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Kidney macrophages are central in kidney disease pathogenesis and have therapeutic
potential in preventing tissue injury and fibrosis. Recent studies highlighted that kidney
macrophages are notably heterogeneous immune cells that fulfill opposing functions such
as clearing deposited pathogens, maintaining immune tolerance, initiating and regulating
inflammatory responses, promoting kidney fibrosis, and degrading the extracellular
matrix. Macrophage origins can partially explain macrophage heterogeneity in the
kidneys. Circulating Ly6C+ monocytes are recruited to inflammatory sites by
chemokines, while self-renewed kidney resident macrophages contribute to kidney
repair and fibrosis. The proliferation of resident macrophages or infiltrating monocytes
provides an alternative explanation of macrophage accumulation after kidney injury. In
addition, dynamic Ly6C expression on infiltrating monocytes accompanies functional
changes in handling kidney inflammation and fibrosis. Mechanisms underlying kidney
macrophage heterogeneity, either by recruiting monocyte subpopulations, regulating
macrophage polarization, or impacting distinctive macrophage functions, may help
develop macrophage-targeted therapies for kidney diseases.
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INTRODUCTION

Macrophage plays an important role in kidney disease pathogenesis and is a potential therapeutic
target for kidney injury and fibrosis. Kidney macrophage subpopulations can either promote or
prevent the extracellular matrix deposition in the kidney, drawing the possibility of reversing kidney
fibrosis (1). However, the functionally opposing macrophage subpopulations rising ambivalence in
understanding macrophage activities during kidney injury and fibrosis, disturbing the development
of macrophage-targeted therapies (2). Studies have focused on macrophage functional diversities
mechanisms and applied novel approaches in precisely identifying macrophage subpopulations.
Therefore, intriguing questions have arisen, such as the macrophage origin (kidney-resident
macrophages vs. circulating monocyte precursors), macrophage differentiation (oversimplified
M1/M2 categorization vs. newly subsets defined by cell surface markers and single-cell RNA-
sequence), and their effector functions in the pathogenesis of kidney diseases.
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MACROPHAGE HETEROGENEITY

Macrophage heterogeneity attracts attention since the discovery
of macrophages. Following studies expand macrophage
heterogeneity definition depending on the origin, cell surface
markers, and cytokines secretion (3). Macrophages obtain
distinct phenotypes under physiological conditions and
differentiate into functional phenotypes in response to
pathological stimulation. According to their cooperation with
distinct T cell subsets, macrophages have generally been
classified either into classical M1 or alternative M2
macrophages. M1 macrophages are characterized by pro-
inflammatory effects and engage with T helper 1 (Th1) cells,
whereas M2 macrophages exhibit immunoregulatory efforts and
intimately cooperate with T helper 2 (Th2) cells (4). M1
macrophage differentiation is initiated by pathogen-associated
molecular patterns (PAMPs), danger-associated molecular
patterns (DAMPs), and pro-inflammatory cytokines, especially
under acute deleterious conditions (5). Representative functions
of M1 macrophages are host defense and secretion of pro-
inflammatory cytokines, such as tumor necrosis factor-a
(TNF-a), interleukine-1b (IL-1b), interleukine-6 (IL-6), and
interleukine-12 (IL-12). M2 macrophage is typically polarized
by interleukine-4 (IL-4) and interleukine-13 (IL-13), suppressing
inflammation and promoting wound repair. Recent studies
further classify M2 macrophages into different subsets
depending on their differentiation stimuli, markers, and
functions (6). While classic M2 macrophages are classified
into M2a macrophages, M2b macrophages are induced by
immune complexes, toll-like receptors and/or interleukine-1
receptors (IL-1R), contributing to immunoregulation and
Th2 cells activation. M2c macrophages are induced by
interleukine-10 (IL-10) and glucocorticoids, participating in
immunosuppression, tissue repair, and matrix deposition. The
simplified paradigm of M1/M2 macrophages facilitates the
studies of macrophage phenotypes and functions. However,
typical M1/M2 macrophages are induced in carefully regulated
circumstances in vitro and not uniformly observed under the
dynamic and complex environment in vivo. In fact, macrophages
appear to express M1/M2 markers simultaneously during kidney
injury, and their origins largely determine the functions of renal
macrophages. Lineage tracing studies demonstrated that
postnatal kidney macrophages predominately originate from
the yolk sac EMP and hematopoietic stem cells, and bone
marrow-derived monocytes infiltrate the kidney under
inflammatory conditions (7, 8).
RENAL MACROPHAGE DISTRIBUTION
DURING DEVELOPMENT, HEALTH, AND
DISEASE

