells
(Tregs), exhausted T cells, macrophages, tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells
(MDSCs), and cancer-associated fibroblasts (CAFs), thus
indicating infiltrations of immune-suppressive cells are
mediated by ERO1L signaling (Figure 4A). Interestingly,
ERO1L expression was shown to be positively correlated with
the phenotype of M2-type macrophages while negatively
correlated with the phenotype of M1-type macrophages. This
implies that overexpression of ERO1L could indicate the
polarization of M1-type to M2-type macrophage (Figure 4B).

ERO1L Mediated Immune-Suppressive
Tumor Microenvironment Shaping
To confirm whether ERO1L expression impacts the TIME, the
coefficients of ERO1L expression and TIME infiltrations were
calculated in the Tumor IMune Estimation Resource 2.0 (TIMER
2.0) database. In relation to tumor-infiltrating lymphocytes, it
was found that immune-active cells including B cells
(Spearman’s r=-0.250, p <0.001), CD8+ T cells (Spearman’s
r=-0.299, p <0.001), and NK cells (Spearman’s r=-0.258,
p <0.001) correlated negatively with ERO1L expression. After
adjustments to account for tumor purity, immune-suppressive
cells CAFs (Spearman’s r=0.286, p <0.001) and MDSCs
(Spearman’s r=0.423, p <0.001) were shown to be positively
correlated with ERO1L expression (Figure 4C).
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As a positive correlation was observed between ERO1L and
CD4+ T cells (Spearman’s r=0.199, p <0.001), intrinsic CD4+ T
cell heterogeneity was further investigated via analysis of single-
cell sequencing data from dataset GSE99254. Dimensional
reduction analysis (t-SNE) applied to the expression data
showed that ERO1L was highly expressed in most CD4+ T cell
clusters. This was consistent with our previous findings
(Figure 4D). The clusters of CD4-CTLA4 (cluster C9) and
CD4-CXCL13 (cluster C7), representing suppressive Tregs and
exhausted T cells respectively, showed the highest ERO1L
expression levels. To further confirm ERO1L expression across
infiltrating cells in TIME, single-cell sequencing data from four
projects (GSE7670, GSE31210, GSE32863, and GSE19188) was
analyzed. Results showed that ERO1L expression closely
correlated with infiltrating cell levels including B cells, T cells,
NK cells, endothelial cells, macrophages, monocytes, MDSCs,
and CAFs (Figure 4E, Figure S2C). ERO1L was more closely
associated with the phenotype of a M2 macrophage than a M1
macrophage, which was consistent with our previous findings.

Of note, MDSCs are known to play a key role in
immunosuppression in various cancer types. In recent years,
increasing evidence has highlighted MDSCs as a major driver
behind the immunosuppressive tumor microenvironment. As C/
EBPb and c-Rel have been implicated in MDSC expansion, C/
EBPb and c-Rel expressions were examined. Consistent with
previous findings, it was identified that both C/EBPb and c-Rel
were significantly positively correlated with ERO1L expression
(C/EBPb: Spearman’s r=0.144, p <0.001; c-Rel: Spearman’s
r=0.201, p <0.001). This supports the notion that ERO1L
signaling potentially results in the accumulation of functional
MDSCs (Figure S2D). Based on the strong correlation observed
between ERO1L and MDSCs, a survival analysis was performed
by constructing a Cox proportional hazards model according to
expression profiles of ERO1L and MDSC (Figure 4F). Results
revealed that patients exhibiting low levels of both ERO1L and
MDSCs experienced a significantly better OS in comparison to
those with simultaneously high levels of ERO1L and MDSCs
(HR:1.55, 95% CI: 1.12-1.84, log-rank p <0.001). This indicates
that the combination of high levels of ERO1L and MDSC
expression can predict poor prognoses in patients with LUAD.
In tumors where the high expression level of ERO1L was a result
of copy number variations including gain and amplification
compared with deletion or normal diploid, significant
differences were also noted. In specific cases there a decrease in
CD8+ T cells and an increase of CAFs and macrophages (Figures
S2E, F). Taken together, these results indicate that ERO1L
overexpression is closely related to infiltration of immune-
suppressive cells and the deficiency of immune-active cells,
thus shaping an immunosuppressive TIME.

