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Neutrophil extracellular trap formation (NETosis) and the NLR family pyrin domain
containing 3 (NLRP3) inflammasome assembly are associated with a similar spectrum
of human disorders. While NETosis is known to be regulated by peptidylarginine
deiminase 4 (PAD4), the role of the NLRP3 inflammasome in NETosis was not
addressed. Here, we establish that under sterile conditions the cannonical NLRP3
inflammasome participates in NETosis. We show apoptosis-associated speck-like
protein containing a CARD (ASC) speck assembly and caspase-1 cleavage in
stimulated mouse neutrophils without LPS priming. PAD4 was needed for optimal
NLRP3 inflammasome assembly by regulating NLRP3 and ASC protein levels post-
transcriptionally. Genetic ablation of NLRP3 signaling resulted in impaired NET formation,
because NLRP3 supported both nuclear envelope and plasma membrane rupture.
Pharmacological inhibition of NLRP3 in either mouse or human neutrophils also
diminished NETosis. Finally, NLRP3 deficiency resulted in a lower density of NETs in
thrombi produced by a stenosis-induced mouse model of deep vein thrombosis.
Altogether, our results indicate a PAD4-dependent formation of the NLRP3
inflammasome in neutrophils and implicate NLRP3 in NETosis under noninfectious
conditions in vitro and in vivo.
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INTRODUCTION

Initially described as part of the innate immune response to
microbes (1), there is now increasing evidence that neutrophil
extracellular traps (NETs) are produced under sterile conditions.
They are implicated in a wide variety of inflammatory, (auto)
immune, and thrombo-occlusive disorders. In particular, NETs
are known to foster thrombosis (2, 3), contribute to ischemia/
reperfusion injury (4), and age-related tissue fibrosis (5). NETs
also likely contribute to the severe side effects of a COVID-19
infection (6). Moreover, NET formation is stimulated by
diseases, such as diabetes (7) and cancer (8), and contributes to
cancer progression (9, 10).

NETs are decondensed chromatin meshworks ejected by
neutrophils upon inflammatory stimulation or hypoxia. A key
characteristic of the extracellular neutrophil chromatin is the
inclusion of pro-thrombotic, pro-inflammatory, and cytotoxic
components, in particular histones and microbicidal proteases
(3, 11). While the clinical relevance of NETs is recognized, the
underlying cellular mechanisms of their induction are poorly
defined. Recently, NET formation (NETosis) was determined to
be a well-orchestrated sequence of cellular events, including
disassembly of the cellular cytoskeletons, endomembrane
fragmentation, nuclear rounding, plasma membrane
permeabilization, and finally nuclear and plasma membrane
rupture (12).

A major prerequisite for NETosis is the peptidylarginine
deiminase 4 (PAD4)-dependent post-translational modification
of histones (13, 14). In general, PAD enzymes are calcium-
dependent enzymes which deiminate the positively charged
arginine residue of proteins, thus transforming arginine to a
neutral citrulline. PAD4 is mainly expressed in granulocytes and
transferred into an enzymatic active conformation upon calcium
binding. Moreover, since PAD4 is the only PAD isoform that
contains a nuclear localization sequence, it is required for nuclear
histone citrullination (12, 15). During the course of NETosis, it is
thought that citrullination of histones reduces their DNA/
histone binding ability which causes chromatin decondensation
and subsequently culminates in chromatin expulsion.

Effective inducers of NETosis in vitro are the calcium
ionophore ionomycin, the protein kinase C activator phorbol
12-myristate 13-acetate (PMA), and the potassium ionophore
nigericin (16, 17). Interestingly, nigericin is widely used in
macrophages to induce assembly of the NLR family pyrin
domain containing 3 (NLRP3) inflammasome, which is also
expressed in neutrophils (18, 19). In neutrophils the NLRP3
inflammasome was found to be activated after bacterial infection
(20, 21) or after lipopolysaccharide (LPS) pretreatment with
subsequent ATP stimulation (22). In addition, an activating
mutation (A352V) in NLRP3 leading to Muckle Wells
syndrome is associated with excessive neutrophil granule
exocytosis (23) and a gain-of-function mutation in NLRP3,
which results in Familial Mediterranean Fever (FMF) is
subsequently linked to augmented NETosis (24, 25).

