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The recent dramatic advances in preventing “initial xenograft dysfunction” in pig-to-non-
human primate heart transplantation achieved by minimizing ischemia suggests that
ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation.
Here we review the molecular, cellular, and immune mechanisms that characterize IRI and
associated “primary graft dysfunction” in allotransplantation and consider how they
correspond with “xeno-associated” injury mechanisms. Based on this analysis, we
describe potential genetic modifications as well as novel technical strategies that may
minimize IRI for heart and other organ xenografts and which could facilitate safe and
effective clinical xenotransplantation.

Keywords: xenotranplantation, ischemia reperfusion (I/R) injury, ex vivo perfusion, initial xenograft dysfunction,
ischemia reperfusion injury mechanisms, ischemia reperfusion injury minimization
INTRODUCTION

Xenotransplantation has historically been studied by scientists and physicians as an appealing
potential solution to numerous medical ailments. The earliest documented xenotransplant is the
17th century animal blood transfusion into humans (1, 2). Solid organ xenotransplantation studies
began in the mid 19th century with the development of vascular anastomotic techniques and ex vivo
machine perfusion (3). The current emphasis on using porcine xenografts in humans arose in the
Abbreviations: ATP, adenosine triphosphate; CR1, complement receptor 1; DAMPs, damage-associated molecular proteins;
DGF, delayed graft function; DNA, deoxyribonucleic acid; DPP, direct procurement and preservation; DCD, donors after
cardiac death; EAD, early allograft dysfunction; EC, endothelial cell; EVLP, ex vivo lung perfusion; GalTKO, gal-a1,3galactosyl
transferase gene was knocked out; GPIIb/IIIa, glycoprotein-IIb/IIIa; HO-1, heme oxygenase-1; hCPRP, human complement
pathway regulatory protein; hEPCR, human endothelial protein C receptor; hTFPI, human tissue factor pathway inhibitor;
HAR, hyperacute rejection; HIF-1, hypoxia inducible factor 1; IXD, initial xenograft dysfunction; iNKT, invariant NKT; IRI,
ischemia Reperfusion Injury; IRIM, ischemia reperfusion injury minimization; MP, machine perfusion; MSC, mesenchymal
stem cell; MMPs, metalloproteinases; mPTP, mitochondrial permeability transition pore; MI, myocardial infarction; NO, nitric
oxide; NHP, non-human primate; NMP, normothermic Machine perfusion; NRP, normothermic regional perfusion; PAMPs,
pathogen associated molecular proteins; PRRs, pattern recognition receptors; PCXD, perioperative cardiac xenograft
dysfunction; PAF, platelet activating factor; PGD, primary graft dysfunction; PNF, primary nonfunction; ROS, reactive
oxygen species; RAGE, receptor for advanced glycation end products; SIXR, systemic inflammation in xenograft recipients;
TLRs, toll like receptors; XIRI, xenotransplantation ischemia reperfusion injury.
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1990s, and stimulated development of pig-to-non-human
primate pre-clinical models (4–6). Simultaneously, genetic
modification of pigs by nuclear deoxyribonucleic acid (DNA)
microinjection coupled with advances in in vitro fertilization of
large mammals raised optimism that genetic engineering of
source p igs cou ld he lp overcome the formidab le
immunological barriers identified in early solid organ
xenotransplantation efforts (7). While these efforts have
generated remarkable progress over the last 25 years, recent
evidence points to a particularly important role for ischemia
reperfusion injury in the initial graft dysfunction often observed
following whole organ xenotransplantation.

The concept of “ischemia” has been known for millennia;
originating from the ancient Greek term “ischaimos,”meaning to
restrain blood. However, the idea that reperfusion, rather than
the ischemic event itself, triggers many of the adverse
consequences associated with ischemia is relatively new,
enabled by Alexis Carrell’s development of vascular surgical,
organ transplant, and organ perfusion techniques that allowed
restoration of flow to an ischemic limb or organ (5, 6, 8–11).
Effects of reperfusion after acute myocardial infarction (MI) and
associated with ischemic limb, kidney, and liver revascularization
were first studied at a mechanistic level in the early 1970s (12–16).
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Critical ischemia reperfusion injury (IRI) pathways were
discovered or better understood based on work in the 1980’s,
which defined key roles for integrins, selectins, and complement,
as well as involvement of diverse cell death pathways (12–20). In
parallel, IRI and techniques of ischemia reperfusion injury
minimization (IRIM) have been studied extensively in solid
organ allotransplantation (21–24). Herein, we review the
literature regarding the mechanisms of IRI following
allotransplantation in order to better understand how they
may correspond with known mechanisms of xenograft injury.
We identify applications of IRIM techniques, as well as genetic
and pharmacologic approaches, that could facilitate effective
clinical use of organ xenografts.
MECHANISMS OF IRI

Understanding the mechanisms that mediate IRI and IRI-driven
cell death is critical to developing strategies to avoid it. IRI ranges
in severity from minor and transient to severe and life-
threatening, reflecting variable degrees of cell and organ
damage which manifest at the molecular, cellular, tissue, and
TABLE 1 | Enumeration of the various molecular mechanisms at play during ischemia reperfusion injury, their various mechanisms of activation, how their activation
propagates injury, and the end effect of the activation.

Molecular
Mechanism

Mechanism of Activation Result of Activation End Effect

Calcium
Overload

Hypoxia!Anaerobic Respiration!H+ imbalance!compensatory intracellular hyper-
Ca2+

• Activation of mPTP
• Inflammasome activation

• Cell structure
degradation

• Inflammatory
transcription
factor promotion

Reactive
Oxygen
Species (ROS)

Oxygen influx at reperfusion overwhelms ROS scavenging mechanisms, mPTP
opening!ROS release from mitochondria

• Alter cell-cell signaling
• Disruption of homeostatic

intracellular protein activation
• Direct protein and DNA damage

• Apoptosis
• Necrosis
• Amplify injury and

inflammation
• Leukocyte

activation
Cell Adhesion
Molecules

Increased expression following reperfusion • Promote interaction between
activated leukocytes and
endothelium

• Innate
inflammatory
reaction

PAMPs/
DAMPs

Released from damaged cells!Recognized by pathogen recognition receptors • Proinflammatory molecule
expression (ex: IL1b and IL18)

• Proapoptotic molecule
expression in recruited
leukocytes

• Inflammation
• Apoptosis

Complement Classical, alternate, and lectin mediated pathway activation • Membrane attack complex-
based cell disruption

• Byproducts (C3a, C5a)!
leukocyte attraction and
inflammasome creation

• Inflammation
propagation

• Cell death

Mitochondria
dysfunction

Hypoxia!Anaerobic respiration!Lactate and Succinate buildup!electron transport
chain reversal!mPTP opening!mitochondrial damage

• mPTP opening!ROS release
• Mitochondrial fission

• Apoptosis
• Endothelial

dysfunction
Endothelial
dysfunction

ROS, Calcium overload, Mitochondrial damage!Endothelial cell damage!Tight
junction phosphorylation, adhesion molecule upregulation, immune cell activation,
vasoconstriction

• Recruitment of leukocytes
• Activation of leukocytes
• Decreased barrier function
• Local thrombosis

• Inflammation
• Further ischemia
• Cell and organ

dysfunction and
edema
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FIGURE 1 | The molecular mechanisms involved in ischemia reperfusion injury and how they interact with one another.
FIGURE 2 | The systemic mechanisms involved with ischemia reperfusion injury.
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whole organism levels. Table 1 and Figure 1 highlight the critical
molecular mechanisms involved while Figure 2 shows how the
systemic mechanisms interact. Each of the broad categories of IRI
mechanisms considered below interact extensively to propagate
the individual damage caused by the different mechanisms.