ERO1L Overexpression Can Potentially
Predict Immunotherapy Resistance
Based on the notion that ERO1L overexpression shaped an
immune-suppressive TIME, it was hypothesized that high
levels of ERO1L might also lead to immunotherapy resistance.
Given that the MC-38 cell line was sensitive to ICI treatment
July 2021 | Volume 12 | Article 677169
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while the LLC and A549 cell lines were relatively insensitive to
ICI treatment, we first performed Western blotting to examine
the expression levels of ERO1L protein across these cell lines.
Results showed that ERO1L protein was overexpressed in the
LLC and A549 cell lines while downregulated in the MC-38 cell
line (Figure S3A), which was consistent with our hypothesis that
overexpression of ERO1L might be associated with resistance to
ICI treatment.

To further investigate this hypothesis, the stromal and
immune cell infiltration levels were analyzed within ERO1Llow
Frontiers in Immunology | www.frontiersin.org 9
and ERO1Lhigh samples using ESTIMATE software. Low
expression of ERO1L was accompanied with a higher
abundance of stromal cells and immune cells in comparison to
overexpression of ERO1L, which was associated with a
significantly higher Estimate score. This suggested that an
immune-inflamed TIME that may well be susceptible to
immunotherapy (Figure 5A). To explore this issue in more
detail, the Tumor Immune Dysfunction and Exclusion (TIDE)
score was used. This score is a computational framework
designed to evaluate the potential of tumor immune escape
TABLE 2 | Correlations between ERO1L and gene markers of infiltrating immune cells.

Cell Type Gene Marker Without Adjusted Purity Adjusted

Correlation p-value Correlation p-value

B cell CD19 -0.065 0.140 -0.140 **
CD20 -0.119 ** -0.147 **
CD79A -0.023 0.606 -0.083 0.067
CD79B -0.103 * -0.182 ***
MS4A1 -0.108 * -0.183 ***

CD8+ T cell CD8A 0.098 0.262 0.063 0.163
CD8B 0.046 0.296 0.014 0.761

Th1 IL-2 -0.016 ** -0.148 ***
Th2 IL-4 -0.136 ** -0.138 **

IL-5 -0.012 0.788 -0.001 0.981
Treg FOXP3 0.123 ** 0.093 *

CCR8 0.175 *** 0.168 ***
CD25 0.312 *** 0.313 ***
IL7R 0.140 ** 0.114 *

T cell exhausted PD-1 0.133 ** 0.100 *
CTL4 0.107 * 0.075 0.097
TIM3 0.194 *** 0.173 ***
LAG3 0.145 *** 0.123 **

DC CD1C -0.235 *** -0.269 ***
CD141 -0.065 0.143 -0.081 0.073

Macrophage CD68 0.241 *** 0.224 ***
CD11b 0.152 *** 0.137 **

M1 NOS2 0.070 0.112 0.043 0.345
ROS -0.096 * -0.117 **
IL-12B -0.179 *** -0.213 ***
HLA-DR -0.069 0.117 -0.108 *

M2 ARG1 0.018 0.676 0.020 0.664
MRC1 0.046 0.295 0.027 0.552
CD68 0.241 *** 0.224 ***
CD163 0.256 *** 0.248 ***
CD204 0.181 *** 0.156 ***

TAM HLA-G 0.154 *** 0.131 **
CD80 0.130 ** 0.109 *
CD86 0.193 *** 0.178 ***
CD11b 0.152 *** 0.137 **

Monocyte CD14 0.183 *** 0.173 ***
CD16a 0.315 *** 0.308 ***
CD16b 0.245 *** 0.246 ***

