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Pedro Fernando da Costa Vasconcelos5,6, Daniel Guerreiro Diniz1,4*,
Daniel Clive Anthony7, David Francis Sherry8, Dora Brites9,10

and Cristovam Wanderley Picanço Diniz1
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Microglial immunosurveillance of the brain parenchyma to detect local perturbations in
homeostasis, in all species, results in the adoption of a spectrum of morphological
changes that reflect functional adaptations. Here, we review the contribution of these
changes in microglia morphology in distantly related species, in homeostatic and non-
homeostatic conditions, with three principal goals (1): to review the phylogenetic
influences on the morphological diversity of microglia during homeostasis (2); to explore
the impact of homeostatic perturbations (Dengue virus challenge) in distantly related
species (Mus musculus and Callithrix penicillata) as a proxy for the differential immune
response in small and large brains; and (3) to examine the influences of environmental
enrichment and aging on the plasticity of the microglial morphological response following
an immunological challenge (neurotropic arbovirus infection). Our findings reveal that the
differences in microglia morphology across distantly related species under homeostatic
condition cannot be attributed to the phylogenetic origin of the species. However, large
org June 2021 | Volume 12 | Article 6830261
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and small brains, under similar non-homeostatic conditions, display differential microglial
morphological responses, and we argue that age and environment interact to affect the
microglia morphology after an immunological challenge; in particular, mice living in an
enriched environment exhibit a more efficient immune response to the virus resulting in
earlier removal of the virus and earlier return to the homeostatic morphological phenotype
of microglia than it is observed in sedentary mice.
Keywords: age and environment influence on microglia alteration, brain size and microglia response cognitive
performances, Felsenstein’s independent phylogenetic contrast, microglia, mouse, bat, semipalmated sandpiper
microglia morphology
INTRODUCTION

The processes of microglia extend and retract continuously, guided
by its sensome (1), to survey their non-overlapping territorial limits.
Microglia represent the most important cellular component of the
innate immune response in the central nervous system (2–4).
However, the number of possible homeostatic functions of
microglia in the healthy central nervus system (CNS) remains
poorly defined and the matter of much speculations (4, 5).
Microglia show regional and heterogeneous morphological
features in the CNS, with large variability on their processes, cell
size and gene expression, across species (6). Although microglia
constitute approximately 7% of non-neuronal cells in different brain
structures, as well as in the whole brain of all mammalian species
examined to date (7), their diversified phenotype and extended
contributions to maintain CNS homeostasis is considerable (8).
Under homeostatic conditions, microglial ramifications survey the
surrounding environment, monitor the synapses’ functional state,
regulate neuronal activity in all phases of development and in adult
life, and participate in the remodeling and maturation of synaptic
circuits, through their contacts with the pre- and post-synaptic
regions (9–11); for a recent review, see (12). While scanning the
brain parenchyma to detect local changes, microglia show a myriad
of morphological and functional changes with considerable overlap
(3, 13, 14). As a function of environmental stimuli, age or nature of
the imposed insult, microglia may differentially respond to the
threats (15, 16), establishing new relationships between form and
function (13, 14, 17–19). Today, it is also known that extrinsic and
intrinsic key factors, including host microbiota, influence microglia
functions and states (20) and that microRNAs, a class of small (~22
nucleotides) single‐stranded noncoding ribonucleic acid (RNAs),
are drivers of microglia phenotypic changes (21). Evidence also
demonstrate that there are multiple reactive microglial states that
are selected by the discrimination of discrete perturbations within
the brain parenchyma, in both physiological and pathological
conditions (22); each state of activation is selected to make its
own distinct physiological contributions, regulated by purinergic
mechanisms, to changes in the local environment.

To search for morphological differences across phylogenetically
distantly related species we reexamined our previous morphometric
findings based on microglia three-dimensional reconstructions and
compared data obtained in the dentate gyrus of mouse (Mus
musculus) (23) and hippocampus V area of the semipalmated
sandpiper (Calidris pusilla) (24), with those of microglia of the
org 2
dentate gyrus of the lesser bulldog bat (Noctilio albiventris,
unpublished results). The species selected allow the comparison of
similar body weights and brain volumes for the microglia
morphological categorization in the dentate gyrus, associated to
contrasting locomotor and cognitive performances and distinct
phylogenetic histories. Using phylogenetic trees generated by
nuclear recombination-activating gene (RAG-1) and mitochondrial
cytochrome oxidase (COI)markers of these three species, and that of
the capuchin monkey (Sapajus apella), we explored Felsenstein’s
independent phylogenetic contrast approach (25) to measure the
influence of phylogeny on microglial morphology.

To investigate microglia shape changes in a reactive state
(non-homeostatic conditions) in small and large brains, we
compared M. musculus (unpublished results) and C. penicillata
(26) models of antibody-dependent enhancement of dengue
disease, and reanalyzed the influences of an exacerbated
inflammatory response following a peripheral virus infection
on microglia morphological responses of these two species.

Finally, we re-evaluated our previous findings that explored the
morphological response of microglia associated with sublethal
encephalitis induced by RNA arbovirus in M. musculus; we
determined the influence of age and environmental enrichment
on the neuroinvasion, virus clearance and damage to the CNS in
relation to microglial morphology (15, 27).
MORPHOLOGICAL DIVERSITY
OF SURVEILLANT MICROGLIA
ACROSS SPECIES UNDER
HOMEOSTATIC CONDITIONS

Comparative morphological studies are now supported by
molecular approaches, especially phylogenetics, which are
increasing our understanding on morphophysiology and evolution
of adaptive responses to environmental challenges (28).

The modern integrative biologist now faces the challenging
task of understanding multiple physiological and genetic
systems of the organisms they study, and there is an increasing
need to look beyond established areas of expertise and drawn
upon the experience of the wider scientific community (29).
Unravelling microglia morphophysiology under homeostatic
and non-homeostatic conditions is a good example of these
new challenging times.
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In all species investigated to date, microglia under homoeostatic
conditions show delicate and ramified branches oriented radially from
a small elliptical soma (2, 19). Microglia do not have a diversity of
shapes, which can undergo back and forth morpho-functional
changes, that they face to support neuronal and distinct immune
functions under homeostatic and disrupted conditions (14, 19, 30–32).

Recently, it was demonstrated that the density of microglial
cells in brains of different species and in the different structures
of each individual brain are similar (7). These authors suggested
that due to this constant density, microglia may have a similar
average size in the evolution of mammals, with the same volume
of tissue being monitored by each cell. However, others have
shown that in a large number of species, microglia morphology
varies across them with a conserved core program of orthologous
genes, from rodents to humans (6).

Here, we examined microglia morphology in three species
with similar body weights and brain volumes, i.e. the mouse
(Mus musculus) as a terrestrial species, the lesser bulldog bat
(Noctilio albiventris), and semipalmated sandpiper (Calidris
pusilla) with aerial locomotion.