Allo- and xenotransplant IRI presumably share some of these
mechanisms. However, the relatively short cold ischemia
intervals typical of experimental xenotransplant research
studies would almost never be associated with graft
dysfunction in clinical practice or in preclinical allograft
models (25, 26). Recent evidence suggests that IRI mechanisms
may be amplified by xeno-rejection mechanisms, including
recipient innate anti-pig antibodies, interspecies complement
dysregulation, coagulation cascade incompatibilities, and
perhaps by other features of the profound innate xeno-
immune response (25, 27).
INNATE IMMUNE CELLULAR AND
MOLECULAR MECHANISMS OF IRI

Intracellular Calcium Overload/Calcium
Paradox
Ischemia induces anaerobic respiration, which results in
intracellular lactate and acid accumulation which decreases
intracellular pH. Membrane Na+/H+ exchange pump activity
increases to mitigate this (28–32). Intracellular hypernatremia
then leads to an increase in cell membrane Na+/Ca++ exchanger
activity, increasing the intracellular calcium levels (28–33).
Ischemia also causes loss of adenosine triphosphate (ATP),
which leads to dysfunctional intracellular organelle and cell
membrane ATP-dependent calcium pumps, further
exacerbating calcium overload (29, 31, 33). Upon reperfusion,
the extracellular acid is washed out, increasing the proton gradient
across the cell membrane and resulting in accumulation of
cytosolic calcium (13, 28). This sequence of events was first
observed by Zimmerman et al. in rat hearts; he termed this the
‘calcium paradox’ because although calcium was thought to be
necessary for cardiac myocyte function, its reintroduction was
detrimental during the reperfusion phase (34). This cytosolic
hypercalcemia with immediate return of normal intracellular
pH activates the mitochondrial permeability transition pore
(mPTP), calpains, and calcium-dependent kinases which lead to
lethal cell structure degradation, uric acid formation with
inflammasome activation, inflammatory cytokine formation,
and inflammatory transcription factor promotion (31, 35, 36).
The fluctuations in pH and the ‘calcium paradox’ are particularly
important in kidney, liver, and heart IRI given the importance of
pH and calcium balance in normal cell and organ function (24, 31,
37–39).
Reactive Oxygen Species
Reactive oxygen species (ROS) such as superoxide, hydroxyl
radicals, peroxides, and singlet oxygen play a significant role in
Frontiers in Immunology | www.frontiersin.org 4
IRI (23, 24, 40, 41). Low levels of ROS are a physiologic
mechanism of cell-to-cell signaling (42). The double bond in
molecular oxygen provides a critical energy source that is
normally harnessed by the mitochondrial oxidation-reduction
system where the byproducts of converting oxygen and carbon-
bound hydrogen molecular species to carbon dioxide and water
maintains cellular oxygenation and reduction homeostasis (42,
43). Reperfusion causes a massive oxygen influx that generates
significant quantities of free radicals (28). ROS generation in
excess of physiologic ROS scavenging mechanisms coupled with
acidosis leads to mitochondrial dysfunction and eventual
rupture. ROS-mediated mitochondrial injury combined with
mPTP opening driven by cytosolic hypercalcemia leads to an
additional burst of ROS release from mitochondria (31, 44, 45).
This bolus of ROS without functional protective scavenging
molecules exceeds the capacity of ROS-degrading enzymes,
and disrupts cellular function through three main pathways: 1)
alteration of cell-cell signaling, 2) disruption of the oxygenation/
reduction balance causing alteration of intracellular proteins, and
3) direct damage to cell proteins and molecules such as DNA (31,
42, 43). These three general mechanisms of damage can lead to
cell death via apoptosis or necrosis (46).

ROS and oxidative stress are particularly important in
allotransplantation (23, 24, 37, 47, 48). In lung allografts, ROS
formed consequent to adenosine A2A receptor activation trigger
activation of invariant NKT (iNKT) cells, leading to epithelial
and endothelial damage (49–53). ROS are one of the initial
mediators of damage to hepatocytes and liver sinusoidal cells
during liver allograft reperfusion (31). The heart is also
particularly sensitive to ischemia and subsequent oxidative
stress during reperfusion secondary to its high oxygen demand
and rapid exhaustion of intracellular ATP stores with brief
periods of normothermic ischemia (38, 39, 48, 54, 55).

In the context of xenotransplantation, ROS are also presumed
to play a role in xenotransplantation ischemia reperfusion injury
(XIRI). In vitro data from rat livers perfused with human blood
showed that hyperacute rejection requires reactive oxygen
species, with additional primary or secondary contributions
from leukocytes and complement activation (56). Additionally,
hydrogen peroxide and extracellular calcium have been shown to
strongly induce cell adhesion molecule expression on porcine
islet xenografts, presumably amplifying injury, inflammation,
and islet xenograft attrition (57).
Cell Adhesion Molecules
Reperfusion following ischemia leads to increased expression of
cell adhesion molecules including selectins and integrins on the
endothelial surface of the injured tissue (58, 59). Upon
reperfusion, endothelial cells and leukocytes activated by ROS
and other pathways interact through these adhesion molecules
via ligand proteins such as P-selectin glycoprotein ligand and
sialyl LewisX (60, 61). This interaction is the basis of the innate
inflammatory reaction associated with IRI in allotransplantation.
Blocking selectin and integrin interactions in pre-clinical
allotransplant models reduces both tissue damage and
September 2021 | Volume 12 | Article 681504
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elaboration of pro-inflammatory chemokines into the circulation
(59, 62).

Pathogen and Damage Associated
Molecular Proteins
Cell damage triggered by the ‘calcium paradox’ and/or ROS
elaboration triggers the release of multiple pro-inflammatory
mediators and cytokines including chemotactic cytokines
(chemokines), as well as activation of complement cascade
proteins. The most potent proinflammatory mediators are
broadly classified as damage-associated molecular proteins
(DAMPs), such as various adenine phosphate nucleotides
(ATP, ADP, and AMP). Heat shock proteins (HSPs) are also
released. HSPs are produced during oxidative stress to ensure
proper folding of other proteins and act as DAMPs (63, 64).
DAMPs differ from bacterial- and virally derived pathogen
associated molecular proteins (PAMPs) because they are
endogenous molecules that are normally carefully prevented
from release into the circulation. Like PAMPs, DAMPs are
recognized by pattern recognition receptors (PRRs) such as
Toll Like Receptors (TLRs). Among PRRs, DAMPs are
particularly efficient in activating NLRp3 (65–68). TLRs have
been generally associated with both immediate inflammatory
responses (such as those implicated in IRI), and with later kidney
fibrosis, thought consequent to amplifying inflammation with
secondary recruitment of T and B cells (37). TLR2 and TLR4 are
of particular interest as PRRs mediating DAMP-driven injury
because genetic deletion of one or both decreases severity of
kidney IRI in a mouse model (69). When PRRs recognize PAMPs
and DAMPs, there is additional upregulation of a variety of
transcription factors, most importantly NF-kB, which increase
the expression of proinflammatory and pro-apoptotic molecules
and proteins within the recruited immune cells (31, 66, 70–73).
NLRp3 activation leads to assembly of a caspase 1 activating
platform called the inflammasome with subsequent release of
active forms of IL1b and IL18 to promote the sterile
inflammatory response characteristic of IRI (66, 70, 71). For
example, formation of the inflammasome has been demonstrated
in association with myocardial damage during heart IRI (66, 74–
76). The NF-kB pathway and the inflammasome are critical
mediators common to the multiple upstream pro-inflammatory
pathways within the systemic sterile inflammatory response that
is characteristic of IRI (77).