MDSC CD11b 0.152 *** 0.137 **
CD33 0.021 0.639 -0.005 0.905

PMN-MDSC CD15 0.267 *** 0.259 ***
M-MDSC CD14 0.183 *** 0.173 ***
CAF FSP1 0.308 *** 0.318 ***

FAP 0.314 *** 0.314 ***
PDGFRa 0.158 *** 0.144 **
PDGFRb 0.086 0.052 0.058 0.200
aSMA 0.105 * 0.081 0.072
J
uly 2021 | Volume 12 | Article
TAM, tumor associated macrophage; MDSC, myeloid-derived suppressor cell; PMN-MDSC, polymorphonuclear myeloid-derived suppressor cell; M-MDSC, monocytic myeloid-derived
suppressor cell; CAF, cancer-associated fibroblast; Cor., R value of Spearman’s correlation. *p < 0.05; **p < 0.01; ***p < 0.001.
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and is a surrogate biomarker to predict response to
immunotherapy. TIDE scores showed that the ERO1Llow group
had a significantly higher response rate (86.0%) in comparison to
the ERO1Lhigh group (31.0%) (Figures 5B, C). It was also
observed that the ERO1Lhigh group scored high in MDSCs
(p <0.001) and immune dysfunction (p <0.001), while scored
low in CD8+ T cells (p <0.001) in comparison with the ERO1Llow

group (Figure 5D). To validate these results, the MCP counter
was applied to quantify the different immune cell populations
within the two groups. In agreement with our results, ERO1L
overexpression scored low in NK cells (p <0.001), myeloid
dendritic cells (p <0.001), neutrophils (p <0.001), and
endothelial cells (p <0.001). ERO1L overexpression scored high
in B lineage (p =0.004), monocyte lineage (p =0.020), and
fibroblast (p <0.001; Figure S3B). These results suggest that
ERO1L is in fact a biomarker with potential applications in the
prediction of immunotherapy response in patients with LUAD.

Mechanisms Underpinning an ERO1L-
Induced Immune-Suppressive Tumor
Microenvironment
Gene set enrichment analysis (GSEA) was performed in order
determine whether the transcriptional signature produced by
ERO1L overexpression was significantly related to other
previously studied conditions. By using hallmark gene sets and
all curated gene sets as references, GSEA was performed between
the ERO1Llow group and ERO1Lhigh group in patients from the
Frontiers in Immunology | www.frontiersin.org 10
TCGA cohort. The global expression changes produced in LUAD
patients were positively correlated with the signatures of hypoxia
(NES =2.02; FDR q-value =0.0) and VEGF (NES =2.27; FDR q-
value =0.0; Figure 6A). Moreover, GSEA also revealed that the
gene signatures of the JAK-STAT (NES =1.65, FDR q-value =0.0)
and NF-kB (NES =2.03, FDR q-value =0.0; Figure 6B) signaling
pathways were commonly enriched when ERO1L signaling was
upregulated. The expression levels of the components involved in
the two pathways were examined, including JAK1, JAK2, STAT1,
STAT2, STAT3, NF-kB1, NF-kB2, RelA, RelB, and c-Rel.
Consistent with previous findings, there were significant
correlations observed between ERO1L overexpression and the
aforementioned components (Figure 6C).