Macrophages contribute to morphogenesis during organ
development. In cultured kidney explants, colony-stimulating
factor-1 (CSF-1) application stimulates ureteric bud branching
and nephron formation (9). By binding to the membrane
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receptor CSF1R, CSF-1 accelerates macrophage proliferation
and differentiation (10, 11). Macrophages infiltrate the
nephrogenic zone and facilitate nephron progenitor
proliferation after the transient loss of nephron progenitor cells
(12). Munro et al. (13) demonstrated that macrophages directly
interacted with endothelium in developing cortical nephrogenic
caliber vessels. These F4/80+CD206+ macrophages are
perivascular and enriched for mRNAs associated with
organogenesis. Moreover, the subpopulation of Gal3high

myeloid cells are professional phagocytes and intermingle with
pro-development F4/80+CD206+ macrophages in the developing
mouse kidney. Therefore, fetal kidney macrophages possibly
facilitate organogenesis by interacting with newly forming
nephrogenic blood vessels. In addition, macrophages distribute
around renal tubules during kidney development (9), but the
underlying mechanisms are unclear. Experimental models of
invertebrate species, such as Drosophila melanogaster (D.
melanogaster), provide novel insights. In D. melanogaster, the
Malpighian tubules are analogous to kidneys, while hemocytes
are similar to macrophages. Hemocyte deposition around the
developing Malpighian tubules is mediated by type IV collagen,
necessary for the normal organogenesis of anterior Malpighian
tubules (14). In mammalian kidneys, the renal tubular basement
membrane is abundant in collagen IV and attracts macrophage
recruitment (15, 16). However, it is difficult to extend these
findings to mammalian kidneys due to the unique
nephron structure.

In normal human kidneys, Marshall et al. (17) observed
monocyte/macrophage distribution by immunoperoxidase
staining of a-1-antitrypsin, muramidase, and serum 22. Most
positive staining cells were scattered in glomerular capillaries and
intertubular blood vessels. Macrophages rarely infiltrated into
tubulointerstitium except in scarring tissues. However, the
generality of these findings is limited by non-specific markers.
Recently, Cao et al. (18) demonstrated that F4/80+CD11c−

macrophages distribute throughout the renal cortex and
medulla in healthy kidneys. In contrast, F4/80+CD11c+

mononuclear phagocytes are distributed in the renal cortex
rather than the medulla under normal and injured conditions.
These double-positive mononuclear phagocytes performed M1-
like macrophage phenotype and aggravated kidney injury during
Adriamycin nephropathy. However, a large percentage of
CD11c+ dendritic cells co-express F4/80 marker in healthy
kidneys, the preference to determine the nature of F4/
80+CD11c+ cells should be circumspect.

Due to a double set of arterioles and capillaries, the kidney
owns a unique vascular supply and receives about 25% of the
cardiac output. The renal cortex exposed continuously to large
amounts of blood-derived antigens and antibodies, resulting in a
high sensitivity to renal glomerular diseases (19). Glomerular
macrophage accumulation is an important feature in human
glomerulonephritis. Macrophage clearance decreased glomerular
damage in experimental glomerulonephritis (20). Further studies
targeting monocyte chemotactic molecule-1 (MCP-1) or
leukocyte adhesion molecules (ICAM) successfully attenuated
macrophage accumulation and kidney injury in experimental
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models (21, 22). Interestingly, the numbers of tubulointerstitial
macrophages rather than glomerular macrophages predict renal
dysfunction (23, 24). Our previous studies found that tubular
epithelial exosomes contribute to macrophage infiltration and
activation, providing a novel insight into tubulointerstitial
macrophages (25–27). This review focus on macrophage
heterogeneity in the kidney and excellent works have been
done to card macrophage function and distribution during
acute kidney injury (AKI) and chronic kidney disease (CKD)
(1, 28).
KIDNEY RESIDENT MACROPHAGE
ORIGIN AND SPECIFICITY

Kidney-resident macrophages are in situ self-renewed and
characterized by their phagocytic activities, expression of
pattern recognition receptors (PRRs), and immunological
regulation capacity, thus, maintaining kidney homeostasis (29).
Kidney-resident macrophages derive from 3 sources: (1) yolk
sac erythro-myeloid progenitors (EMP)-derived macrophages,
(2) fetal liver EMP-derived macrophages, and (3) hematopoietic
stem cells (HSC)-derived macrophages. The relative proportion
of each progenitor dramatically changes during the development,
adulthood, and damaged kidney state.