Complement
Each of the three complement pathways (classical, driven by
antibody binding and Fc-mediated complement activation;
alternative, triggered by spontaneous unknown mechanisms; and
lectin-mediated) can participate in IRI (31, 78, 79). Each pathway
leads to formation of the C5b-9 ‘membrane attack complex’, the
final common complement activation pathway which physically
disrupts the cell membrane, overwhelming the ability of ion
channels to maintain membrane polarization and osmolar
gradients, resulting in cell death (31). Upstream byproducts of
complement activation such as C5a and C3a are chemoattractants
for neutrophils and macrophages which can lead to tissue
Frontiers in Immunology | www.frontiersin.org 5
inflammation (68, 72). Additionally, C3a and C5a can bind a
variety of G protein coupled receptors as well as TLR2, which
trigger NF-kB activation and the formation of the inflammasome
(80, 81). Complement activation and deposition during reperfusion
plays a role in IRI after acute MI, as well as in acute peripheral
artery occlusion and in allografts, particularly kidney and liver (82–
84). Accordingly, inhibiting complement activation has shown
therapeutic benefit in animal models of each of these conditions
(82–88). Clinical translation, however, has been slow and remains
in preclinical and early-stage clinical trials (89–91).

In wi ld type pig-to-non-human primate (NHP)
xenotransplantation, complement activation by the direct
pathway (antibody-driven complement activation) is a central
mechanism contributing to the phenomenon of hyperacute
rejection (HAR) (92). Prolific complement activation
associated with HAR was mitigated by two key genetic
engineering accomplishments. First, human complement
pathway regulatory protein (hCPRP)-transgenic pigs were
created to enhance pig endothelial cell (EC) protection from
human complement-mediated injury. Later, the porcine Gal-
a1,3Galactosyl transferase gene was knocked out (GalTKO) to
eliminate the predominant carbohydrate antigen recognized by
human-anti-pig antibodies (93–95). Addition of one or more
hCPRP’s to GalTKO further decreased the incidence of initial
graft dysfunction by constraining amplification of the antibody-
mediated classical complement cascade, inhibiting formation of
the membrane attack complex, and better preventing endothelial
injury relative to either hCPRP or GalTKO alone (96, 97).

Mitochondrial Dysfunction
Mitochondrial dysfunction plays an important role in IRI and
subsequent cell death. Mitochondrial dysfunction starts during
ischemia, with accumulation of lactate and succinate from
anaerobic respiration damaging molecules in the electron
transport chain (98). Upon reperfusion, the accumulated
succinate leads to electron transport chain reversal and ROS
formation (98). This reduces the mitochondrial membrane
potential leading to mitochondrial Ca2+ bursts, and mPTP
opening, as discussed above (98). mPTP opening causes
structural damage in the form of mitochondrial swelling and is
a key step in irreversible cell injury after IRI, which has been
especially well-studied in heart IRI (13, 44, 45, 55, 98, 99). While
ischemia and the associated lactate accumulation decreases
intracellular pH and prevents mPTP opening, reperfusion
rapidly returns the intracellular pH to normal, contributing to
mPTP opening, particularly when combined with increased
intracellular ROS and calcium (13, 100–103). The open mPTP
allows H+ to enter the inner mitochondrial matrix, further
uncoupling the electron transport chain and decreasing ATP
production (104–106). Decreased ATP and increased
mitochondrial ROS secondary to mPTP opening can lead to
mitochondrial fission, a canonical step in initiating apoptosis (13,
31, 107). Mitochondrial fission also results in dysfunction of
other cell organelles, particularly in endothelial cells, leading to
endothelial dysfunction, seen in both IRI and xenograft
injury (108).
September 2021 | Volume 12 | Article 681504
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Endothelial Dysfunction
Healthy endothelial cells are essential to maintain organ
homeostasis and represent the first barrier between donor
tissue parenchyma and recipient immune cells. Normal
endothelium facilitates nutritive blood flow and waste
clearance by preventing non-physiologic platelet adhesion and
regulating local coagulation cascade activation (31). IRI disrupts
multiple normal EC functions. Inflammatory cytokines,
chemokines, proteases, histamine, and other proinflammatory
mediators cause EC tight junction phosphorylation and
internalization as well as calcium dependent myosin light
chain phosphorylation, which leads to cytoskeletal contraction
and loss of both paracellular and transcellular vascular barrier
function (31, 109–113). Dysregulation of sphingosine-1-
phospate, an endothelial tight cell junction protein, has been
noted to play a significant role in IRI, most thoroughly studied in
lung endothelial IRI (114).

Dying or dead cells release the ROS created after reperfusion.
ROS enhance adhesion between leukocytes and endothelial cells
by means of upregulation or activation of selectins and integrins,
including ICAM-1, P-selectin, JAM-A, JAM-C, and PECAM-1
(31, 115–121). Similarly, multiple matrix metalloproteinases
(MMPs) such as MMP9, are inducible gelatinases that disrupt
liver sinusoidal endothelial cells and promote leukocyte adhesion
via changes to PECAM-1 (122). Macrophages and mast cells are
then activated, releasing chemoattractants such as TNFa, other
proinflammatory cytokines, platelet activating factor (PAF), and
the lipid mediator LTB4 (31). These mediators amplify
recruitment, adhesion, and activation of neutrophils, which
release chemokines and cytokines that further propagate a pro-
inflammatory response and recruit other immune cells to the site
of injury (112). Liver sinusoidal endothelial cells are normally
protective against inflammation by their expression of
transcription factors KLF2 and NRF2, but IRI damages these
cells, which results in degradation of the anti-inflammatory
transcription factors (41, 123, 124). In addition to elaboration
of pro-inflammatory cytokines, expression of angiogenic growth
factors such as VEGF is increased during IRI, and contributes to
increased endothelial permeability during IRI of the lung, heart,
and liver but not kidney (125–134).

ECs, damaged by pro-inflammatory cytokines and ROS,
decrease production of endothelial nitric oxide (NO), a
powerful vasodilator, which therefore results in vasoconstriction
(135, 136). The decrease in EC NO release, coupled with
upregulation of cell adhesion molecules, promotes platelet
activation and adhesion, creating a prothrombotic local
environment (137, 138). This leads to microthrombi formation,
production of transcription factors for inflammatory mediators,
and upregulation of costimulatory proteins such as CD28-B7 and
ICOS-ICOSL that further propagate inflammation and cell/tissue
death. They also contribute to amplification of adaptive immune
responses to ‘non-self’ antigens, whether allo or xeno (117, 139,
140). Hypoxia inducible factor 1 (HIF-1) normally protects
endothelial barrier function and vasodilatory function through
modulation of VEGF and nitric oxide, but its dysregulation
during ischemia is a significant factor in IRI (132, 141, 142).
Frontiers in Immunology | www.frontiersin.org 6
In addition to endothelial injury, in all organs, but particularly
in the lungs, epithelial injury increases levels of the receptor for
advanced glycation end products (RAGE). HMGB1 is a
traditionally intracellular protein that regulates a variety of
nuclear functions, however upon ischemia induced necrosis, it
becomes extracellular and acts as a DAMP. HMGB1 by itself or
bound to inflammatory cytokines binds to membrane RAGE and
becomes endocytosed. HMGB1 and/or its accompanying
molecule then signal TLR4 which leads to activating the
NF-kB pathway (143–145).

As in allotransplants performed in the setting of preformed
anti-donor antibody (ABO mismatch, presensitized), in
xenotransplantation, endothelial damage is initiated by pre-
formed antibodies, in this case directed against pig
carbohydrate and other antigens, that bind to the xenograft
endothelium upon reperfusion, and are a critical initiator of
XIRI. The pre-formed anti-pig antibodies activate complement
and trigger Fc-mediated inflammatory cell adhesion and
activation, amongst other inflammatory responses that damage
the endothelium (146). Endothelial activation and consequent
loss of thromboregulatory, anti-inflammatory, and anticoagulant
functions propagates an already robust inflammatory response
secondary to prolonged systemic inflammation in xenograft
recipients (SIXR), which has been implicated as the culprit
explaining the apparent requirement for an expanded
spectrum of immunosuppressive treatments in successful
xenotransplantation experiments (27).