Inflammasomes are multiprotein signaling platforms,
described mainly in macrophages, that mediate pivotal
responses of innate immunity after activation by pathogen- and
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danger-associated molecular patterns (PAMPs and DAMPs). The
most prominent and best studied inflammasome is NLRP3 (26,
27). Assembly of the NLRP3 inflammasome in macrophages in
vitro requires a two-step mechanism. First, protein expression
levels of NLRP3 have to be increased transcriptionally by priming
macrophages with lipopolysaccharide (LPS) and, second,
subsequent stimulation for example with pore-forming toxins
(nigericin), results in a prominent NIMA (never in mitosis gene
a)-related kinase 7 (NEK7)-dependent oligomerization of NLRP3
(28, 29). Successively, apoptosis-associated speck-like protein
containing a CARD (ASC) is recruited, polymerized, and
crosslinked with pro-caspase-1 leading to the formation of a
macromolecular multiprotein structure designated ASC speck
(30). ASC speck formation results in activation of caspase-1
(31), which in turn allows processing of the pro-inflammatory
cytokines IL-1ß and IL-18, as well as the pore-forming protein
gasdermin D (GSDMD) (32). Specific inhibition by the small
molecule MCC950, an established NLRP3 inhibitor that binds to
NLRP3 (33), results in impaired ATP hydrolysis with a
subsequent blockade of NLRP3 inflammasome formation
(34, 35).

Interestingly, neutrophils also have been described as a source
of NLRP3/ASC-dependent IL-1ß production after Staphylococcus
aureus infection (36). NLRP3-linked disorders, like hypoxia-
induced venous thromboembolism (37), atherosclerosis (27),
and tissue damage after ischemia/reperfusion (38) have an
inflammatory thrombo-occlusive pathology in common that is
associated with PAD4 and NETosis. So far, NLRP3 assembly and
ASC speck formation have been described in neutrophils only
after pathogen-induced infections (19, 20) or in the presence of
LPS (22). Nothing is known about NLRP3 inflammasome
assembly in neutrophils in sterile inflammation or their
potential role in NETosis.

Here, we demonstrate that the formation of the NLRP3
inflammasome supports NETosis in the absence of LPS both in
vitro and in vivo, and that PAD4, in addition to its known role in
chromatin decondensation, also regulates NLRP3 inflammasome
assembly in neutrophils. Our studies provide an important link
between NETosis and the NLRP3 inflammasome, explaining, at
least in part, the overlapping features of disorders in which both
components are involved.
MATERIALS AND METHODS

Materials
A detailed list of used material and corresponding ordering
informations can be found in the Supplementary Informations.

Animals
Nlrp3–/– (stock no. #021302) and corresponding wild-type
(C57BL/6J; stock no. #000664) mice were obtained from
Jackson Laboratory (Bar Harbor, ME, USA). Padi4–/– mice
were originally generated by Y. Wang (13) and back-crossed
with C57BL/6J in the Wagner laboratory. All mouse lines were
housed in the animal facility of Boston Children’s Hospital.
May 2021 | Volume 12 | Article 683803
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Padi4fl/fl mice (stock no. #026708), previously described by
Hemmers and colleagues (39), and Vav1-iCre mice (stock
no #008610) were purchased from Jackson Laboratory and
intercrossed by the Wagner laboratory to generate mice lacking
PAD4, specifically in the hematopoietic lineage (Padi4Vav1Cre/+).
ASC-deficient mice (C57BL/6J background) used for antibody
validation were a kind gift of A. Yazdi (Aachen University,
Germany) and were previously described (40). All offsprings
were housed in the according institutional animal facility, and
mice of both sexes were randomly assigned for experiments. Data
analysis was blinded to the identity of the sample.