Although previous studies demonstrated that bats’ and birds’
have separate evolutionary origins, they share aerial mobility,
smaller body weight and brain size, and differential adaptative
phenotype responses for flying (33–36). In contrast to birds and
Frontiers in Immunology | www.frontiersin.org 3
bats, mice do not need to meet the weight and volume constrains
imposed by flying (37, 38).

Based on three-dimensional reconstructions of microglia
immunolabeled with antibodies for ionized calcium binding
adaptor molecule 1 (Iba1), as a marker for microglia and
macrophages across species (39), a comparative analysis of the
three-dimensional morphometric features of microglia of dentate
gyrus of C. pusilla (24),N. albiventris (unpublished results) andM.
musculus (23), with correspondent 3D microglia reconstructions
of the cell closest to the “mean cell” of each species is shown in
Figure 1. To choose the representative mean cell of each species,
we used the distance matrix (distance between microglia pairs) to
obtain the sum of the distances of each cell in relation to all the
others. We assumed that the cell that best represents each group
shows the least sum of distances. The matrices were constructed
using all morphometric variables with the combination of all cells
of a given group, followed by the weighted calculation of a scalar
Euclidean distance between the cells. We used STATISTICA data
analysis software system, version 12. StatSoft, Inc. (2014) to get the
Euclidean distance matrices (distance between microglia pairs)
and the sum of distances of each cell in relation to all the others
(See Table S1 for total number of cells in each species).

From M. musculus to C. pusilla, a progressive decrease in
the number of branches is observed, with the microglia of
A B C

FIGURE 1 | Graphical representation of the comparative analysis of morphometric features between species. Top, schematic illustration of M. musculus (A), N. albiventris
(B) C. pusilla (C) with correspondent three-dimensional reconstructions of microglia performed in the dentate gyrus of mammals and in the hippocampal V region of C. pusilla.
3D representative reconstructions of microglia are closest to the “mean cell” of each species. All morphometric features comparisons between species are
significantly different (p < 0.05), except those indicated as non-significant (ns), and reproducing the color of the species being compared with C. pusilla. Three
distinct mean values of each morphometric variable, one for each species, are exhibited on each line over three distinct colored areas as follows: orange, gray
and yellow shaded areas corresponding to M. musculus, N. albiventris and C. pusilla, respectively. Note that the extent of each color shaded area on each line
are the mean percentual values of each species. Scale bar = 25 µm.
June 2021 | Volume 12 | Article 683026
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N. albiventris occupying an intermediate position between the most
branched microglia inM. musculus and the minimally branched in
C. pusilla (Figure 1). Note that all, but few, of the comparisons of
morphometric features in Figure 1 were significantly different.

Morphological features with no statistical differences were
only observed for Mean Branch Surface Area between C. pusilla
and M. musculus, and for Number of Trees between C. pusilla
and N. albiventris. It is important to highlight that, on average,
the microglia of M. musculus survey a Convex Hull Volume of
tissue that is almost twice that of N. albiventris and three times
the one of C. pusilla. The M. musculus microglia exhibit on
average of 2.5 and 16.7 fold greater Morphological Complexity
than microglia of N. albiventris and C. pusilla respectively, and
with a Number of segments that are on average 1.8 and 4.4 fold
greater than for N. albiventris and for C. pusilla. These
morphological differences may have important implications for
the physiology of microglia across species of similar body weight
and brain volumes. For example, the relative energetic cost per
surveilled unit of tissue volume may not be the same across
species, imposing a differential tradeoff between the contribution
to neural physiology and the immune surveillance (40).

Figure 2 is a graphic representation of canonical discriminant
functions of all microglia morphological features ofM. musculus,
N. albiventris and C. pusilla. Three different ellipsoids, each one
corresponding to a different species, occupy distinct regions of
the Euclidian space. The ellipsoid representing the microglia of
N. albiventris shows small, but asymmetric intersections with the
Frontiers in Immunology | www.frontiersin.org 4
ellipsoids of C. pusilla and M. musculus, sharing a greater region
with the ellipsoid of C. pusilla. Thus, taking the M. musculus
ellipsoid as a reference point to the other species, the greater
Squared Mahalanobis Distance (which measures multivariate
distances between the ellipsoids in arbitrary units) was found
in C. pusilla, and the smaller one in N. albiventris. All distances
between ellipsoids were statistically significant and the smaller
distance occurred between N. albiventris and C. pusilla. For
detailed statistical analysis see Supplementary Material SM1.
Note that the morphology of microglia within each species is
relatively homogeneous and this is reflected in cell spatial
distribution concentrated within each ellipsoid (Figure 2). The
separation between the ellipsoids of each species reflects the
interspecific morphological differences. In fact, the microglia of
C. pusilla monitors, on average, less tissue volume per microglial
unit, and shows simpler trees, which facilitates the mobility of
their branches and the penetration into areas of compact tissue.
At the other extreme are those of the mouse, with more complex
trees, which makes the penetration of their branches into
regions of compact tissue more difficult. In contrast, as mouse
microglial trees fill a larger volume, their capacity for monitoring
by volume unit of brain tissue is greater. These differences may
imply differential metabolic costs per unit of tissue sampled by
every microglial cell of each species. The morphometric
properties of the bat microglia seem to occupy an intermediate
situation, despite exhibiting characteristics closer to the mouse
microglial morphology.
FIGURE 2 | Graphic representation of the canonical discriminant function analysis of three-dimensional microglia reconstructions in the dentate gyrus of
N. albiventris (A), M. musculus (B) and hippocampal V region of C. pusilla (C). Open color circles illustrate the microglia distribution in each species. The ellipsoid for
N. albiventris (gray circles) intercepts both M. musculus (orange) and C. pusilla (yellow), with a greater overlap with C. pusilla Function 1, explains 82.0% of the
variance (for details of statistical analysis see Supplementary Material SM1).
June 2021 | Volume 12 | Article 683026
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PHYLOGENETICALLY INDEPENDENT
CONTRAST AND MICROGLIA
MORPHOMETRIC FEATURES

To integrate the increasing availability of phylogenetic trees with
comparative biology, Felsenstein (25) developed phylogenetic
independent contrasts (PIC). The PIC approach provides a
specific evolutionary scenario that allows researchers to conduct
statistically robust regression analyses for trait comparisons using
information for all species in the phylogenetic analysis, instead of
only the sister species comparisons (25). Bird and mammal
phylogenies have been successfully reconstructed using
deoxyribonucleic acid (DNA) sequences of the subunit I of the
mitochondrial enzyme of COI (41–43) and nuclear DNA
sequences of RAG-1 (44–46). Because these genes show
different rates of evolution, we used both data sets to improve
resolving power and increasing the coverage of our analysis (47)
considered tree topology and branch lengths in a phylogeny based
on mitochondrial and nuclear genes. Once obtained, these
parameters provide a set of independent contrast values
between species that can be used in statistical regression and/or
correlation procedures. A similar approach was successfully
adopted in recent studies related to the morphological
complexity of astrocytes in shorebirds (48).