Of particular note, the inflammatory mediators associated
with SIXR are similar to those associated with XIRI (27). The
importance of these inflammatory mediators in XIRI is
highlighted by the especially robust response of immune cells
to cross-species inflammatory mediators (147). French et al.
explored this concept in IL8 and neutrophil interactions in an
ex vivo pig-to-human lung xenotransplant model and in vivo pig-
to-baboon lung xenotransplant model (147). These studies
demonstrated that compared to allo- and autotransplantation,
the xenotransplant model had significant elevation of baboon IL8
as early as four hours post-reperfusion (147). Additionally,
human neutrophil adhesion was more robust when the
neutrophil was activated by pig IL8 compared to human IL8
(147). Human TNFa activation of pig aortic endothelial cells also
resulted in greater neutrophil adhesion compared to the
neutrophil adhesion seen with human TNFa activation of
human aortic endothelial cells (147).

Physiologically inappropriate formation or propagation of
clot is also a feature shared between IRI and xenograft rejection
due to hypoxia and inflammatory cytokine-induced upregulation
of tissue factor production from endothelial cells (148). Tissue
factor is a procoagulant enzyme that activates the extrinsic
coagulation cascade. Intrinsic factor activation has also been
implicated in the procoagulable state associated with IRI,
especially in xenotransplantation (149). The procoagulable
state associated with antibody binding and complement
activation is amplified by a disturbance of the homeostatic
balance between endothelial plasminogen activator inhibitor-1
to tissue plasminogen activator (150). As a consequence,
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transgenic expression of human tissue factor pathway inhibitor
(hTFPI) in pigs is being studied to limit this coagulation
dysregulation (151).

Dysregulated coagulation across species is known to
contribute to xenograft injury, and has been addressed by
expressing human coagulation pathway regulatory proteins
(e.g., thrombomodulin, hTBM; endothelial protein C receptor,
hEPCR; tissue factor pathway inhibitor, hTFPI) on pig
endothelium (152). Xenografts from pigs with GTKO and
complement regulatory transgenes, with or without additional
coagulation pathway regulatory proteins, are the longest
survivors to date in pig-to-NHP xenotransplantation,
suggesting that the additional expression of one or more
human coagulation pathway regulatory molecules may protect
xenografts from IRI (25, 153, 154). Ultimately, genetic
modification of the pig endothelium to prevent XIRI may
prove to be critical in enabling successful cl inical
xenotransplantation (96, 155–157).

Cell Death Mechanisms
Cell death occurs by four basic means: necrosis, apoptosis,
autophagy, and necroptosis (31).

Necrosis
Necrosis is an uncontrolled or uncoordinated form of cell death
generally triggered by extrinsic toxic exposures that damages the
cell and disrupts biochemical functions essential to cell survival.

Apoptosis
Apoptosis is considered “programmed” cell death, and is often
normal, coordinated, and beneficial, but may also occur in
response to harmful stimuli. It is a controlled process of
removing and recycling cells without causing inflammation or
harming the organism. It occurs as the membrane blebs,
shrinking the cell, while the nucleus collapses, chromatin
condenses, and DNA fragments, until the remains are engulfed
by macrophages. This process is mediated by a cascade of caspase
proteases that result in cleavage of intracellular substrates. There
are intrinsic and extrinsic pathways to initiate the caspase
cascade. Importantly, apoptosis can be initiated by hypoxia via
the intrinsic (mitochondrial) pathway, a key component of
ischemic injury, as well as by ROS from reperfusion (158).

Autophagy
Autophagy, or “eating of self” is similar to apoptosis in that is
also a noninflammatory process. As the cell begins to die, it
degrades its own components via lysosomes (159). This is
initiated by formation of a phagophore around intracellular
contents to create an autophagosome, which fuses with the
lysosome for degradation (159). This process is seen in both
phases of IRI (160). ULK1 is a key component in autophagy, and
is activated when the cell is depleted of nutrients and energy in
ischemia (158).

Necroptosis
Necroptosis is an intermediate phenomenon, an amalgam of
mechanisms that overlap between coordinated and
Frontiers in Immunology | www.frontiersin.org 7
uncoordinated cell death (31). It is essentially a “programmed”
form of necrosis, triggered by RIPK3, seen in response to viral or
intracellular bacterial infections and inflammatory diseases. This
contrasts with apoptosis in that caspases are uninvolved and that
the result is disorganized leakage of intracellular contents,
including DAMPs, triggering innate and adaptive immune
responses and causing inflammation (161). This is important
in IRI, and RIPK3-deficient mice are protected from IRI (162).

Cell Death in Xenotransplantation
Cell death mechanisms in xenotransplantation are starting to be
studied and apoptosis has been identified as one of the critical
pathways (27, 163). Inhibition of the NF-kB pathway has been
shown to lead to decreased porcine endothelial cell death/
apoptosis in an in vitro model of xenotransplantation, whereas
endothelial cell apoptosis has been shown to lead to xenograft
rejection (164). These studies, however, reviewed the impact of
SIXR leading to apoptosis, and were not specifically evaluating
the role of cell death in XIRI (164).
SYSTEMIC MECHANISMS OF IRI

Innate Immune System
Neutrophils
Leukocytes are recruited by the local release of inflammatory
chemokines and cytokines, by endothelial expression of selectins,
integrins, and bound antibodies, by products of clot formation
such as platelets and fibrin, and by exposed basement membrane
secondary to endothelial cell retraction (165). Subsequently,
neutrophils release additional inflammatory mediators
including IL1, IL6, IL8, IL11, IFNg, TNFa, LTB4, as well as
proteases, and monocyte chemotactic factor 1 (23, 112). IL6, IL8,
and TNFa have all been associated with xenograft injury and
failure in multiple models (166–168). The selectin-dependent,
complement-driven migration of neutrophils into the
parenchyma, endothelial dysfunction, parenchymal edema, and
numerous other processes have been implicated in the condition
of “No-Reflow”. No-Reflow is a clinical finding of lack of
perfusion to the microvasculature despite reperfusion at the
tissue level following a prolonged ischemic event. It has been
established to be associated with IRI in particular of the heart and
limb (65, 169–173). Blocking cell adhesion molecules,
particularly selectins and integrins, disrupting chemokine and
cytokine release, as well as complement inhibition has each been
shown to attenuate IRI and prevent or reduce the severity of
“No-Reflow” (174–178).

Macrophages and Mast Cells
Tissue resident macrophages are activated by ROS, PAMPs, and
DAMPs (179). Activated macrophages release TNFa, which
leads to upregulation of NF-kB and other transcription factors
throughout the reperfused organ or tissue (31, 180). The resident
macrophages of the liver, Kupffer cells, are activated by DAMPs
as well as by hepatocyte damage and release of the
proinflammatory ligand HMGB1 (181, 182). Kupffer cell
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activation can further exacerbate hepatocyte injury by promoting
neutrophil recruitment and upregulating NF-kB (31, 182–185).
Similarly, resident lung macrophages are activated during
ischemia reperfusion and enhance epithelial and endothelial
dysfunction and inflammation by the TLR pathway (77, 186–
189). ROS, TNFa, IL17, and C-X-C motifs are released from the
injured epithelium, activated macrophages, and iNKT cells (51,
143, 186, 190–192). These are powerful pro-inflammatory
cytokines and chemokines that recruit leukocytes (143, 186,
190–192). ROS, complement, LTB4, and other molecular
mediators of IRI activate mast cells as well (193). Mast cells are
subendothelial and reside in nearly all tissues. Mast cell
activation leads to release of various monoamines, proteases,
TNFa, and other inflammatory mediators that result in edema,
inflammation, and local hemorrhage (193).