All experimental animal procedures in this study were
approved by the Institutional Animal Care and Use Committee
of Boston Children’s Hospital under the protocol numbers 20-
01-4096R or 20-02-4097R or the Regierungspräsidium Tübingen
and were performed under the ARRIVE guidelines.

Flow Restriction Model (DVT)
Flow restriction of the inferior vena cava (IVC) was performed as
described elsewhere (41). Briefly, the IVC of 8-week-old male
Nlrp3–/– and corresponding wild-type mice was exposed, and the
renal and iliac veins were ligated. Subsequently, the IVC was
partially (90%) ligated with a 7-0 polypropylene suture using a
30-gauge needle as a spacer. After removal of the spacer, the
peritoneum and skin were closed by monofilament sutures, and
mice were euthanized 6 or 48 hours after surgery. Formed
thrombi were harvested for weight and length measurements
and cryo-embedded in Tissue-Tek® O.C.T.™.

Immunofluorescence Staining of Thrombi
Cryo-embedded thrombi were cryo-sectioned into 10 µm
sections and fixed in 4% paraformaldehyde (PFA) overnight at
4°C. After being washed once with phosphate-buffered saline
(PBS), thrombi sections were permeabilized (0.1% Triton X-100,
0.1% sodium citrate) for 10 minutes at 4°C and subsequently
incubated with blocking buffer (2.5% BSA, 0.5% Tween-20 in 1x
PBS) at 37°C for 1 hour. Following incubation with the primary
antibodies H4Cit (1:250) and Ly6G (1:500) at 4°C overnight, the
sections were washed 3 times with PBS and incubated with the
secondary antibodies (1:1,500) for 2 hours at room temperature
(RT). After another 3 washes with PBS, the coverslips were
mounted using mounting medium containing 4′,6-diamidin-2-
phenylindol (DAPI) and visualized on an Olympus confocal
laser scanning microscope (FluoView FV1000) using a 20x air
objective with a tile and stitching mode. Images were identically
acquired and processed with Fiji/ImageJ to calculate the
percentage of H4Cit and Ly6G positive area.

Mouse Neutrophil Isolation
Blood was collected from the retro-orbital plexus of anesthetized
mice in 1 mL of ethylenediaminetetraacetic acid (EDTA)
anticoagulated buffer supplemented with 1% endotoxin-free
BSA in sterile PBS, and peripheral blood neutrophils were
subsequently isolated. Bone marrow–derived neutrophils were
obtained by flushing the mouse femur 3-4 times with phenol red-
free RPMI 1640 medium supplemented with 10 mM HEPES.
The bone marrow–cell suspension was strained using a 40 µm
Frontiers in Immunology | www.frontiersin.org 3
cell strainer, and cells were pelleted by 10 minutes of 500 x g
centrifugation before finally being resuspended in PBS.

Subsequently, peripheral or bone marrow–derived
neutrophils were isolated by Percoll gradient centrifugation, as
described elsewhere (7). Neutrophils were then resuspended in
phenol red-free RPMI 1640 medium supplemented with 10 mM
HEPES, and cell purity was assessed by Wright-Giemsa stain.
After the neutrophil count was determined, the required cell
density was adjusted by adding HEPES supplemented RPMI
1640 medium.

Human Neutrophil Isolation
The experimental procedure was approved by the Office of
Clinical Investigations at Boston Children’s Hospital
(protocol number IRB-P00003283). Informed consent was
provided by donors. Blood was drawn from healthy donors in
EDTA-coated vacutainers, and blood samples were de-identified
prior to isolation. Neutrophils were isolated using gradient
centrifugation, as described elsewhere (7). Cells were resuspended
in phenol red free RPMI 1640medium supplemented withHEPES,
assessed for purity by Wright-Giemsa stain, and adjusted to the
desired cell density.

Cell Culture of iBMDM Cells
Immortalized mouse bone marrow–derived macrophages
(iBMDM) (42) were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% fetal bovine serum (FBS), 1%
penicillin/streptomycin and supplemented with L-glutamine and
sodium pyruvate. Cells were split every 3 days in a 1:10 ratio by
detaching them in PBS (pH 7.4) containing 2 mM EDTA.