To fulfill the requirements of Felsentein’s approach we added
another distantly related species with a larger brain and arboreal
locomotion, the capuchin monkey (Sapajus apella), a NewWorld
monkey with remarkable cognitive capacities (49–53). The
microglia morphology of semipalmated sandpiper (C. pusilla),
mouse (M. musculus), lesser bulldog bat (N. albiventris) and
capuchin monkey (S. apella), together with the DNA sequences
of COI and RAG-1 genes of each species, were used to search for
phylogenetic influences on microglia morphology across species.

DNA sequences for COI (54) and RAG-1 (55) were obtained
from GeneBank (accession code in SM1) for all species.
Sequences were aligned using ClustalW (56) implemented in
BioEdit 7.2.5 (57) and concatenated using the program
SequenceMatrix 1.8 (58). The software PartitionFinder (59)
was used to choose the most appropriate model of nucleotide
evolution for phylogenetic analysis according to Bayesian
Information Criterion (BIC). We used the “Speciation: Yule
Process” tree prior (60) implemented in Beast v1.7.5 software
to estimate species trees with two independent runs of 5x108

MCMC (Markov chain Monte Carlo). Sampling occurred at
every 50,000 generations. The effective sample size (ESS) values
were verified to determine the stationary posterior distributions
of the parameters in Tracer 1.6 (61). Log files and trees were
combined using the LogCombiner 1.7.5 application (62), while
the Maximum Clade Credibility (MCC) tree was obtained from
TreeAnnotator 1.7 (62) by applying a burn-in value of 10% of the
total trees (1000). We calibrated two nodes in the species tree
using the mammal time tree of Foley (63), setting a mean value of
the most recent common ancestor (tmrca) of the mammals as
86.9 my, and a mean value of tmrca between Rodentia + Primates
as 77.84 my. To obtain PIC values, we used the PDAP module
(64) inside Mesquite Software Version 3.6 (65). The PIC analysis
Frontiers in Immunology | www.frontiersin.org 5
allowed us to test for phylogenetic influences on all 21morphometric
features of microglia three-dimensional reconstructions for
all species.

Table 1 shows the median values of morphometric features
used to estimate phylogenetically independent contrasts and
corresponding p values for two tail t-tests of significant
phylogenetic influence. We tested 21 morphometric variables and
found that phylogenetic effects cannot explain morphological
differences across species. Indeed, only two out of 21
morphometric features were influenced by phylogenetic differences
based on mitochondrial COI and RAG-1 genes, namely the mean
branch length for COI and the mean branch surface area for RAG-1.
(See Table 2 for molecular markers used for COI and RAG-1
phylogenies). The phylogenetic trees generated for COI and three-
dimensional reconstructions of microglia closest to the “mean” cell of
each species are shown on Figure 3.

Although our detailed 3D reconstructions of microglia showed
distinct morphometries in distantly related species, these
morphological differences could not be explained by phylogenetic
influences. It is therefore relevant to examine other factors that may
explain differential morphology between species (6, 7, 66–68). Here,
we discuss the hypothesis that microglial morphological differences
may be associated, at least in part, with different cognitive capacities.
MICROGLIA MORPHOLOGY AND
COGNITIVE PERFORMANCES

Microglia and their gene expression are key mediators of
neuronal circuitry formation, function, and plasticity during
normal physiological conditions (69). During the process of
consolidating learning and memory, selective neuronal groups
are recruited for learning, based on their level of excitation and
synaptic activation, and this process is followed by subsequent
strengthening of pre-existing synapses, formation of new
connections and elimination of unnecessary ones (70). Shape,
function and plasticity of the synapses underlying learning are
especially interrelated in the hippocampus, a region whose
integrity consolidation conditions episodic memory (71–73). As
the hippocampus matures, lasting changes in the structure of
synapses occur in association with long-term potentiation (LTP),
replacing the intense synaptogenesis of the developmental period
by enlarging and clustering mature brain synapses (74). These
synaptic rearrangements are selective and strengthen the circuits
related to the task being learned (75). In addition, functional
magnetic resonance studies have shown that, comparing the
activity of the hippocampal subfields to each other, the dentate
gyrus (DG) is more active than Ammon’s horn (CA1-CA2-CA3)
and subiculum, and that in both the coding process and
information retrieval, the rostral DG is more active than caudal
DG (76). When adult rats were trained to remember the spatial
location of an object, synapse remodeling was observed 6 hours
later in the molecular layer of the dorsal (septal) DG (DG-Mol)
(77), and this remodeling was dependent on microglia (78, 79).
Under homeostatic conditions microglia extend processes
June 2021 | Volume 12 | Article 683026
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continuously and quickly, contacting synapses that are related to
the ongoing experience, contributing to synaptic plasticity through
the release of cytokines and growth factors (67, 80). In addition,
coordinated regulation of gene expression leads to LTP, an
essential mechanism underlying memory formation (81). In fact,
the generation of LTP through the N-methyl-D-aspartate receptor
(NMDAR) activates transcription factors that promote the
expression of genes responsible for its maintenance (82). Indeed,
it has been demonstrated that through enhanced expression of the
Arc gene, a key regulator of synaptic plasticity, miR-34a regulates
basal synaptic efficacy in the adult medial perforant path-evoked
synaptic transmission in the DG (83).

Microglia also contribute to selective structural plasticity by
eliminating synapses through phagocytic mechanisms, which are
essential for maintaining normal cognitive activity (84). Indeed,
previous reports have shown that the dynamics of microglial
processes are regulated by sensory experience and neuronal
activity (10, 22, 85); for review see (22, 86). Recent findings show
a significant association between signaling in the pathways of the
immune system regulated by microglia, synaptic strength, and
related behavior (87). It has been demonstrated that the genetic
removal of microglia-derived brain-derived neurotrophic factor
Frontiers in Immunology | www.frontiersin.org 6
(BDNF) in mice, or the selective deletion of microglia, decrease
the synaptic expression of mature N-methyl D-Aspartate (NMDA)
receptor subunit ionotropic glutamate receptors (GluN2B). In such
condition there is an increase of the receptor subunit GluN2A,
without affecting the density of neurons or synapses in the cortex and
hippocampus (88). Dendritic spines (the post synaptic membrane of
most excitatory synapses) have a crucial role in synaptic transmission
and plasticity underlying cognitive processes (70, 75) and in BDNF
signaling through functionally antagonistic receptors, such as the
tropomyosin receptor kinase B (TrkB) and the p75NTR, over the
lifetime, which are associated with proper synaptic plasticity, as well
as the regulation of dendritic spine number and structure (89).