Mast cells and resident tissue macrophages also play a
significant role in xenograft dysfunction, and may aggravate
XIRI (155). Burdorf et al. demonstrated in an ex vivo lung
perfusion xenograft model that blocking thromboxane and
histamine receptors, mediators released by peri-endothelial
mast cells, led to a blunting of initial rise in pulmonary
vascular resistance, decreased pulmonary edema, and delayed
loss of vascular barrier function after reperfusion (155).

Platelets
During IRI, platelet activation occurs through a multitude of
receptors including platelet collagen receptor, adenosine
diphosphate receptor, glycoprotein-IIb/IIIa (GPIIb/IIIa), P-
selectin, and G-proteins. Additionally, complement byproduct-
mediated, histamine-mediated, and thromboxane-mediated
pathways exist which lead to platelet activation (194–197).
Activated platelets release ROS, serotonin, and platelet
activating factors, as well as interact with leukocytes and
endothelial cells, propagating sterile inflammation, coagulation,
and IRI (194).

In addition to these processes, Fc receptor mediated platelet
activation and complement mediated platelet activation are
particularly critical in xenotransplantation (198). The
interaction between the complement system, coagulation-
fibrinolytic system, and platelets leads to thromboinflammation.
In the long run this leads to consumptive coagulopathy and is a
major barrier in xenotransplantation (198). These processes have
been traditionally associated with SIXR however each of the
component pieces leading to thromboinflammation are also
activated during XIRI (198).

Adaptive Immune System
The adaptive immune system has been found to play an
important role in IRI (37, 199–203). Dendritic cells, which are
stimulated by ROS and DAMPs, are pivotal to triggering and
amplifying activation of adaptive immunity (37). However, it is
clear that the adaptive immune response not only propagates
injurious mechanisms in IRI but can also down-regulate IRI (37).
CD4+ and CD8+ T cells secrete inflammatory cytokines and
chemokines such as IL1, TNFa, and IL17 to recruit other cells
(37). CD8+ cells amplify IRI independent of the T-cell receptor
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and antigen specific T-cell functions (204). IgM and IgG
produced by B-cells also contribute to IRI by ligating
complement, neutrophils, macrophages, and platelets to
xenoantigens in the graft and after release of cells and cell
fragments into the circulation (37). The role of T-regulatory
cells is an active avenue of research and they are thought to
provide anti-inflammatory regulatory function in reducing IRI
(37, 205, 206). NK and NKT cells are also thought to play a
role in IRI, specifically in xenotransplantation where they
have been shown to adhere to and damage the endothelium
because of absence of self-recognition molecules (CD47, HLA-
E), similar to a mechanism found in IRI-damaged or neoplastic
cells (207).

Brain Death
Brain dead donors constitute a significant portion of the allograft
donor pool, including more than 50% of kidneys, 85% of livers
and lungs, and almost all hearts (208). Brain death induces a
sterile inflammatory response that has been well-characterized,
and activates many of the same pathways that mediate IRI (209).
These pathways include pro-inflammatory cytokine release,
endothelial injury, coagulation pathway dysregulation, and
enhanced leukocyte adhesion and migration in the lung and
other tissues (210–213). Additionally, neuropeptides, such as
neuropeptide Y, calcitonin gene related peptide, and substance P,
released during brain death, propagate sterile inflammation
within the donor (209, 214). Brain death also causes
dysregulation of the hypothalamic-pituitary-adrenal axis
resulting in decreased adrenocorticotropic hormone and
cortisol (215–217). There is also a rapid depletion of
antidiuretic hormone resulting in diabetes insipidus, and
thyro id s t imula t ing hormone resu l t ing in centra l
hypothyroidism and subsequent decrease in serum T3 and T4
(215–217). These changes have significant electrolyte and
hemodynamic consequences throughout the brain death period
requiring special attention and treatment so as to preserve the
donor organs (215–217). The injurious consequences of each of
these “sterile inflammation” pathways differs from organ to
organ, as exemplified by varying behavior of different organs
from individual donors (209). Sterile inflammatory mediators
elaborated in association with brain death “prime” transplanted
organs for a ‘second hit’, such as IRI (218). For renal allografts,
where there is a robust reference group of case-matched controls,
allografts from brain dead donors demonstrate a higher
incidence of primary graft dysfunction and reduced graft
survival relative to living donors when all other variables are
taken into account such as graft ischemic time, HLA mismatch,
and immunosuppression regimen (219, 220). The brain death
priming process is blunted in organs procured from donors after
cardiac death (DCD). The effects and mechanisms of IRI from
DCD organ procurement, and the competing risk of extended
warm ischemic time between cardiac death and organ flush
in situ, still need to be elucidated (40, 221–226). With regards
to known mechanisms contributing to IRI, xenotransplantation
has the advantage of avoiding the “brain death priming”
phenomenon seen in allotransplantation.
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ORGAN-SPECIFIC ISCHEMIA
REPERFUSION INJURY MINIMIZATION
(IRIM)

Specific organ allografts have unique properties that make them
more or less susceptible to different mechanisms of IRI (23, 24,
40, 41, 66, 165). In allotransplantation, there is now significant
research on organ-specific mechanisms contributing to IRI, and
IRIM strategies (23, 24, 40, 41, 66, 165, 227). Current research in
IRIM for heart, lungs, kidney, and liver allografts include
reducing the effects of ROS, and directly or indirectly
inhibiting inflammatory mediators, complement, immune cell
platelet adhesion and activation, and maintaining, preserving, or
restoring endothelial barrier and vasoregulatory functions (23,
41, 50, 52, 114, 190, 227–265). Promising findings in reduction of
lung IRI have included adenosine A2A receptor activation
reducing microvascular permeability and lung injury, early
growth response 1 (Egr1) deletion reducing neutrophil
infiltration, C3a receptor antagonist decreasing cell injury and
inflammation, carbon monoxide in cold flush reducing
inflammatory mediators and cellular infiltrate, and nitric oxide
to reduce pulmonary arterial pressures, inflammation, and
apoptosis (50, 52, 190, 266–269).

Certain IRIM targets and treatments are common between
multiple organs. Mesenchymal stem cell (MSC) treatment at the
time of procurement, or during ex vivo perfusion before
implantation, is a novel area of research in IRIM. MSCs are
collected from bone marrow, amniotic tissue, or the umbilical
cord, as their extracellular vesicles include apoptotic bodies,
which were hypothesized to interact with other cells to quiet
the inflammation seen in IRI (227, 228, 270). These have been
administered by culturing the cells (with or without separation of
extracellular vesicles) and adding to a perfusate such as Steen
solution in ex vivo perfusion, as an intravenous infusion to the
recipient at the time of reperfusion, or bronchoscopically (227,
239–241, 244, 246, 270–273).

MSC treatment has been found to be broadly protective of IRI
in the heart, lungs, and kidney in preclinical models (23, 227,
239–241, 246, 270–274). It has been proposed that MSCs may
have their protective effect by three general actions: paracrine
secretion of soluble factors, increasing cell to cell interactions via
microtubules, and secretion of vesicles containing proteins and
nucleic acids (275). There is currently one phase 1 clinical trial
using MSCs in kidney transplantation; early results have shown
safety of MSC infusion in these patients (276). We expect the
number of these studies to increase as has been done for in other
disease processes that have trialed MSC therapy (277–279).
Similarly, use of inhaled pharmacologic agents, specific inhaled
anesthetic, or either inhaled or perfusate dissolved gasses such as
nitric oxide, hydrogen sulfide, and carbon monoxide have been
used in preclinical models to mitigate IRI of the lungs, liver, and
kidneys (266–269, 280–284).