Gene Editing of iBMDM Cells
Overexpressing PAD4
PAD4 overexpressing construct was generated using a
murine PAD4-mScarlet vector, which was produced by
inserting mScarlet cDNA into the pLV-eGFP plasmid (a gift
from Pantelis Tsoulfas, Addgene no: 36083) between
XbaI and BamHI sites. The mouse full-length PAD4 insert
was amplified and ligated between the AgeI and SalI
s i tes rom he cDNA using the fo l lowing pr imers :
forward primer of 5’-ACCTCCATAGAAGACACCGACTCTA
GAATGGCCCAAGGCGCGGTGATCCA-3’, and reverse
primer of 5’-CTTGCTCACCATTGAGCCGCTACCGGTGGG
CACCATGTGCCACCACTTGA-3’.

Generation of Stable Cell Lines
Stable PAD4-mScarlet overexpressing iBMDM cell lines were
generated by a lentiviral transfection approach. To this end,
HEK293T cells were co-transfected with 1 mg of pLV plasmid
containing the corresponding gene, 750 ng psPAX2 packaging
plasmid, and 250 ng pMD2.G envelope plasmid (both plasmids
were a gift from Didier Trono, Addgene no: 12260 and 12259,
respectively) on day 0 and incubated overnight. On day 1, the
medium was removed, replenished with 1 mL fresh medium, and
the cells were incubated for another day. On day 2, the
supernatant containing the virus was filtered using a 0.45 mm
filter and used directly to infect iBMDM cells by spinfection at
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2,500 x g for 90 minutes at RT using 8 mg/mL polybrene.
Subsequently, cells were incubated in the corresponding culture
medium for 24 hours, and positively infected cells were sorted by
flow cytometry using mScarlet (PAD4) wavelengths. Positive cell
colonies were validated at protein and functional level.

Western Blot
For western blot analysis, cells were lysed in RIPA buffer
supplemented with protease and phosphatase inhibitors,
according to the manufacturer’s protocol, and incubated for 30
minutes on ice. After centrifugation at 20,000 x g for 15 minutes
at 4°C, the protein concentration in the supernatant was
measured using Bradford reagent. The protein samples were
then denatured in LDS buffer and reducing agent for 5 minutes at
95°C. Lysates were separated by 4-12% Bis-Tris gradient gels,
and proteins were electrotransferred on a PVDF membrane
using the iBlot system. Membranes were blocked with 5% BSA
in TBS-T buffer (0.05% Tween-20 in 1x TBS) for 1 hour at RT
and incubated overnight at 4°C with anti ASC (1:800), anti
NLRP3 (1:1,000), anti caspase-1 (1:1,000), anti PAD4 (1:200) or
anti GAPDH (1:5,000) antibodies. For probing with the PAD4
antibody, the membranes were stripped for 20 minutes at RT
using 0.5 M NaOH solution, blocked with 5% BSA TBS-T buffer,
and incubated for 4 hours at RT using a custom-made mouse-
specific PAD4 antibody (Thermo Fisher Scientific) directed
against mouse PAD4 peptide DKEDPQASGMDFEDDKILD
that does not cross react with mouse PAD2. After incubation
with primary antibodies, membranes were washed 3 times with
TBS-T buffer before incubation with HRP-conjugated secondary
antibodies (1:10,000) and were incubated for 2 hours at RT. Then
the membranes were washed 3 more times with TBS-T and
subsequently probed with enhanced chemiluminescence (ECL)
detection solution.