The morphological expression of the consolidation of learning
and memory depends on microglia synaptic remodeling, with more
significant changes in synaptic morphology in the target layers of
the entorhinal-to-DG projection (77). Because form precedes
function, we thought that microglia morphology could reflect
their activity, since microglia participate in the process of synaptic
rewiring, and because LTP induced plasticity underlying learning
and memory in the mature hippocampus shows significant
intertwining of form and function (74).

Here we re-evaluated previous findings onmicroglia morphology
and its selective correlation with individual performance in spatial
learning and memory tasks, in rostral DG. In a previous report (90),
morphometric features of reconstructed microglia of the molecular
layer of DG and of the lacunosum molecular layer of CA1 were
tested for the correlation with the spatial learning and memory rate
of the New World capuchin monkey (Sapajus apella), using the
paired associate learning test of the Cambridge Neuropsychological
Test Automated Battery – CANTAB (90). CANTAB tests have been
successfully used before in other primate species (91–95), and in
humans (96–101).
TABLE 2 | Molecular markers used for Cytochrome c oxidase subunit 1 (COI)
and Recombination activating gene 1 (RAG-1) phylogenies with GenBank/The
Barcode of Life Database accession numbers.

Species COI RAG-1

Mus musculus AB444046.1 AY011883.1
Calidris pusilla AY666224.1 KC969130.1
Sapajus apella KY173083.1 HM759116.1
Noctilio albiventris MH886531.1 AF447509.1
TABLE 1 | Median values used to perform the Phylogenetically Independent Contrasts and the p values for each gene.

Morphometric features Median values PIC 2-tailed p-value

M. musculus C. pusilla S. apella N. albiventris RAG1 COI

Total Segment Length (μm) 1494.500 451.200 574.600 887.550 0.886 0.136
Average Segment Length (μm) 4.292 6.144 5.719 5.216 0.989 0.028
Average Tortuosity 1.267 1.666 1.138 1.526 0.895 0.494
Average Surface Area (μm²) 8.933 8.984 9.945 8.442 0.035 0.827
Total Branch Volume (μm³) 686.883 93.611 187.445 286.827 0.780 0.212
Average Branch Volume (μm³) 2.026 1.303 1.698 1.580 0.504 0.817
Base Diameter (μm) 1.009 0.665 0.860 0.775 0.414 0.927
Total Number of segments 344.000 72.000 102.500 177.000 0.854 0.169
Segments/mm 233.005 162.704 174.905 191.671 0.882 0.100
Number of trees 6.000 4.000 6.000 5.000 0.735 0.704
Surface (μm²) 3101.710 636.142 1055.990 1392.895 0.752 0.232
Complexity 425034.000 21374.500 35488.200 150908.500 0.795 0.265
Planar angle 65.873 65.390 49.480 66.003 0.444 0.700
Convex Hull Volume (μm³) 38174.900 10479.100 10519.150 23164.550 0.911 0.160
Convex Hull Surface (μm²) 6989.170 2897.745 5396.140 4674.515 0.166 0.876
Convex Hull Area (μm²) 2392.000 909.438 2555.740 1492.625 0.917 0.577
Convex Hull Perimeter (μm) 187.450 120.900 196.850 150.050 0.880 0.631
k-Dim 1.217 1.115 1.088 1.172 0.776 0.335
Total Vertex A 40 8 14 20 0.838 0.135
Total Vertex B 77 14 22 33 0.757 0.258
Total Vertex C 31 4 8 12 0.745 0.257
June 2021
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Figure 4 shows discriminant analysis of microglia morphology
of 4 different Sapajus apella individuals (S, M, F and J) with
contrasting performances on the paired associates learning test
(PAL) of the CANTAB battery (see Supplementary Material SM2
for statistical details). Two subjects (M and S) completed the task
after three and four training sessions respectively, and two others (J
and F), only after 13 and 19 sessions, respectively. It is important to
highlight, that while microglial clusters of fast learners (M and S) do
not intercept with each other, slow learners (F and J) microglial
clusters, showed a larger area of interception (Figure 4), suggesting
that the correlation between morphological complexity and
cognitive performance in paired associated learning task is not
linear. See Supplementary Material SM3 for correlation between
the microglial morphological complexity (K-dim) and PAL task
performances of slow (F and J) and fast learners (M and
S) individuals.

Studies showed microglia from M subject has having the
lowest morphological complexity mean values, but faster spatial
learning andmemory performance on the paired associates learning
task (PAL) (90). The authors evidenced that performances in the
Frontiers in Immunology | www.frontiersin.org 7
PAL task and some morphological features of microglia of rostral
region of DG-Mol, presented significant correlations, whereas none
were found between performance and CA1 microglial morphology.
It is reasonable to speculate that the formation of synapses in the
learning and spatial memory network in Sapajus apella may be
associated with lower microglia morphological complexity in the
rostral DG. Because significant correlations between spatial learning
and memory performance and microglia morphology were limited
to the rostral region of DG, the results seem to be consistent with
regional specializations of rostral and caudal regions of the monkey
DG (102–105). These correlational differences between microglia
structures and cognitive performance are an important observation
and may suggest diverse physiological roles for microglia in the
rostral and caudal DG of Sapajus apella. For detailed molecular
mechanisms related to tissue-specific regulation of microglia form,
function and dysfunction see (86, 106).

On the neuronal side it has been suggested that the learning
process acts on microtubule dynamics at synaptic sites and these
changes are critical for LTP and memory (107). It remains to be
clarified, however, whether the learning process also requires
A

B

FIGURE 3 | Phylogenetic trees based on the DNA sequences of the mitochondrial COi (A) and nuclear (B) genes for Calidris pusilla, Sapajus apella, Mus
musculus and Noctilio albiventris with corresponding three-dimensional reconstructions of microglia. The representative cell is closest to the “average” cell for
each species. To select them, the distance matrix was used to obtain the sum of the distances of each cell in relation to all the others. We assumed that the cell
that best represents each group would have the least sum of distances. See Table 2 for molecular markers used for phylogenies based on COi and RAG-1.
COi, cytochrome oxidase subunit 1; RAG-1, Recombination activating gene 1. Scale bars for phylogeny A = 20Ma, B = 30Ma; scale bar for microglia
reconstructions = 40 µm.
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dynamic alterations of microglia microtubules at synaptic sites of
the molecular layer of rostral DG, and whether microtubule
alterations lead to a reduction in microglia morphological
complexity. To note that microtubules were shown to modulate
the activity of Ras homologous (Rho) guanosine triphosphate
(GTPases), which conversely are associated to microglia
polarization (108). Recently, it was demonstrated that ablation
of the small GTPase Rhoa in adult microglia led to spontaneous
microglia activation and loss of synapses and neurons, leading to
long-term synaptic plasticity impairment (109).