Lung
In lung transplantation, primary graft dysfunction (PGD) is
closely associated with duration of cold and warm ischemia,
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and is usually attributed to IRI (285, 286). Ex vivo lung perfusion
(EVLP) for normothermic organ preservation and rehabilitation
is currently in use clinically and has been found to potentially
reduce IRI (287–289). EVLP was introduced to the clinic in 2011
for high-risk lungs (290). Preclinical studies in a porcine model
have shown that EVLP may reduce IRI by decreasing the insult
on the endothelium or by reducing the inflammatory cytokine
load (291–293). Controlling reperfusion by means of reversing
oxygen debt in the absence of mechanical stress/strain and in the
absence of platelets and neutrophils are also beneficial attributes
of EVLP (291, 292). When comparing tissue cytokine levels of
EVLP lungs versus cold static preserved lungs from biopsies
obtained two hours post implantation, EVLP lung tissue had
significantly lower concentrations of IL1b, IL18, and IFNg. This
indicates that ischemia minimization is associated with reduced
elaboration of pro-inflammatory cytokines. In this study, the
potential IRI reduction may have been secondary to decreasing
the injury mechanisms associated with cold storage and
subsequent reperfusion (291). EVLP has the potential to
significantly reduce IRI by improving organ preservation by
reducing or preventing oxygen debt and provides a platform
for delivering preventive and/or adjunctive reparative treatments
based on defined IRI mechanisms.

Kidney
In kidney transplantation, PGD encompasses both the relatively
common delayed graft function (DGF), with recovery of
glomerular filtration rate in days or weeks after transplant, as
well as primary non-function, which does not recover. Renal
allograft PGD is closely associated with duration of cold and warm
ischemia, and is usually attributed to IRI (24). Inhibition of
apoptosis, TLR signaling, and complement activation/injury are
the IRIM strategies supported by strong preclinical and clinical
evidence base, and are closest to clinical practice. QPI-1002 is an
siRNA that temporarily inhibits p53 (37, 274). p53 inhibition in
renal tubular cells has been shown to reduce apoptosis (37).
QPI1002 was successful in reducing incidence and severity of
DGF in phase I and II trials, and is currently in a phase III clinical
trial to reduce DGF in kidney transplant patients (NCT0261096)
(37, 294). An anti-TLR2 monoclonal antibody (Tomaralimab,
Opsona Therapeutics Ltd, Dublin, Ireland) is currently in phase II
clinical trials for DGF reduction (37, 262). Recombinant C1
inhibitors (C1-INH) are being evaluated in multiple clinical
trials, with interim reports suggesting equivocal effects and other
studies showing reduced severity of DGF (37). Complement
Receptor 1 (CR1) is a protein found on the surface of many
different cell types that downregulates C3 convertase (24).
Mirococept (APT070, Inflazyme Pharmaceuticals, Richmond,
BC, Canada) is a CR1 with a membrane anchor currently in
phase III clinical trials for preventing IRI in kidneys (295).
Orthosteric inhibition of leukocyte integrin CD11b/CD18 to
diminish kidney IRI is an active area of research in a non-
human primate model (296). Hypothermic (1-8°C) ex vivo
perfusion is a long-established technology, and is a widely used
method in many organ procurement organizations based on
evidence of improved outcomes, including reduced DGF for
deceased donor kidneys from high-risk donors or with expected
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prolonged cold ischemic times, intending to reduce IRI (253).
More recently, normothermic blood based ex vivo perfusion has
been shown to reduce the incidence of DGF in kidney allografts
and this protocol is now in phase II clinical trials with primary
outcomes being the incidence and nature of renal allograft DGF
(ISRCTN15821205) (297, 298).

Liver
Liver PGD (early allograft dysfunction [EAD] or primary
nonfunction [PNF]) is generally ascribed to IRI (299). Machine
perfusion (MP) has been studied most extensively in preclinical
models to combat IRI, paving the way for clinical trials (22, 300–
312). The three main techniques of MP that have become
clinically applicable include hypothermic MP, hypothermic
oxygenated MP, and normothermic MP (NMP). Each
technique aims to mitigate IRI by reducing standard cold
storage time and associated ischemic injury. In recent trials,
the use of MP has been shown to reduce histologic bile duct
injury and decrease post-operative hepatocellular enzyme
release, both surrogates for IRI (22, 302, 304). Of interest, the
first ischemia-free liver transplant was performed in China,
where NMP was initiated in the donor and continued without
interruption until graft revascularization in the recipient (313).
This technique is hypothesized to have reduced IRI given
minimal hepatocyte necrosis and apoptosis seen on post-
reperfusion graft histology, low levels of inflammatory cytokine
release by immunohistochemical staining and quantitative real-
time polymerase chain reaction, and low post-reperfusion
hepatocellular enzyme levels.

Heart
Heart allograft primary graft dysfunction has been linked to IRI
and manifests as global biventricular dysfunction – ranging from
diastolic dysfunction in milder cases to progressively depressed
systolic function in its more severe presentation (314). PGD after
cardiac transplantation remains a significant clinical problem
despite decades of research (315). Targeting inflammatory
cytokines may be a new and promising avenue for IRIM.
Tocilizumab (Genentech/Roche, San Francisco, CA, USA), an
anti-IL6R monoclonal antibody, has proven efficacious in a
clinical trial in reducing myocardial inflammation after acute
myocardial infarction (316). It is currently being investigated in
the heart transplant setting with study endpoints being donor
specific antibodies, acute cellular rejection, antibody mediated
rejection, hemodynamic compromise secondary to clinical
rejection, death, or transplantation in the first year
(NCT03644667). Antibodies against IL1R and TNFa reduce
associated heart IRI in preclinical models but have not yet
been evaluated in clinical trials (317, 318). The availability of
clinically approved anti-IL1R and anti-TNFa antibodies
(Anakinra, Swedish Orphan Biovitrum AB, Stockholm, Sweden
and Etanercept, AMGEN, Thousand Oaks, CA, USA) make
these avenues especia l ly ent ic ing. Heart IRIM via
normothermic ex vivo perfusion has clinical approval and is
currently available (319–322). On the horizon for cardiac
allotransplantation is hypothermic ex vivo perfusion. Nilsson
et al. compared hypothermic ex vivo perfusion to cold static
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storage in a recent phase II clinical trial and showed safety and
efficacy of the circuit in humans (323). Ex vivo heart perfusion
limits IRI by minimizing cold static storage time and thus
minimizing organ ischemia.

Cardiac reanimation after DCD procurement is being used to
expand the transplant donor pool (319–322). Optimizing the
initial reperfusate of the heart contributed to the success of heart
DCD (40). The DCD heart can be procured in two ways: direct
procurement and preservation (DPP) and normothermic
regional perfusion (NRP) (40). In DPP an emergent
sternotomy is performed after declaration of death and the
heart is perfused with cardioplegia solution during dissection.
The heart is then explanted, connected, and reanimated with the
normothermic ex vivo perfusion device. Throughout travel to the
recipient’s facility the heart is perfused with normothermic
oxygenated blood procured from the donor. The principles of
the cardioplegia strategy for DPP and IRIM both aim to
reoxygenate the myocardium, flush out ROS, replete ATP
stores, and restore calcium homeostasis (40). In NRP, once
death is declared, a sternotomy is performed, the head vessels
are clamped, and the body is resuscitated via central or
peripheral extracorporeal life support. The heart is then
assessed in situ and if it is functionally normal, it is dissected,
arrested, removed, and placed on the ex vivo perfusion device.
DISCUSSION

IRI in Xenotransplantation
If shown to be dependably successful, organ xenotransplantation
from pigs would provide an abundant and ethically acceptable
alternative to human donors as a source of organs for
transplantation that would be available on demand. Over the
past 20 years, pigs have been genetically modified to address
known xenograft injury mechanisms driven mainly by
preformed antibody, complement activation, and coagulation
pathway dysregulation. Long-term, life-supporting xenograft
survival has recently been achieved using organs from several
of these pig strains and transplanting them into non-human
primates, the best available model for porcine-to-human
xenotransplantation (4, 324). Three components of
conventional allograft IRI that we believe are particularly
crit ical to XIRI are complement activation, steri le
inflammation, and endothelial activation (27, 146, 325, 326).
However, heart xenografts of multiple different phenotypes and
even pig hearts with three key xeno gene modifications
(GalTKO.hCPRP.hTBM) were unable to dependably support
life in vivo in the hands of multiple experienced investigators.
Only with XIRI minimization were Langin et al. able to achieve
consistent xenograft survival more than one day (25, 327, 328).