IL-1ß ELISA
IL-1ß was measured according to the manufacturer’s instruction.
A 96-well plate was coated with the capturing antibody overnight
at 4°C. The following day, the plate was washed 3 times with
buffer (PBS + 0.05% Tween-20) and then blocked at RT for 1
hour under gentle shaking. Subsequently, after 3 further washing
steps, 100 µL of iBMDM supernatant or standard solution was
added per well and incubated for 2 hours at RT under gentle
shaking. The plate was again washed 3 times before the addition
of the detection antibody. After incubation of the detection
antibody for 1 hour at RT, avidin-HRP was added and
incubated for 0.5 hours at RT. After final washing steps, TMB
solution was supplemented, and 2N H2SO4 was used as stop
solution. The absorbance was read at 450 and 570 nm. To obtain
final values, the 570 nm values were subtracted from the 450
nm values.

qRT-PCR
Total RNA was extracted using the PureLink™ RNA Mini Kit
(ThermoFisher) according to the manufacturer’s instructions.
Complementary DNA (cDNA) was synthesized using All-In-
One RT MasterMix following the manufacturer’s instructions.
Frontiers in Immunology | www.frontiersin.org 4
Quantitative PCR of specific genes was performed using SYBR
Green SuperMix in the StepOnePlus RealTime PCR System.
Cycling conditions were as follows: initial denaturation at 95°C
for 2 minutes, followed by 40 cycles of 95°C for 15 sec, 55°C for 30
sec, and 70°C for 15 sec. For amplification, the following primer
pairs were used (5`- >3`orientation): b-actin: fwd: CGGTTCCG
ATGCCCTGAGGCTCTT; rev: CGTCACACTTCATGATGGA
ATTGA for isolated peripheral neutrophils and fwd: CATT
GCTGACAGGATGCAGAAGG; rev: TGCTGGAAGGT
GGACAGTGAGG for iBMDM cells; ASC: fwd: CAGAG
TACAGCCAGAACAGGACAC, rev: GTGGTCTCTGCAC
GAACTGCCTG; NLRP3: fwd: GTTCTGAGCTCCAACCA
TTCT, rev: CACTGTGGGTCCTTCATCTTT; IL1ß: fwd:
TGGACCTTCCAGGATGAGGACA; rev: GTTCATCTCGGA
GCCTGTAGTG.

To confirm the equal RNA input, b-actin mRNA expression
and the relative expression of inflammasome mRNA were
calculated with the △△Ct method. Specificity of the
amplification was checked by melting curve analysis, and data
were recorded and analyzed using StepOne Software v2.1.

In Vitro NET Assay
1.5x104 mouse or human neutrophils per well were resuspended
in HEPES supplemented phenol red-free RPMI 1640 medium
and plated in a 96-well plate. After allowing the cells to adhere
for 30 minutes at 37°C and 5% CO2 in the absence or presence of
1 µM MCC950, the cells were stimulated with vehicle control,
nigericin (15 µM), or ionomycin (4 µM) for 4 hours. Fixation was
performed in 2% PFA containing Hoechst 33342 (1:10,000) at
4°C overnight. Cells were washed 3 times with PBS the next day
before imaging on a Zeiss Axiovert 200M microscope. The
percentage of NETs was analyzed from 8 non-overlapping and
randomized visual fields per well by quantifying cells with a web-
like chromatin structure and positive citrullinated histone H4
staining. The average percentage of NETing cells was taken from
duplicates in each experiment.

Immunofluorescence Staining of ASC
Speck in Neutrophils
6x104 mouse or 1x105 human neutrophils per condition were
plated on a sterilized coverslip in a 6-well plate and allowed to
adhere for 30 min at 37°C and 5% CO2 before stimulating the
cells with nigericin (15 µM), ionomycin (4 µM), or PMA (50 nM)
for 4 hours. The cells were fixed with 4% PFA for 1 hour at RT,
washed once with PBS, permeabilized (0.1% Triton X-100, 0.1%
sodium citrate) for 10 minutes at 4°C, and incubated with
blocking buffer (2.5% BSA, 0.5% Tween-20 in 1x PBS) at 37°C
for 1 hour. Samples were incubated at 4°C ON with the primary
antibodies against ASC (1:800, mouse neutrophils or 1:200,
human neutrophils) and subsequently washed 3 times with
PBS before incubation with the secondary antibody (1:1,500)
for 2 hours at RT. After another 3 washing steps with PBS, the
coverslips were mounted using mounting medium containing
DAPI and visualized on a confocal Nikon Eclipse Ti2 microscope
using a 60x oil immersion objective (mouse neutrophils) or an
May 2021 | Volume 12 | Article 683803
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Olympus confocal laser scanning microscope FluoView
(FV1000) using a 40x air objective (human neutrophils).
Images were identically acquired and processed with Fiji/
ImageJ. ASC speck frequency was determined by capturing 37
Z-stacks of 0.1625 µm size from 6 by 6 tiles on a Nikon Eclipse
Ti2 A1R confocal microscope (mouse neutrophils) and by 5 non-
overlapping and randomized visuals fields on an Olympus
FluoView (FV1000) confocal microscope (human neutrophils)
in the center of the coverslip. The percentage of neutrophils
forming ASC speck was quantified.
Immunofluorescence Staining of ASC
Speck in iBMDM
iBMDMs were plated on a 35 mm glass-bottom dish and primed
for 4 hours with LPS from E.coli (1 µg/mL) at 37°C and 5% CO2