At embryonic day 12.5, kidney macrophages are CD45+

CD11blo F4/80hi Ly6C− cells deriving from yolk sac EMP; in
contrast, CD45+ CD11bhi F4/80lo Ly6C+ monocytes are
undetectable at this stage (30). Using tamoxifen-inducible
Runx1Cre/EYFP and Csf1rCre/EYFP mice, fate tracing studies
demonstrated that the relative proportion of yolk sac EMP-
derived macrophages in the kidney decrease dramatically after
embryonic day 13.5 (30). Consistently, Csf1r-Cre positive yolk
sac-derived macrophages represent a minimal proportion of
kidney macrophages after postnatal, possibly due to their
dilution by the later arrival of fetal liver EMP-derived and
HSC-derived macrophages (7). Sheng et al. (8) provided
evidence of HSC-derived kidney macrophages using
tamoxifen-inducible c-KitCre/EYFP mice. They further
concluded that HSC precursors rather than EMPs are the
source of kidney resident macrophages (8). However, the
non-specific expression of c-Kit-Cre makes this conclusion
debatable (31, 32). As HSCs transiently expressing Flt3-cre
(33), Epelman et al. (7) distinguished the origin of HSC-
derived monocytes and EMP-derived monocytes using
Flt3Cre/GFP mice and found their equal contribution to the
pool of resident macrophages. In contrast, Hoeffel et al. (30)
demonstrated that fetal liver EMP-derived c-Myb+ monocytes
are the predominant source of kidney resident macrophages.
Thus, further studies based on fate-mapping studies must
concern the limitations of genetic models, and single-cell
RNA-sequence classifies ability worth more attention. While
the kidney exposes to circulating monocytes throughout the
development and adulthood, the kidney resident macrophages
are mainly EMP- and HSC-derived rather than bone marrow-
derived (7, 8, 30, 32, 34), partially explained by the niche
Frontiers in Immunology | www.frontiersin.org 3
competition hypothesis (35). Recent studies found that under
certain types of kidney disease, expanded macrophages derive
from the subset of resident macrophages, especially yolk sac-
derived macrophages (36, 37). Ide et al. (37) demonstrated that
CX3CR1+ yolk sac-derived macrophages have a higher
proliferating capacity and progressively expand in number in
older mice kidneys. Kidney resident macrophage proliferation
contributes to the proangiogenic and pro-inflammatory
environment after ischemic AKI and is confirmed by staining
with Ki67 or BrdU (36, 38).

Kidney resident macrophages monitor trans-endothelial
transport of circulating immune complexes and regulate the
infiltration of lymphocytes and neutrophils (39). Using an
unbiased flow cytometry approach, Kawakami et al. (40)
classified kidney resident mononuclear phagocytes into five
distinct subpopulations according to their cell surface markers,
including CD11bhi CD11chi, CD11bhi CD11clo, CD11bint

CD11cint, CD11blo CD11chi, and CD11b− CD11cint. CD11bint

CD11cint F4/80high monocytes perform anti-inflammation
effects as endogenous defenders. Kidney resident macrophages
are in situ self-renewal and minimally differentiated from
circulating monocytes after ischemic AKI. However, bone
marrow-derived monocytes can replenish the kidney resident
macrophages when they are depleted using polyinosinic/
polycytidylic acid (poly I:C), consistent with the niche
competition hypothesis (38). Interestingly, kidney resident
macrophages lack major histocompatibility complex class II
(MHCII) expression in the repair phase after AKI, a
phenotype occurring during the nephrogenesis, and enrich
Wnt ligands production, such as Axin2, Tcf4, and Jun (38). In
ischemic AKI, C-C chemokine receptor type 2 (CCR2)
deficiency al leviates circulat ing Ly6C+ macrophage
recruitment and kidney injury and augments interstitial
accumulation of Ly6C- embryonic yolk sac-derived resident
macrophages and kidney fibrosis in late phases (41).
Clodronate Liposome-induced macrophage depletion
attenuates kidney injury and fibrosis, which can be restored by
adoptive transfer of Ly6C− macrophages from injured wide type
kidneys. While Ly6C− macrophage-derived cytokines facilitate
the fibroblast-myofibroblast differentiation in vivo and in vitro,
direct evidence targeting the trans-differentiation from Ly6C−