Thus, cytoskeleton reorganization determines changes in
microglia morphology, and we may imagine that fast learners
would have an increased number of microglia with lower mean
values of morphological complexity than slow learners. Consistent
with this view, the percentage of microglia with lower
morphological complexity was asymmetrically distributed with a
greater percentage in fast learner monkeys M (80.5%) and S
(92.7%) than in slow learners monkeys F (31.4%) and J (66.7%)
(90). Our findings in Sapajus apella demonstrated that within the
same species and functional area, individual performance in
spatial learning and memory tests were highly associated with
differential morphology of microglia of the rostral DG, but not the
CA1 lacunosum molecular layer, suggesting that microglia form
and function in this species might be regulated in a tissue-
specific fashion.

Taken together, our comparisons of the three-dimensional
reconstructions of microglia of the DG of the capuchin monkey
(Sapajus apella), mouse (Mus musculus), and hippocampal V
area of semipalmated sandpiper (Calidris pusilla) with each
other, and with microglia of DG of a bat (Noctilio albiventris),
showed distinct morphologies across species. Using phylogenetic
trees generated from DNA sequences of mitochondrial COI and
RAG1 nuclear genes, Felsenstein’s phylogenetic independent
contrast approach demonstrated that phylogenetic differences
Frontiers in Immunology | www.frontiersin.org 8
do not explain microglial morphological differences, suggesting
the contribution of other factors such as differential cognitive
performances across species.
MICROGLIA RESPONSE UNDER
ARBOVIRUS ATTACK AND METABOLIC
EXCHANGE OF LARGE AND
SMALL BRAINS

When the microglia react to an insult (acute or chronic), they
change their functional and morphological phenotypes (2, 9, 16,
110). These responses seem to be region- (111, 112) and species-
specific (6, 113), and are modulated by a variety of stimuli in
health and disease (114–116). Virtually all brain diseases have
their pathological progress influenced by microglial cells (2) that
react them with multiple morphofunctional phenotypes (13,
116). Previous detailed reviews about microglia roles in distinct
physiological and pathological contexts can be found elsewhere
(8, 117–119) and are out of the scope of the present review.

It has been suggested that when natural selection differentially
favors the brain or the immune system, increasing investment in
one of those, the size or performance of the other will be reduced
(120). When the immune response is activated by an infectious
agent, the most obvious manifestation of the neuroimmune
tradeoff is sickness behavior (121), a strategy for adaptive
energy reallocation (122).

Owing to the tradeoff that exists between neural and immune
systems, it has been predicted that larger brains would show less
efficient immune responses compared to smaller brains, and that
this evolutionary trade-off applies to the innate immune
response, but not to the adaptive response one (40).
A B

D

C

FIGURE 4 | Graphical representation of the canonical discriminant function analysis of the morphometric characteristics of microglia obtained from three-dimensional
reconstructions performed on the molecular layer of the rostral dentate gyrus of 4 individual capuchin monkeys (Sapajus apella): M, S, F and (J). Open circles of
different colors illustrate the distribution of the microglia of each individual in the Euclidean space. Microglia of S (A) and M (C) with better learning rates occupy
distinct regions in the left quadrants of the Euclidean space, while F (B) and J (D) individuals with lower learning rates share similar regions in the right quadrants of
the Euclidean space. Function 1 and 2 explain 84.2% of variance (for statistical details see Suplemmentary Material SM2). Scale bar = 25 µm.
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With this view in mind, we explored the differential response
of microglia and neuroinvasion after dengue infection in
C. penicillata and M. musculus as proxies for immune capabilities
of small and larger brains.

Although most viral infections are concentrated in peripheral
tissues (non-neurotropic viruses), many viral species reach the CNS
where they can alter homeostasis and induce neurological
dysfunction associated with life-threatening inflammatory diseases
(123–126). Cross talk between neurons and microglia is, thus,
essential for integrated actions, and small extracellular vesicles
designated as exosomes have a crucial role in cell-to-cell
communication, due to their content in lipids and proteins, but
also in genetic material like miRNAs. There are a variety of miRNAs
with key roles in microglia function and dysfunction, with aberrant
expression of miRNAs being associated with microglia dysregulation
and failure in sustaining CNS homeostasis; for review see (21).

During virus infections a sustained increase in extracellular
adenosine triphosphate (ATP) induced by neuronal damage is
sensed by microglia through the purinergic receptor P2Y12
followed by their activation and recruitment towards virally
infected neurons, to exert phagocytic activity in minutes to
hours (127). The number of P2Y12 receptors on the surface of
microglia increases over twofold in response to viral infections
(128). ATP is a strong chemotactic signal for young microglia,
mediating rapid migration to the injury site (129). However, while
young microglia respond to extracellular ATP by increasing their
motility and becoming more ramified, aged microglia exhibits a
contrary response, with low phagocytic ability (130), and
becoming less dynamic and ramified (131). Thus, purinergic
signaling is essential for the modulation of microglial movement
in the normal and pathological brain (132, 133).

Facing homeostatic imbalance induced by any damaging
agent (whether acute or chronic), changes in the morphology
of microglia may be used as a proxy to judge about immune
responses late in life, highlighting how important it is the
investigation about the regulation mechanisms of microglia
morphological changes (134). If we assume that form and
function are intertwined, and that morphology precedes
function both in developing (135) and mature brain circuits
(136), we can examine any significant contribution from the
morphometric analysis of microglia, either under homeostatic
balance or imbalance (14, 17, 137); for recent review see (138).

In this regard, we re-examined our previous findings on the
morphometric changes of microglia after a challenge with a non-
neurotropic dengue arbovirus virus.

We explored the antibody-dependent enhancement (ADE)
model of dengue infection (139, 140), which is associated with an
enhanced CNS inflammatory response (141). We compared
microglial morphological responses in a neotropical primate
model, the black tufted marmoset (Callithrix penicillata) (26,
142), with that of a mouse model (unpublished results). The
ADE of the host inflammatory response is a consequence of the
presence of pre-existing anti-DENV antibodies, in a previously
infected individual, binding and internalizing an infectious
DENV viral particle of a different serotype in a subsequent
infection (140, 143, 144). These subneutralizing antibodies
Frontiers in Immunology | www.frontiersin.org 9
from the primary infection cannot neutralize the virus. Instead,
the antibody-virus complex binds to Fcg receptors (FcgR) on
circulating monocytes (140). These complexes of viruses and
antibodies help the virus to infect monocytes more efficiently
(145, 146). The result is an increase in the overall replication of
the virus and higher risk of serious illness (139, 144).