XIRI is a critical barrier to clinical xenotransplantation, but it
affects xeno-organs to different degrees (25, 153, 329, 330). The
xeno-heart seems to require robust XIRI minimization technique to
avoid perioperative cardiac xenograft dysfunction (PCXD) (25, 153,
328). Additionally, Shah et al. showed that liver xenotransplant
recipients suffer lethal coagulopathy, and Watanabe et al. showed
September 2021 | Volume 12 | Article 681504

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Patel et al. Minimizing Ischemia Reperfusion Injury in Xenotransplantation
that lung xenotransplantation is characterized by significant
endothelial dysfunction and loss of vascular barrier function
(alveolar hemorrhage) (329, 330). The mechanistic basis for the
vulnerability of hearts and other organ xenografts to IRI may be
related to xeno-specific mechanisms. For example, Khalpey et al.
found that pig endothelial cells lose expression of ecto-5’
nucleotidase when exposed to human and non-human primate
blood. This leads to loss of a key producer of extracellular
cryoprotective, antithrombotic, and immunosuppressive
adenosine which would put the porcine organ at increased risk of
IRI (331). Porcine organ vulnerability may be due to this or a yet
undiscovered peculiarity of pig physiology.

Ischemia Reperfusion Injury Minimization
in Xenotransplantation
Complement and coagulation pathway regulatory molecules, self-
recognition receptors that inhibit cell-mediated injury, and
constitutive expression of anti-inflammatory transgenes that
have been incorporated into porcine donors to address xeno-
specific injury mechanisms are likely to play an important role in
minimizing IRI (Table 2) (156, 157, 332). Preventing detrimental
complement activation, endothelial dysfunction, and reducing the
cross species inflammatory response will be critical for future
research into XIRI minimization. Langin et al. and Mohiuddin
et al. have used pigs that express complement regulatory protein
(hCD46) and pretreat their heart xenotransplant recipients with
complement inhibitors. However, Langin reported that those
interventions along with additional expression of human
thrombomodulin, did not prevent initial xenograft dysfunction
(IXD) (25, 333). Thus, while expression of these two human
complement and coagulation pathway regulatory proteins would
be expected to be protective for GalTKO hearts in baboons,
ischemia minimization was necessary and sufficient, at least when
anti-IL6R, anti-IL-1R, and anti-TNFa were also administered.

The relative contribution of complement, coagulation, and
inflammation to XIRI remains unknown. Xenograft injury and
Frontiers in Immunology | www.frontiersin.org 11
allograft IRI are both associated with pro-inflammatory
cytokines (168, 316–318, 334–336). Whether the IL6, IL1, and
TNFa pathways and complement and coagulation pathway
dysregulation contribute significantly to IXD of heart
xenografts has not been addressed and could be studied by
omitting these interventions from the regimen, or by including
these agents when using hearts without the hCD46 or hTBM
genetic modifications.

As described by Langin et al. in the orthotopic pig-to-baboon
heart xenotransplant model, organ preservation with machine
perfusion is the most obvious and readily available approach to
IRIM. In their initial experiments, standard cold static ischemia
was associated with IXD in all but one of four consecutive
xenografts. In contrast, when the hearts were perfused with
cold (8°C) oxygenated cardiac STEEN solution (XVIVO,
Gothenburg, Sweden), a hyperkalemic, hyperosmotic, blood-
containing cardiac preservation solution developed by the
Steen group, no IXD was reported for 9 consecutive subjects
(25, 337). The perfusate was administered continuously to the
donor heart prior to explant and either continuously or
intermittently, at 20-minute intervals, throughout implant.
Their perfusate contained hormones, inotropes, and anesthetic
agents based on 20 years of work in the field. Delivery of an
oxygenated perfusate in an arrested heart allowed for restoration
of oxygen supply with minimal consumption; avoiding ischemia
minimized ROS production. The continual circulation of an
electrolyte and pH balanced solution likely minimized ATP
depletion, mPTP opening, and calcium and other ion flux. The
absence of platelets and leukocytes and their associated pro-
inflammatory cytokine and lipid arachidonic acid-derived
mediators may have also helped in preventing IRI. The
pretreatment of the recipient with a cytokine antibody cocktail
may have blocked the effects associated with release of these
inflammatory mediators at initial xenograft reperfusion. These
multiple different treatments, in combination, were sufficient to
prevent graft dysfunction; whether they had direct or indirect
TABLE 2 | Summary of the promising mechanisms of ischemia reperfusion injury minimization currently being used in in vivo and in vitro models.

Current Model Intervention Results

Complement
Regulation

• Pig-to-NHP in vivo
transplant

• Porcine transgenesis of human complement regulatory proteins
such as hCD46

• Successful transgenic pig to NHP
xenotransplantation (Heart, Kidney, Lung)

Coagulation
Regulation

• Pig-to-NHP in vivo
transplant

• Porcine transgenesis of coagulation regulatory proteins such
as hTBM, hTFPI, hEPCR

• Successful transgenic pig to NHP
xenotransplantation (Heart, Kidney, Lung)

Anti-inflammatory
Medications

• Pig-to-NHP in vivo
transplant

• Anti-IL1, Anti-IL6R, Anti-TNFa • Successful transgenic pig to NHP
xenotransplantation (Heart, Kidney, Lung)

Ex vivo Cold
perfusion

• Pig-to-NHP in vivo
transplant

• Cold continuous ex-vivo reperfusion followed by intermittent
reperfusion during organ implant until cross clamp is
removed

• Successful transgenic pig to NHP
xenotransplantation with long term heart
xenograft survival

Self-recognition
proteins

• Pig-to-NHP in vivo
transplant

• Porcine transgenesis of self-recognition proteins such as
hCD47, hHLA-E

• Successful transgenic pig to NHP
xenotransplantation (Heart, Kidney, Lung)

Mesenchymal
Stromal Cells
(MSCs)

• Human-to-sheep
myocardial infarction
(MI)

• Human-to-Canine
cardiopulmonary
bypass (CPB)

• Intracoronary injection of MSCs
• Intravenous injection of MSCs

• MI model – improved myocardial perfusion in
the treated group

• CPBmodel – decreased inflammatory
cytokine levels

Heme-oxygenase-1 • Pig-to-human in vitro
oxidative stress model

• Porcine transgenesis of HO-1 put under oxidative stress and
by human TNF in in vitro conditions

• Reduced reactivity to oxidative and human
TNF.
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effects to inhibit significant endothelial dysfunction, complement
activation, and significant initial inflammation remains to
be determined.

Normothermic ex vivo perfusion is used clinically in
allotransplantation with good effect, particularly in liver and
heart transplantation (338, 339). There are no current studies
demonstrating the effects of normothermic ex vivo perfusion in
xenotransplantation. Normothermic machine perfusion shortens
cold ischemia while supporting the full organ metabolism
allowing for assessment of injury and function. Hypothermic
and subnormothermic machine perfusion have also been shown
to enhance mitochondrial function and replenish cellular energy
stores (338). Lastly, ischemia-free organ transplantation requires
normothermic machine perfusion and completely abolishes
ischemia. Given that there is no component of trauma or brain
death with xenotransplantation, and ideally no question of organ
viability before procurement, the role of ex vivo/machine
perfusion and ischemia minimization in xenotransplantation
require further investigation for all organs, and may be critical
to safe, successful clinical translation.