macrophages to myofibroblasts remains missing (41). Similarly,
CX3CR1+ resident renal phagocytes amplify leukocyte
infiltration in an NLRP3-dependent manner in contrast-
induced acute kidney injury (42). Accumulation of infiltrating
and resident macrophages augments in autosomal dominant
polycystic kidneys. In unilateral nephrectomy accelerated Pkd1
mice, lrf5 expression in resident macrophages aggravates cystic
disease severity by producing pro-inflammatory cytokines (43).
In ischemia-reperfusion injury (IRI) accelerated cystic mice, the
phenotype of kidney resident macrophages transfers from
F4/80high CD11Clow to F4/80high CD11Chigh, and reappearance
of juvenile-like resident macrophages correlated with the
accelerated cyst formation (44).

However, kidney resident macrophages also perform
protective effects during acute and chronic kidney disease.
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Park et al. (45) found renal repair after ischemic AKI in mice
lacking kidney resident CD45+ Ly6G− F4/80high CD11bint

macrophages but containing infiltrating CD45+ Ly6G− F4/80int

CD11bhigh macrophages is delayed compared to the wide type
mice. V-domain Ig suppressor of T cell activation (VISTA), an
inhibitory immune checkpoint molecule, is mainly expressed by
CD45+ Ly6G− F4/80high CD11bint kidney resident macrophages
and has the biomarker potential in distinguishing the renal
macrophages (45). CX3CR1 mediated phagocytes by kidney
resident macrophages initiate within the first hours during the
innate host defense against Candidiasis, confirmed by CX3CR1-
M280 associated susceptibility to systemic candidiasis in humans
(46). CD11bint F4/80bright kidney resident macrophages protect
renal artery stenosis-induced kidney injury by promoting the
proangiogenic environments (36). Thus, kidney resident
macrophages perform diverse effects depending on the phase
and injury types. Based on a better understanding of cell surface
markers and Cre specificity, further strategies should be explored
to maintain protective resident macrophage phenotype during
kidney disease. To advance these studies toward clinic
interventions in patients, we must overcome two shortages of
kidney resident macrophages. Firstly, minimal information is
known about the anatomy and functions of resident
macrophages in human kidney. Secondly, the similarities and
differences of resident macrophages between rodent models and
human kidneys remain unclear.
MONOCYTE AS PRECURSORS OF
KIDNEY MACROPHAGES

While circulating monocytes minimally contribute to the renal
macrophage pool under homeostasis, toxic or infectious damages
result in augmented recruitment of monocyte-derived
macrophages into the kidney. When renal macrophage niches
are ablated, peripheral monocytes rapidly differentiate and
replenish kidney macrophages (Munro et al. Nature
Communications 11(1):2280 DOI:10.1038/s41467-020-16158-z).
Bone marrow-derived monocyte precursors can reconstitute
ischemic kidney macrophages in niches when kidney resident
macrophages are depleted (38). Colony-stimulating factor-1
(CSF-1) stimulates macrophage proliferation at various time
phases and tissues (47). Genetic deficiency or pharmacological
blockade targeting CSF-1 inhibits macrophage proliferation,
therefore prolonging the tissue repair phase after AKI (48).
Rodent models revealed that Ly6Chigh pro-inflammatory
monocytes infiltrate early in damaged kidneys (49, 50),
depending on chemokines such as CCL2, CCL5, and CX3CR1
(26, 51–53). Initial infiltrating bone marrow-derived
macrophages are characterized as Ly6C high iNOS+ cells by
flow cytometry in rodent kidneys, whereas late Ly6Clow