Figure 5 shows C. penicillata and M. musculus microglia three-
dimensional reconstructions from control animals and individuals
subjected to antibody enhancement dengue disease. The estimated
overall effect size for Convex Hull Volume, Complexity and K-dim
revealed that there were significant differential morphological
responses of microglia in these models of enhanced inflammation.
It should be noted that there are differences between Cohen’s effect
size in the mouse and the black tufted marmoset, with 4–7-fold
higher d values in the infected monkeys. Notably, no neuroinvasion
was observed in the brains of the mice, whereas dengue virus
antigens were detected in many areas of the brain of C. penicillata,
suggesting that there is a more efficient immune response in mice.
Likewise, after induced infection with dengue virus single serotype,
viral antigens were detected in the cerebral cortex and peripheral
organs of C. penicillata (142), while no neuroinvasion was detected
in mice (147). It remains to be clarified whether this immunological
efficiency is the consequence of an evolutionary tradeoff favoring the
immune system homeostatic responses over the contribution to the
preservation of neural homeostasis in M. musculus compared to
C. penicillata.

As significant differences have been described between several
gene ‘modules’ of the microglia of rodents and primates
including phagocytic, complement and susceptibility genes to
neurodegeneration (6), we suggest that the differential expressions
of these gene modules may, at least in part, provide an explanation
for the contrasting microglia morphological response observed in
the distantly related mouse and black tufted marmoset. Further
studies including transcriptomic analysis before and after antibody
enhancement dengue infection will help to clarify this issue.
AGE AND SEDENTARY LIFESTYLE
REDUCE MICROGLIAL MORPHOLOGICAL
REACTIVITY UNDER NEUROTROPIC
ARBOVIRUS INFECTION

The movement of multiple microglial processes during their
surveillance of the brain parenchyma surveillance is guided by
the sensome (1, 148) that induces a variety of morphological
identities with considerable crossover in function as they extend
and retract processes (14).

The morphological parameters and process motility of
microglia depend from several neuromodulators (149), and is
increased by ionotropic glutamatergic neurotransmission and
decreased by ionotropic GABAergic neurotransmission (150).
Under homeostatic conditions constitutive bidirectional signaling
between the neural and immune systems regulates immune cells,
and vice-versa, in concert with the levels of neural and immune
activity (151, 152).
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We recently investigated the long-term influence of age and
environment on the morphology of the microglia of the outer
and middle thirds of the molecular layer of the DG of mice. We
found that the enriched environment (EE) reduced the
morphological diversity of the microglia of aged mice in such a
way that a single morphotype was found in the aged mice (23),
that it was associated with episodic-like memory preservation
(153, 154).

As environmental enrichment and physical exercise (155, 156),
as well as aging (156–158), modulate microglia responsiveness, a
key element in the pathological outcomes of arbovirus infections,
we re-evaluated our findings related to the influence of age and
environment on the microglial morphological response in a
murine model of neurotropic virus infection (15). In Figure 6,
we compared morphometric features of microglia in CA3 of
control and infected young and aged mice when raised in
contrasting environments mimicking sedentary and active lives,
under Piry arbovirus sublethal encephalitis. We found evidence
that under arbovirus attack, aging and sedentary-like lifestyle
acting together significantly reduced microglial reactive response
and associated with more severe and lasting behavioral changes.

Figure 7 shows discriminant function analysis applied to
Figure 6 data, where distinct distributions of microglia are noticed
between infected (in the right superior and inferior quadrants) and
control subjects (in the central area of left quadrants). Indeed,
Frontiers in Immunology | www.frontiersin.org 10
control mice, either from impoverished or enriched environments
show many similar microglial morphometric features and,
therefore, share large areas of their ellipsoids in the left
quadrants. By contrast, infected mice kept in enriched and
impoverished environments occupy the right superior and
inferior quadrants, with less intersection of their ellipsoids, thus
highlighting differential morphological microglia responsiveness.

However, when functional discriminant analysis is applied to
the microglia of aged mice, they show larger areas of intersection
in infected and control mice suggesting little differentiation of
the microglial reactive response in mice maintained for life in
either an enriched or an impoverished environment. See
Supplementary Materials SM4, SM5 for statistical details.

Due to the immunomodulatory influence of age and environment
on microglia morphological response to virus neuroinvasion, it is
important to examine the influence of these variables on the
underlying mechanisms of immunological plasticity of the adaptive
immune response.

Previous studies have shown that there is a significant
beneficial influence of a healthy human life style on immune
response in which regular moderate exercise and cognitive
multidomain stimulation are key components (159–163) in the
acquisition of the immune benefits (164); for recent reviews see
(165, 166). Cognitive decline in aged rodents has received less
investigation, and this seems to be associated with difficulties in
A B

D EC

FIGURE 5 | Microglia morphological responses to dengue infection in (A) mouse (M. musculus) and (B) black tufted marmoset (C. penicillata). (C) Convex hull
volume, (D) Complexity and (E) K-dim with Cohen’s effect size that was calculated as the mean difference divided by the standard deviation of differences. 3D
microglia reconstructions reflect the cell closer to the “mean cell” of each species. The representative (mean) distance matrix for each cell group was used in the
calculation of the sum of each cell distances to all the others. We assumed the cell best representing each group by the least sum of distances. The matrices were
constructed using all morphometric variables with the combination of all cells from a given group, followed by the weighted distance measure of a scalar Euclidean
distance between the cells. Infected and Control designations over three-dimensional reconstructed cells indicate that microglia were reconstructed from dentate
gyrus molecular layer of infected and control individuals, respectively. N indicates de total number of reconstructed microglia. Double asterisk (**) over connector bars
denotes statistically significant difference p < 0.01. Scale bar = 15 µm.
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isolating confounding, aged-associated changes in sensory and
locomotor systems in behavioral tasks (167).

There is a consensus, however, that oxidative stress, DNA
damage, mitochondrial dysfunction, excessive accumulation of
misfolded proteins, damage to miRNA processing and
inflammation are frequent causes of aging-related cellular
dysfunctions (168), which may underly aging cognitive and
immunological declines.

Modeling of human active lifestyles in mice and rats use
environmentally enriched cages with increasing levels of novelty
and complexity, to enhance somatosensory, visuospatial,
cognitive and motor stimulation through voluntary exercise
(169, 170). Running wheels, bridges, shelters, tunnels and toys
are regularly moved inside the cage or replaced periodically,
providing adequate stimuli to keep animals active, in order to
achieve long term systemic beneficial effects, including higher
immune responsiveness (171).

These animals, compared to sedentary animals raised in the
impoverished environment of standard laboratory cages,
Frontiers in Immunology | www.frontiersin.org 11
exhibited differential immunological plasticity in both
peripheral and central immune responses (172–175). In
agreement, measurements interleukin-1b (IL-1b) and tumor
necrosis factor-a (TNF-a) induction after novel object and
exposure to accessories support the existence of an anti-
inflammatory effect of environmental enrichment (176).