As the JAK-STAT and NF-kB pathways have previously
been reported to play a role in increasing the secretion of
immune-suppressive factors, we further explored whether
ERO1L expression could affect the pattern of cytokines and
chemokines secreted by tumor cells and infiltrating immune
cells, which play a role in shaping TIME. Via TCGA expression
profiling analysis, it was identified that cytokines and
chemokines secreted by tumors (such as CSF-1, IL-1b, and IL-
6), which have been reported to recruit immune-suppressive cells
including MDSCs, TAMs, and CAFs, were positively correlated
with overexpression of ERO1L (Figure 6D). Moreover, it was
also identified that immune-suppressive cytokines and
chemokines (including IL-10, TGF-b, MMP2, MMP9, and
VEGF), which are known to be mostly secreted by immune-
A B

D E F

C

FIGURE 4 | Overexpression of ERO1L shapes an immune-suppressive tumor microenvironment. (A) Correlations between ERO1L and the immune cell markers.
(B) ERO1L expression correlates with macrophages polarization. (C) ERO1L expression was significantly negatively correlated with infiltrating levels of B cells, CD8+
T cells, and NK cells and significantly positively correlated with infiltrating levels of CD4+ T cells, macrophages, CAFs, and MDSCs. (D) The intrinsic heterogeneity of
CD4+ T cells according to ERO1L expression as determined via single-cell sequencing data. Each dot corresponds to a single cell and is colored according to the
cell cluster. The color density indicates the expression of ERO1L. (E) Summary of four single-cell sequencing datasets according to correlations with ERO1L. Different
datasets are labeled in different colors. (F) The Cox proportional hazards model is constructed according to expressions of ERO1L and MDSC. *p < 0.05; **p < 0.01;
***p < 0.001.
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suppressive cells, were simultaneously in a positive correlation
with overexpression of ERO1L. Taken together, these data
suggest a potential mechanism for ERO1L-associated immune-
suppressive TIME (Figure 6E).
DISCUSSION

Here, we report a study depicting the biological landscape of
ERO1L in LUAD. ERO1L expression is significantly higher in
lung adenocarcinomas in comparison to adjacent normal tissues
and is closely related to the prognoses of patients with LUAD.
High expression levels of ERO1L are associated with a poor
prognosis of patients with LUAD. Previous studies have reported
that the overexpression of ERO1L promoted proliferation,
migration, and invasion in pancreatic cancer as well as breast
cancer by activating the Wnt/catenin pathway. In this study,
overexpression of ERO1L was closely associated with infiltrating
of immune-suppressive cells and deficiencies in immune-active
cells. Therefore, we propose that ERO1L functions as an
oncogenic factor by inducing an immune-suppressive TIME.

Although ERO1L is relatively poorly studied in immunology,
molecular studies have investigated the biological functions of
the ERO1L protein. This protein is an oxidase in the endoplasmic
Frontiers in Immunology | www.frontiersin.org 11
reticulum which regulates hypoxia-induced oxidative protein
folding. Its expression can be induced by hypoxia, which
is a common feature of cancers contributing to tumor
metastasis, angiogenesis, expansion of tumor-initiating cell,
chemoresistance, and genomic instability via the regulation of
hypoxia-inducible factors such as HIF-1a and HIF-2a. Taking
together, these results indicate that ERO1L may potentially
regulate tumor progression through HIF signaling pathways. In
this study, we found that the co-expression module of ERO1L
took part in oxidation-reduction, glycolytic, and hypoxia. This
finding is consistent with previous data. Moreover, hypoxia has
also been shown to be an important barrier to effective cancer
treatment. We propose that overexpression of ERO1L is
indicative of a hypoxic TIME, which could potentially confer
poor prognoses in patients with LUAD.

ERO1L overexpression is closely associated with the
infiltration of immune-suppressive cells including MDSCs,
TAMs, and CAFs. This leads to an immunosuppressive TIME.
MDSCs are derived from bone marrow and have an inhibitory
effect on the immune system. They play an important role in
tumor immunosuppression, tumor angiogenesis, drug resistance,
and tumor metastasis (24). What’s more, MDSCs can produce
NO and ROS which can nitrate chemokines and block entry of
CD8+ T cells to tumors (25). MDSCs have been reported to
A
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FIGURE 5 | Overexpression of ERO1L predicts resistance to immunotherapy. (A) Boxplot showing stromal, immune, and Estimate scores within ERO1Lhigh and
ERO1Llow groups. (B, C) Prediction of immunotherapy response using the TIDE computational framework. Other biomarkers for immunotherapy were also assessed.
These included: IFN-g, MSI signatures, PD-L1, MDSCs, CAFs, and TAM-M2. (D) Violin plot showing MDSCs, CD8+ T, and dysfunction scores within the ERO1Lhigh