macrophages perform profibrotic M2-like effects (49, 50).
CD11b diphtheria toxin receptor (DTR)-mediated depletion
of monocyte/macrophages (50) or pharmacological blockade
targeting chemokine pathways (54) attenuates kidney fibrosis,
suggesting a profibrotic role of infiltrating macrophages in
Frontiers in Immunology | www.frontiersin.org 4
renal fibrogenesis. In severe IRI-induced AKI-CKD models,
adoptive transplantation of F4/80int B7-H4high (M2c)
macrophages rather than F4/80high B7-H4 int (M1)
macrophages restore renal interstitial fibrosis in liposome
clodronate-induced macrophage abrogated mice (55).
Similarly, adoptive transfer of F4/80+ CD301+ (M2)
macrophages rescue renal fibrosis in obstructed kidneys after
macrophage depletion (56). Monocyte-derived kidney
macrophages aggravate fibroblast activation and renal fibrosis
by secreting cytokines (1, 57). Despite the direct and indirect
profibrotic effects, bone marrow-derived macrophages can
transdifferentiate into collagen-producing myofibroblasts via
macrophage-myofibroblast transition (MMT) (58). Using
Lyz2-Cre/Rosa26-Tomato mice, lineage tracing studies
demonstrated that approximal 50% of the aSMA+ Collagen+

myofibroblasts derive from F4/80+ Tomato+ myeloid cells (59,
60). In contrast, a 2018 study challenges the MMT hypothesis
as bone marrow-derived myofibroblasts make a limited
contribution to the myofibroblasts in the obstructed
kidney (61). The confl icting results come from the
identification of myeloid cells by CD45+ and myofibroblasts
by PDGFRb+, as unspecific markers amplify the miscalculation.
Another limitation is the deficiency of markers to distinguish
bone marrow-derived fibroblasts from macrophage-
derived myofibroblasts.

Moreover, macrophages perform diversified roles in renal
fibrogenesis via secreting matrix metalloproteinases. Matrix
metalloproteinases, especially macrophage-derived matrix
metalloproteinase-9 (MMP-9), promote kidney fibrosis
through stimulating extracellular matrix deposition (62, 63).
In contrast, Twist1 in infiltrating macrophages promotes
extracellular matrix degradation by stimulating CD11b+

Ly6Clow-derived matrix metalloproteinase-13 (MMP-13)
production (64). As CD11b+ Ly6Chigh monocytes freshly
infiltrate after kidney injury and represent the onset of renal
inflammation, CD11b+ Ly6Cint and CD11b+ Ly6Clow

populations expand in the phases of repair and fibrosis (41).
The evidence that terminally differentiated macrophages rather
than freshly infiltrating monocyte progenitors are the major
players in kidney fibrogenesis suggests that kidney
macrophages function varies due to disease types and
time phases.

The Ly6Clow subpopulation of circulating monocytes is
characterized by monitoring and phagocytosing circulating
immune complexes (65). These Ly6Clow monocytes present
antigens and activate effector CD4 + T lymphocytes in the
glomerular capillaries (66). Circulating myeloid-derived
suppressor cells (MDSCs) are immune suppressive populations
and initially investigated in cancer (67). MDSCs were firstly
reported to maintain cardiac transplant tolerance in rodent
models (46), whereas renal MDSCs accumulation positively
correlates with graft survival and kidney transplant recipients
(68, 69). The effects of MDSCs further expand to immune-
regulation and fibrogenesis during septic and metabolic kidney
disease (70, 71), suggesting the therapeutic potential of MDSCs
in acute and chronic kidney disease.
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HETEROGENEITY OF HUMAN KIDNEY
MACROPHAGES AND CLINICAL
TRANSFORMATION

Human monocyte/macrophages are classified into three distinct
populations, including classical CD14++ CD16− subset, non-
classical CD14+ CD16+ subset, and intermediate CD14++

CD16+ subset (72). In a 35 months cohort with 94 dialysis
patients, the number of classical CD14++ CD16− monocytes can
independently predict cardiovascular events and death (73).
Rogacev et al. (74) demonstrated CD14++ CD16– monocytes
numbers can also predict cardiovascular events in CKD patients.
Non-classical CD14+ CD16+ monocytes from CKD patients
express high levels of chemokines, facilitating their adhesion to
vascular walls (75). Pro-inflammatory CD14+ CD16+ monocytes
correlate with blood vessel stiffness in predialysis CKD patients,
suggesting that non-classical CD14+ CD16+ subset damage
endothelial cells (76). However, most clinical studies lack direct
evidence of macrophage populations inside the kidney, and the
predictive ability of human macrophage populations in kidney
injury and fibrosis requires further investigations.