It has been also shown that short duration moderate exercise
can improve survival in mice infected with a lethal dose of
influenza virus (177). It has been shown that environmental
enrichment and physical exercise, when combined, reduce brain
cytokine expression (178), which may contribute to this
outcome. Consistent with these findings, 6-month old mice
under environmental enrichment, subjected to the neurotropic
Piry arbovirus infection, increase T-cell infiltration and show less
CNS cell infection by the virus and/or faster virus clearance, less
microgliosis, and less damage to the extracellular matrix, than
infected mice maintained in standard laboratory cages (27).

The signs of immunosenescence include low absolute
numbers of T-cells, lower proportions of naive T-cells to
A B

D
C

FIGURE 6 | Age and environmental influences on microglial morphological response in a mouse model of sublethal encephalitis induced with Piry arbovirus. Three-
dimensional reconstructions of the “mean cell” of each experimental group are shown, including control and infected young mice (A), control and infected aged mice
(B). Microglia complexity of young (C) and aged (D) control and infected mice, under the influence of impoverished and enriched environments, with corresponding
Cohen’s effect size was calculated as the mean difference divided by the standard deviation of differences. Notice that aging seems to minimize morphological
changes, and effect size under neurotropic infection is greater in young mice maintained in impoverished environments. To choose the representative (mean) cell of
each group, the distance matrix was used to obtain the sum of the distances of each cell in relation to all the others. We assumed that the cell that best represents
each group is the one with the least sum of distances. The matrices were constructed using all morphometric variables with the combination of all cells of a given
group, followed by the weighted calculation of a scalar Euclidean distance between the cells. IY, young mice raised in impoverished environment; EY, young mice
raised in enriched environment; IA, aged mice raised in impoverished environment; EA, aged mice raised in enriched environment; IYinf, infected young mice raised in
impoverished environment; EYinf, infected young mice raised in enriched environment; IAinf, infected aged mice raised in impoverished environment; EAinf, infected
aged mice raised in enriched environment. Scale bar = 25 µm.
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differentiated effector memory T-cells, weak proliferative
responses to mitogenic agents, and a ratio of CD4 to CD8
lymphocytes of less than 1.0 (179). Physical exercise and
environmental enrichment can modulate immunity in aged
humans (180, 181) and in experimental models (15, 27, 178,
182, 183). Indeed, it has been suggested that exercise might exert
an anti-immunosenescence effect, delaying the onset of
immunological ageing and rejuvenating aged immune profiles
(179). In the hippocampal formation of aged mice, the response
to several anti-inflammatory factors, including interleukin (IL)-4
and IL-13 is reduced relatively to adult mice, though exercise
seems to have limited effects on modulating this response (183).

Our previous findings using Piry arbovirus neuroinvasion
demonstrated an inverse association between age, behavioral
impairments, and microglial host morphological changes (15). In
fact, infected mice of advanced age, both in enriched environment
(EE) and impoverished environments (IE), showed permanent
reduction of burrowing activity and loss of olfactory
discrimination, but only transient abnormalities in exploratory
and locomotor activities. As burrowing activity requires
hippocampal integrity and because the ventral hippocampus, DG,
and septal regions were targeted by Piry virus, along with the
olfactory nuclei and olfactory projections, we suggested
inflammatory response and/or cell death along these pathways as
probable causes (15). Microglial morphological changes in aged
mice were less marked than those in young individuals, contributing
to a reduced inflammatory response in immunosenescent
individuals, and then more severe encephalitis outcomes and
increased number of deaths (15). Like Piry virus infection, the
olfactory pathways were also severely damaged during vesicular
stomatitis virus (VSV) virus encephalitis induced by nostril
inoculation, which affected similar anatomical targets within the
anatomical olfactory pathways (184–187).
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We can only speculate about mechsnisms that govern the
underlying differential microglial 3D morphological changes
under homeostatic and non-homeostatic conditions in young
and in aged individuals? These three-dimensional morphological
changes, which are strongly influenced by age and environment,
are, of course underpinned by altered second messenger signaling.
Gi-mediated decreases in cyclic adenosine monophosphate
(cAMP) tone contribute to larger process extension, and Gs-
coupled pathways induce process retraction (134). Though we
have characterized the changes in the large processes of microglia,
the extension of which is largely THIK-1 and P2Y12 dependent,
microglial cells appear to conduct their surveillance of the
homeostatic brain at the much smaller nanometer scale by
means of tiny filopodia, which respond to stimuli by altering
local concentrations of cAMP in a THIK-1 -independent manner;
these local changes in cAMP, that are probably under the tight
control of a-kinase anchor protein (AKAP), are also known to
control the polarity of the microglial responses (134).

Morphological changes may associate with the time break
windowmotility that include limited surveillance and enveloping
sites of tissue damage controlled by P2Y12 activation and
membrane potential (188). At the nanometric scale, filopodia
also participate and depend on the local concentration of
cAMP (134).

The microglia of mice from 18- to 20-month-old show a
reduction in the number of ramifications and hypertrophy of the
perinuclear cytoplasm supporting a change to a proinflammatory
profile, as indicated by the elevated expression of inflammatory-
response genes in transcriptomic analysis (189, 190). Between 3
months and two years of age, mouse microglia gets older, with
significant numerical and morphological changes, which include
increased density, increased soma area, and shorter and thicker
processes impairing motility of their branches (106, 191, 192).
A B

FIGURE 7 | Discriminant function analysis to illustrate age and environmental influences on microglial morphological response in a mouse model of sublethal
encephalitis induced with Piry arbovirus. Note that in young mice (A) there is a distinct distribution of microglia of infected (red and orange color open circles) in the
right superior and inferior quadrants respectively, while in controls, the green and blue color open circles are in the central area of left quadrant. In contrast, the
microglia of aged mice (B), show larger areas of intersection between infected and control mice, indicating smaller influence of environment on microglia
morphological response. Orange and red circles represent infected mice; Green and blue circles indicate control mice. IY, young mice raised in impoverished
environment; EY, young mice raised in enriched environment; IA, aged mice raised in impoverished environment; EA, aged mice raised in enriched environment; IYinf,
infected young mice raised in impoverished environment; EYinf, infected young mice raised in enriched environment; IAinf, infected aged mice raised in impoverished
environment; EAinf, infected aged mice raised in enriched environment. Square black dot = ellipsoid center of each experimental group.
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Phenotypic variation in cellular senescence was recently indicated to
involve four distinct stages: initiation (proliferation arrest), early
(anti-inflammatory-state), full (increased inflammation and
metabolism) and late senescence (decreased inflammation and
metabolism), based on metabolism and senescence-associated
secretory phenotype features. Such states may be influenced by
diet, hormones, and epigenetics, and surely relate with the
controversial findings on the role of chronic and increased
neuroinflammation associated to aging and neurodegeneration (193).

It has recently been suggested that in the rat hippocampus a
microglia-astrocyte interaction may induce microglial branching
in the presence of inflammation and that the impairment of such
interaction would be associated with inefficient microglia
distribution, maladaptive morphology, and reduced clearance
activity in aged rats (194).