before stimulating the cells with nigericin (20 µM) for 30
minutes. iBMDMs were fixed in 3% PFA containing 1:10,000
Hoechst 33342 for 30 minutes at RT, washed twice with PBS for 5
minutes, and permeabilized (0.1% Triton X-100, 0.1% sodium
citrate) for 7 minutes at RT, followed by a washing step.
Afterwards, cells were blocked for 1 hour at RT with blocking
buffer (3% BSA in PBS) and subsequently incubated with the
primary antibody ASC (1:1,000) overnight. Followed by
extensive washing steps, cells were incubated with the
corresponding secondary antibody (1:2,000) the next day for 2
hours at RT. Finally, cells were visualized with an Olympus
confocal laser scanning microscope FluoView (FV1000). Images
were captured using a 60x water immersion objective with
Olympus FluoView version 3.0 viewer software. The images
were identically acquired and processed using ImageJ software,
and the percentage of iBMDMs developing an ASC speck
was quantified.

Time-Lapse Visualization by Spinning Disc
Confocal and DIC Microscopy
Time-lapse microscopy was performed using isolated peripheral
neutrophils from Nlrp3+/+ and Nlrp3–/– mice. To this end, 1x106

mouse neutrophils were stained for 30 min at 37°C and 5% CO2

using 2 µM SiR-DNA to visualize chromatin and 1 µM ER-
tracker red dye to visualize the endoplasmic reticulum and
nuclear envelope. Subsequently, cells were washed and
resuspended in 300 µL of imaging media (phenol red-free
RPMI 1640, 25 mM HEPES, 1% penicillin/streptomycin)
before the cell suspension was added and allowed to adhere for
5 min in a non-coated, 24-well glass-bottom plate located on a
37°C pre-warmed microscope stage. 3-10 random fields per well
were visualized using a Nikon Eclipse Ti2 microscope equipped
with Perfect Focus™, a Yokogawa CSU-X1 spinning disc
scanhead, a Nikon motorized stage with XY linear encoders
containing a Nano-Z100 piezo insert, and a Hamamatsu Orca-
flash 4.0 v3 camera with a Plan Apo Tirf 60x oil 1.49 NA DIC
Nikon objective lens. Confocal and DIC images were acquired
every 2 minutes for the first 80 minutes and every 5 minutes for
the rest of the visualization up to 4 hours. Three images were
acquired of unstimulated cells, followed by addition of imaging
Frontiers in Immunology | www.frontiersin.org 5
medium containing ionomycin to achieve a final ionomycin
concentration of 4 µM.