To expand experimental knowledge of macrophages to clinical
applications, we still have to overcome several obstacles. Firstly,
available data of human kidney macrophages is significantly
insufficient, especially the dynamic changes of macrophage
function and subpopulations. Secondly, CD14++CD16− and
CD14++CD16+ monocytes resemble mouse Ly6C+ inflammatory
monocytes, whereas CD14+CD16+ monocytes share phenotypic
features with Ly6C- anti-inflammatory monocytes and adhering
vascular endothelium (77). As classical CD14++ CD16– subset is
known for the phagocytic capability, the overlapping and sometimes
conflicting features of human and murine monocytes require
further investigation. Thirdly, the functionality of kidney
macrophages is dynamically variable and affected by the nature of
kidney diseases. Thus, clinic translation must address the
Frontiers in Immunology | www.frontiersin.org 5
characteristics of kidney macrophages in different types and
phases of the disease (Table 1).

Nevertheless, characterized macrophage recruitment and
maturation pathways are also appliable in patients with kidney
diseases. Renoprotective effects of interventions targeting CCL2/
CCR2 have been confirmed in rodent models of kidney
inflammation and fibrosis (26, 41). Consistently, CCR2 inhibitor
CCX140-B further attenuates albuminuria levels in patients with
type 2 diabetes in addition to the standard renin-angiotensin system
(RAS) blocking therapies (84). Although the definite effects of
CSF1R in macrophage recruitment and proliferation, the role of
CSF1R inhibitors and neutralizing antibodies have not been tested
in clinical trials to treat kidney diseases. The JAK-STAT pathway
regulates macrophage activation and renal function decline in
patients with type 2 diabetic nephropathy (85). JAK1 and JAK2
inhibition by Bariticinib decreases albuminuria levels in patients
with diabetic kidney diseases (DKD) (86). Our recent studies found
that macrophage-derived extracellular vesicles are kidney-targeted
drug carriers and worth further expansion into clinical trials (87).
SINGLE-CELL RNA-SEQUENCING
REVOLUTION

After the qualitative leap from the oversimplified M1/M2 paradigm
to individual subpopulations identified by cell surface markers,
single-cell RNA-sequencing (scRNA-seq) categorizes macrophages
by their function and phenotype, revealing the continuum and
complexity of macrophages during the development and
pathogenesis of kidney disease (88, 89). Zimmerman et al. (80)
identified C1q expression as a novel marker of resident macrophage
clusters in mouse kidneys, and C1q expressing clusters in other
species were verified by the expression ofCd74,Cd81, andApoe. In a
rodent model of rhabdomyolysis-induced AKI, F4/80low CD11bhigh

Ly6bhigh CD206low pro-inflammatory macrophages infiltrate early
TABLE 1 | Macrophage markers in human and mouse.

Markers Gene Species Protein Type Reference

B7-H4 VTCN1 Human, Mouse Cell Membrane Receptor (55)
B7-H5 (VISTA) VSIR Human, Mouse Cell Membrane Cytokine (45)
CD11b ITGAM Human, Mouse Cell Membrane Receptor (30, 36, 41, 45, 64)
CDllc ITGAX Human, Mouse Cell Membrane Receptor (18, 44, 78)
CDI4 CD I4 Human, Mouse Cell Membrane Receptor (72–76)
CD16 FCGR3A Human, Mouse Cell Membrane Receptor (72–77)
CD45 PTPRC Human, Mouse Cell Membrane Receptor (30, 45)
CD115 CSF1R Human, Mouse Cell Membrane Receptor (30)
CD192 CCR2 Human, Mouse Cell Membrane Receptor (79)
CD206 MRC1 Human, Mouse Cell Membrane Receptor (13, 80)
CCRL1 CX3CR1 Human, Mouse Cell Membrane Receptor (37, 42)
F4/80 ADGRE1 Human, Mouse Cell Membrane Receptor (13, 18, 30, 36, 40, 44, 45, 55, 56, 81, 82)
iNOS NOS2 Human, Mouse Cytoplasm Enzyme (49, 50)
Ly6C Ly6c1 Mouse Cell Membrane Receptor (30, 41, 49, 50, 77)
MHC class II MHCII Human Mouse Cell Membrane Receptor (38)
MCP-1 CCL2 Human Mouse Secreted Cytokine (26, 79)
SCARD1 CD68 Human Mouse Cell Membrane Receptor (83)
TNF-a TFN Human, Mouse Cell Membrane Cytokine (57)
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after rhabdomyolysis, while F4/80high CD11b+ Ly6blow CD206high