Other strategies in XIRI minimization include the use of
mesenchymal stem cells (MSCs). MSCs are hypothesized to
mitigate IRI through their anti-inflammatory, pro-
immunomodulatory, and tissue repair characteristics. Dayan
et al. utilized a myocardial infarction model in sheep with
treatment with human MSCs, showing improvement in
myocardial perfusion at one month in the treated group
without adverse events (270, 273). Qiang et al. utilized a canine
model of cardiopulmonary bypass-induced IRI and treatment
with human amniotic MSCs which led to mitigation of IRI as
evidence by decreased levels of TNFa and IL8 and increased
levels of IL10 relative to dogs not treated with MSCs (211).

Significant work has shown that activating the protective
NRF2/heme oxygenase-1 (HO-1) pathway may reduce
oxidative and inflammatory stress associated with IRI (340,
341). Bach et al. demonstrated the importance of HO-1 in a
mouse-to-rat cardiac xenograft model, noting increased
expression of HO-1 in xenografts with long-term survival (342,
343). In vitro work involving transgenic expression of human
HO-1 into pigs has shown a decrease in reactivity of pig
fibroblasts to oxidative stress as well as human TNFa,
therefore this gene has been added in genetically engineered
pigs (344). The separate effect of HO-1 on organ behavior in
xenotransplantation has not yet been studied. Of note, delivery of
an ROS scavenger may also reduce oxidative stress and attenuate
XIRI, but further work is needed (345, 346).

Limiting cross-species coagulation dysregulation may help
minimize XIRI. Anticoagulant genes should diminish
coagulation pathway dysregulation and blunt inflammation.
CD39 expression should improve ADP and AMP catabolism,
reducing platelet and EC activation, and promote elaboration of
anti-inflammatory adenosine by endogenous CD73, thus
inhibiting both physiologically inappropriate clotting and
inflammation (347). Of note, pigs are relatively deficient in
CD73, perhaps accounting in part for the pig’s particular IRI
susceptibility. Human endothelial protein C receptor (hEPCR)
transgenesis along with hTBM and hTFPI are all likely to reduce
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dysregulated coagulation, and EPCR, interacting with PPAR-1,
upregulates potentially critical anti-inflammatory intracellular
mechanisms (348, 349). Including one or more of these
genetic modifications in the pig construct may reduce the
need for ischemia minimization strategies to reduce IRI and
its consequences. Parenthetically, addressing porcine vWF-
human GP1b abnormal interaction (blocking Fab; humanizing
pvWF by genetic engineering) reduces, but does not prevent,
platelet sequestration seen in heart, kidney, liver, and lung
models (350).

Molecular mechanisms of IRI mentioned previously such as
the calcium paradox, mitochondrial dysfunction, and mPTP
have not been studied in the context of xenotransplantation
but may be presumed to be similarly important. Ex vivo
perfusion should minimize activation of these pathogenic
mechanisms since the cellular electrochemical and energy
imbalances associated with ischemia and reperfusion are
reduced or prevented prior to transplantation.

Immune cell adhesion and activation also play a role in XIRI.
Using genetic engineering to express self-recognition molecules
on the porcine endothelium may help attenuate XIRI. Damaged
or neoplastic cells lose expression of self-recognition receptors
such as CD47 and HLA-E, resulting in activation of innate
immune cell scavenging by neutrophils and monocyte/
macrophage lineage cells (CD47), NK cells, and other myeloid
cells (HLA-E) (351, 352). Similarly, pig cells that lack human
CD47 and HLA-E are susceptible to phagocytosis or cytolysis by
these recipient effector leukocyte populations. In response, CD47
has been expressed in pigs, and was associated with prolonged
survival in a porcine-NHP lung xenotransplant model (329).
Incorporation of hHLA-E into the porcine endothelium also
suppresses NK cell and macrophage activation (351).

Selectin antagonism is effective in decreasing IRI in MI,
peripheral arterial, and allograft IRI models. It seems logical
that selectin blockade will similarly attenuate XIRI by decreasing
the rolling and adhesion of neutrophils, although this has not yet
been confirmed. Further work specifically for XIRI needs to be
done in models where other xeno-driven cell adhesive
interactions are addressed, allowing this specific question to be
answered (146).

While complement inhibition and coagulation regulation
have been mentioned with respect to genetic engineering, these
mechanisms can be targeted by other methods. Soluble hTBM or
direct thrombin inhibitors can be administered, and should work
synergistically to membrane bound hTBM to decrease activation
of the coagulation cascade (353). IL4 activates the PI3K/Akt
pathway in endothelial cells and has been shown to be protective
of complement-mediated endothelial cell damage in
xenotransplantation in vitro models. IL4 transfection with or
without ex vivo perfusion, may be another avenue for protection
from complement mediated IRI injury (354).

In addition to the innate immune system, altering how the
adaptive immune system responds to the xenograft may
attenuate XIRI by use of conventional immunosuppressive
agents or other approaches. Artificial antigen presenting cells
have been used in oncology to stimulate anti-tumor specific
T-cell responses, and could in principle be engineered to
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regulatehow the recipient immune system responds to the pig
antigen (355).
CONCLUSION

IRI and its consequences for initial allograft organ function are
well known to exert a critical negative influence on the initial and
long-term outcomes of allotransplantation (23, 24, 41, 315).
Minimizing IRI by ex vivo organ perfusion has allowed
expansion of the donor pool in allotransplantation, and
specifically enabled safer use of DCD organs. In addition, there
is considerable evidence that IRI minimization by machine
perfusion of ‘marginal’ kidneys, lungs, and livers is associated
with improved allotransplant outcomes (288, 319, 356). To the
extent that the major injury mechanisms are shared between
xenograft injury and allograft IRI, including complement
activation, endothelial dysfunction, and a profound
inflammatory response, it is logical that genetic engineering
modifications targeting these mechanisms should also attenuate
XIRI (27, 146, 147, 155, 325, 326). Evidence to date indicates that
XIRI is particularly critical in cardiac xenotransplantation.
Efficacy of ischemia minimization in other xeno organs has not
yet been evaluated (25, 153, 329, 330). By analogy with allograft
experience, minimizing IRI either with ex vivo perfusion, or by
targeting shared, overlapping injury mechanisms, may be critical
for clinical translation. We suspect that using a combination of
both approaches may offer critical advantages through
redundancy to improve safety, maximize the odds of initial
success with xenotransplantation in the short term, and the
Frontiers in Immunology | www.frontiersin.org 13
potential long-term benefits. With the advances of genetic
modification, cytokine inhibition along with ischemia
minimization via ex vivo organ perfusion has enabled a
breakthrough in cardiac xenotransplantation. It remains to be
seen which features are critical, and whether any drug treatments
to the recipient can be eliminated using pigs with genes that
constrain IRI mechanisms, like HO-1, HLA-E, hCD47. If not,
continued progress in our understanding of XIRI mechanisms is
likely to contribute to significant additional progress in pig-to-
non-human primate XIRI minimization and xenotransplantation
preclinical outcomes, providing hope for future clinical
translation (25, 153, 329, 330).
AUTHOR CONTRIBUTIONS

PP: Performed majority of background research and writing of
the paper. MC and TC: Participated in background research and
writing of the paper. AC, FP, JFM, LB, AA, and JCM:
Participated in writing of the paper. RP: Participated in
concept development and writing of the paper. All authors
contributed to the article and approved the submitted version.
FUNDING

RP: NIH RO1 AI153612 (PI: RP) CRISPR-Modified Cardiac
Xenograft Transplantation. FP: German Heart Foundation
(Deutsche Herzstiftung e.V.).
REFERENCES
1. Aristizabal AM, Caicedo LA, Martıńez JM, Moreno M, J Echeverri G.
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