and ERO1Llow groups. Groups are labeled in different colors according to their level of ERO1L expression.
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produce immune-suppressive cytokines including IL-10 and
TGF-b, which induce Tregs and affecting NK cells (26, 27).
Furthermore, MDSCs could eliminate the key nutrition factors
needed for T cell proliferation via the depletion of L-arginine
(28), sequestering L-cysteine (29), or reducing local tryptophan
levels due to the activity of indoleamine 2,3 dioxygenase (30).
What’s more, recent studies have demonstrated that MDSCs
were highly significantly associated with poor OS and PFS in
gastrointestinal cancer, hepatocellular carcinoma, lung cancer,
and multiple myeloma (31).

TAMs generally display as M2 phenotype macrophages which
are devoid of cytotoxic activity, produce growth factors for
cancer cells, and have immune-suppressive activity (32). TAMs
preferentially localize in the hypoxic areas of tumors, where they
promote the expression of the transcription factor HIF-1a. This
transcription factor induces the transcription of various elements
including VEGF, basic fibroblast growth factor, platelet-derived
growth factor, and prostaglandin E2, which is associated with
angiogenesis (33). TAMs have potential to produce enzymes and
proteases such as MMPs including MMP2 and MMP9 which
Frontiers in Immunology | www.frontiersin.org 12
regulate the degradation of the extracellular matrix (ECM). ECM
disruption by TAMs facilitates tumor cell spreading and
metastasis (34). What’s more, TAMs also contribute to
immune-suppression in the TIME via inhibition of IL-12. On
the contrary, TAMs promote the secretion of IL-10 and TGF-b,
which block T cell proliferation, suppress cytotoxic T lymphocyte
(CTL) responses, and activate Tregs (35). Clinical studies have
demonstrated a strong association between poor survival and
increased macrophage density in thyroid, lung, and
hepatocellular cancers (36, 37). Similarly, our research proved
that in tumors with high expression levels of ERO1L are
positively associated with the secretion of cytokines and
enzymes such as HIF-1a, MMPs, IL-10, TGF-b, and VEGF.

Recently, immune checkpoint inhibitors have led to a
paradigm shift in treatment for patients with non-small cell
lung cancer (NSCLC). However, the efficacy of these treatments
is less than 50%. The clinical responses of ICI are reported to be
unfavorable because of the low tumor mutation burden, low PD-
L1 expression, and the noninflamed TIME. Based on the results
presented in this study, we hypothesized that activation of
ERO1L signaling could recruit immune-suppressive cells and
shape an immune-suppressive TIME and thus conferring
resistance to ICI treatment. We propose that ERO1L
overexpression is an effective biomarker for noninflamed
TIME. However, our conclusions were mainly summarized
based on the public datasets; further studies based on grafted
tumors and patients’ samples are highly needed.
CONCLUSION

In summary, our study provides clear insight into the potential
role of ERO1L in tumor immunology. Our study also suggests the
potential prognostic value of ERO1L in patients with LUAD. We
described that overexpression of ERO1L, indicates a hypoxic
environment and shapes an immune-suppressive TIME through
the recruitment of immune-suppressive cells and inhibition of
immune-active cells. High levels of ERO1L may be indicative of
resistance to immunotherapy. ERO1L was shown to associated
with cytokine and chemokine patterns in the TIME, which were
resulted from activations of JAK-STAT and NF-kB signaling
pathways. These findings suggest a potential immune-based anti-
tumor strategy via the inhibition of ERO1L to clear tumor
microenvironment infiltrates.
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