reparative macrophages are dominant at late phase. However, the
scRNA-seq analysis demonstrated that signal pathways do not
precisely match macrophage phenotypes and the existence of
individual subpopulations simultaneously expressing
heterogeneous markers (81). At the late phase after ischemic AKI,
macrophages expressing Ccl2 and Ccr2 infiltrate around the
Vcam1+ damaged tubules (79). By evaluating the typical C1qa,
Cd74, and Adgre1 expression, macrophages are defined as the
predominant immune cells in diabetic glomeruli and mainly M1-
like macrophages (90). The scRNA-seq analysis revealed that both
extent and levels ofAxl expression increased in F4/80+macrophages
from rejecting allografts compared to tolerized kidneys; and Axl
promotes the differentiation of intra-graft myeloid cells towards
pro-inflammatory phenotypes after transplantation (82). Moreover,
the combination of scRNA-seq and lineage tracing technique
attracts particular attention. Lineage tracing can elucidate the
clonal relationships during development and differentiation,
enable lifecycle monitoring. In contrast, scRNA-seq can identify
exact cell types but unable to determine the lineage relationships.
Thus, integrating scRNA-seq and lineage tracing will provide extra
information about cell types, development, and differentiation in a
longstanding pattern.
Frontiers in Immunology | www.frontiersin.org 6
Stewart et al. (78) demonstrated that human kidney monocyte
phagocytes (MNPs) expressing ITGAX and HLA-DRA are
categorized into four distinct clusters (MNPa to MNPd). MNPa
subpopulation expressing CD14 in mature kidney analogous
classical monocytes, whereas MNPb expressing CD16 is
transcriptionally similar to non-classical monocytes. Consistently,
CD14+ CD68+ monocyte/macrophages are the most abundant
immune cells in urine and account for one-third of urinary
clusters. These monocyte/macrophages are enriched in genes
related to antigen presentation and macrophage activation and
further classified into CD16+ and CD16- subpopulations (83).
CONCLUSIONS AND PERSPECTIVES

Macrophages are recruited by chemokines and contribute to the
pathogenesis of kidney injury, repair, and fibrosis. Despite the wide
application of the oversimplified pro-inflammatory M1 and anti-
inflammatory M2 macrophage paradigm, macrophage complexity
in origin, phenotype, and function has attracted attention.
Macrophage subpopulations were distinguished by combining cell
surface markers and using novel single-cell RNA sequence
technology to explore macrophage contribution in tissue injury,
FIGURE 1 | Macrophage heterogeneity during initiation and progression of kidney injury and fibrosis. Kidney resident macrophages derive from multi-sources and
monitor trans-endothelial transport of circulating immune complexes. In the initial phase of kidney injury, resident macrophages stimulate leukocyte infiltration and
cytokine secretion. Interestingly, kidney resident macrophages express V-domain Ig suppressor of T cell activation (VISTA), an inhibitory immune checkpoint
molecule. Increased chemokines (CCL2, CCL5) promote circulating monocyte chemotaxis into the kidney, developing into infiltrating Ly-6Chi macrophages exhibiting
pro-inflammatory phenotype or macrophage-myofibroblast transition (MMT). Similarly, infiltrating Ly6Clow macrophages promote kidney inflammation and fibrosis via
activating T lymphocytes or pro-inflammatory cytokines. However, Ly6Chi macrophages inhibit kidney fibrosis by producing MMP-13. Overall, these mechanisms
lead to extracellular matrix dynamic homeostasis during the resolution of kidney injury and fibrosis.
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regeneration, and fibrosis. Our data and others have confirmed the
therapeutic potential of macrophage pathways in acute and chronic
kidney diseases; however, the functionally opposing macrophage
subpopulations require incisive and tissue-specific strategies (Figure
1). Moreover, an in-depth understanding of the specialty and
commonality in scRNA-seq defined macrophage clusters requires
further investigation.
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