Microglial morphology has been directly correlated to gene
expression within the same brains using three-dimensional
microscopic reconstruction and transcriptomic analysis (195).
It has been shown that the total area and volume of Iba1 and
P2Y12 immunolabeled microglial processes in CA3 of male and
female mice subjected to lipopolysaccharide (LPS) challenge
showed a significant inverse correlation with a robust index of
microglia maturity, based on a ratio of selective up- and down-
regulated genes, with much larger impact on both measures in
males than in females (195).

It remains to be clarified, however, to what extent these
correlations between gene expression and microglial
morphology change under neurotropic virus challenge with the
influence of age and environmental influence mimicking active
and sedentary lifestyles.
NON-BIOLOGICAL SOURCES
OF VARIATION

It is not uncommon to find contradictory results in comparative
studies due to the use of different animal lineages, variations in
histological procedures, different methods, or in the case of 3D
reconstructions, dissimilarities in the stereological sampling
approach to select cells for reconstruction and ambiguities in
the definition of the objects and areas of interest (196). To reduce
possible sources of non-biological variation in the present report,
all samples of our previous findings were obtained with the same
tissue processing protocols (perfusion, antigen retrieval,
immunoreaction, dehydration, counterstaining, and clearing)
and the specificity of the immunohistochemical pattern was
confirmed using a control reaction that omitted the primary
antibody (197–199). To obtain sufficient contrast between
foreground and background we improved the signal/noise ratio
with glucose-oxidase-DAB-Nickel peroxidase amplification
method (200).

Microscopic 3D reconstructions are affected by mechanical
factors due to vibratome sectioning and tissue dehydration
procedures, inducing non-uniform shrinkage in the z-axis of
the sections (201). Thus, estimates of modifications in the x/y
dimensions during tissue processing cannot be linearly
Frontiers in Immunology | www.frontiersin.org 13
extrapolated to the z dimension across section. These
methodological constraints impose limitations that must be
considered when interpreting the results of all morphological
studies based on 3D reconstructions. However, a reliable
indication of severe shrinkage in the z-axis is the curling of
branches, indicating that individual processes did not shrink at
the same rate as the slice in which they were located. These effects
tend to be of higher amplitude at the surface, decreasing in depth
along the z-axis. To minimize this effect, we took our samples from
the middle region of the z-axis, where the impact of these changes
is expected to be minor (15). In addition, it has been demonstrated
that in the z-axis (perpendicular to the cutting surface), sections
shrink by approximately 75% of the cut thickness after dehydration
and clearing (202). Based on those findings, all microglial
reconstructions were corrected for Z-axis shrinkage, expecting
that shrinkage would be 75% of the original value. No
corrections were applied to X/Y axes, as it is expected that these
dimensions do not change after histological dehydration and
clearing. Moreover, we used the same software and hardware
approaches for sampling, reconstruction, and analysis
(Stereology, Neurolucida and Neuroexplorer, MicroBrightfield,
Inc.), which guarantee systematic and random sampling selection
of microglia across all regions of the areas of interest. Finally, to
detect possible variations in the criteria for identifying and include
only complete microglia arbors inside the area of interest, we
underwent checking procedures of the results by having different
investigators reconstructing microglia in the same regions using the
same monoclonal IBA1 antibody as a marker for microglia
and macrophages.
CONCLUSION

Microglia morphological features under homeostatic conditions
were found to diverge in the DG across species (C. pusilla, N.
albiventris,M. musculus and S. apella) with large variation in tree
branching pattern and cell size, not explained by phylogenetics
differences. Other determinant factors for the differential
microglia morphology across species may then include
cognitive exercise, environmental stimuli, as well as aerial vs.
terrestrial locomotion that may impose limits, regulating
neuroimmune interactions. When microglia react to an insult
(acute or chronic), they change their morphofunctional
characteristics and phenotypic plasticity, with differential
morphological responses in small and large brained species
and these responses are influenced by age and environmental
stimuli, with region and species-specific modulatory influences.
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Supplementary Figure 1 | Detailed statistical analysis of canonical discriminant
function analysis of three-dimensional microglia morphological features in the
dentate gyrus of N. albiventris (grey circles), M. musculus (orange circles) and
hippocampal V region of C. pusilla (yellow). Function 1 explained 82% of the
variance. Functions 1 and 2 are indicated on Structure Matrix Table.

Supplementary Figure 2 | Detailed statistical analysis of canonical discriminant
function analysis of three-dimensional microglia morphological reconstructions
Frontiers in Immunology | www.frontiersin.org 14
performed on the molecular layer of the rostral dentate gyrus of 4 individual
capuchin monkeys (Sapajus apella), F (flo – orange circles), J (jac – green), M (mad –

pink) and S (sme – purple). Microglia of S and M with better learning rates occupy
distinct regions in the left quadrants, while F and J individuals with lower learning
rates share similar regions in the right quadrants. Function 1 and 2 are indicated in
the Structure Matrix Table and explain 84.2% of variance.

Supplementary Figure 3 | Pearson’s correlation analysis between
morphological complexity (K-Dim) of microglia of molecular layer of rostral region of
dentate gyrus and PAL performances of slow (F and J) and fast (M and S) learner
monkeys. Color circles and letters distinguish data from different individuals.

Supplementary Figure 4 | Detailed statistical analysis of canonical discriminant
function analysis of three-dimensional morphological reconstruction of microglia
morphological response in young mice subjected to sublethal encephalitis induced
with Piry arbovirus. Note a distinct distribution of microglia of infected (red and
orange color open circles) in the right superior and inferior quadrants respectively,
while in controls, the green and blue color open circles are in the central area of left
quadrant. Function 1 to 3 are indicated in the Structure Matrix Table and Function 1
explain 83.0% of variance. Blue circle = IY, impoverished environment young control
mice; Orange circle = IYinf, impoverished environment infected mice; Green circle =
EY, enriched environment young control mice; Red circle = EYinf, enriched
environment young infected mice; Square black dot = ellipsoid center of each
experimental group.

Supplementary Figure 5 | Detailed statistical analysis of canonical discriminant
function analysis of three-dimensional morphological reconstruction of microglia
morphological response in aged mice subjected to sublethal encephalitis induced
with Piry arbovirus. The microglia of aged mice, show larger areas of intersection
between infected and control mice, indicating less influence of the environment on
microglia response of aged mice. Function 1 to 3 are indicated in the Structure
Matrix Table and Function 1 explain 86.6% of variance. Blue and green circles
represent microglia of control mice whereas red and orange represent microglia of
aged infected mice. IA, impoverished environment aged control mice; IAinf,
impoverished environment aged infected mice; EA, enriched environment aged
control mice; EAinf, enriched environment aged infected mice; Square black dot =
ellipsoid center of each experimental group.
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