Statistical Analysis
All data are presented as mean ± standard error of the mean
(SEM). Statistical analysis was performed using GraphPad
Prism. Significance was tested with unpaired t-test or, for
experiments with more than two groups, with two-way
ANOVA multiple comparison test. p<0.05 was considered
statistically significant.
RESULTS

Neutrophil Activation Induces NLRP3-
Dependent ASC Speck Formation Under
Sterile Conditions
NLRP3 is expressed in human and mouse neutrophils (22, 23).
To investigate whether NLRP3 inflammasome assembles in
neutrophils under sterile conditions, human peripheral
neutrophils were activated with PMA or nigericin for 4 hours.
Both agents induced inflammasome assembly, observed in a
subset of cells by immunostaining for ASC speck formation,
which was absent in unstimulated neutrophils (Figure 1A). Like
human neutrophils, isolated peripheral mouse neutrophils
displayed ASC speck formation when stimulated with
ionomycin or nigericin (Figure 1B) and stained with an
antibody specific for ASC (Figure S1) subsequently.
Interestingly, ASC speck formation occurred in NET-forming
human or mouse neutrophils upon stimulation with nigericin or
ionomycin, respectively (Figure 1C). After ionomycin- or
nigericin- stimulated NET release, a fraction of neutrophils
undergoing NETosis also showed ASC speck or its fragments
associated with the expelled extracellular chromatin (Figure 1C;
red arrowheads).

Next, since activation of pro-caspase-1 upon ASC speck
formation is an established hallmark of inflammasome
activation, caspase-1 cleavage products were investigated in
mouse neutrophils. Stimulation with nigericin or ionomycin
caused generation of the characteristic p32 and p20 caspase-1
fragments (Figure 1D).

To confirm that the observed ASC speck formation in
neutrophils is due to NLRP3 assembly, we treated circulating
neutrophils from wild-type (Nlrp3+/+) and NLRP3-deficient
(Nlrp3–/–) mice with nigericin or ionomycin. As shown in
Figure 1E, nigericin or ionomycin stimulation induced ASC
speck formation in approximately 10% of wild-type neutrophils.
By contrast, this activation-dependent increase in ASC speck
formation was significantly reduced in neutrophils from Nlrp3–/–

mice, indicating that the majority of observed ASC speck in the
mouse neutrophils was part of the NLRP3 inflammasome
(Figure 1E).

Taken together, these results demonstrate that neutrophils
can assemble a physiologically active inflammasome/ASC speck
in the absence of bacteria or LPS.
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PAD4 Supports ASC Speck Formation
by Regulation of ASC and NLRP3
Protein Levels
ASC speck forms in stimulated neutrophils, where PAD4 is a
prerequisite for NET formation (15). We wondered whether
PAD4 may promote ASC speck assembly as well. Since
PAD4 can be synthesized by many cell types and can be found
in plasma, a hematopoietic cell-specific Padi4 knockout mouse
Frontiers in Immunology | www.frontiersin.org 6
was generated using Cre-Lox recombination by intercrossing
Padi4fl/fl with Vav1-iCremice (Figure S2A). The resulting PAD4
wild-type (Padi4fl/fl) and hematopoietic cell-specific knockout
(Padi4Vav1Cre/+) mice showed no differences in blood cell counts
(Figure S2B) and, in agreement with global Padi4–/– mice,
Padi4Vav1Cre/+ mice displayed significantly reduced NETosis
(Figure S2C).

Immunostaining of unstimulated Padi4fl/fl or Padi4Vav1Cre/+

neutrophils detected ASC speck formation in approximately 2%
A B

D E

C

FIGURE 1 | NLRP3 inflammasome-dependent ASC speck formation and release on NETs by stimulated neutrophils (A) Confocal microscopy images of
immunostained human neutrophils in the absence (unstimulated) or presence of PMA (50 nM) or nigericin (15 µM) for 4 hours. Blue, DNA (DAPI); grey, ASC antibody
staining. Red arrows indicate ASC speck. Scale bar equals 10 µm in the overview and 2.5 µm in the zoom panel. Representative of n=4 experiments. (B) Confocal
microscopy images of immunostained mouse neutrophils in the absence (unstimulated) or presence of ionomycin (4 µM) or nigericin (15 µM) for 4 hours. Blue, DNA
(DAPI); grey, ASC antibody staining. Red arrows indicate ASC speck. Scale bar equals 10 µm in the overview and 2.5 µm in the zoom panel. Representative of n=5
experiments. (C) Confocal microscopy images of ASC speck formation in NETting cells and associated with NETs in human (left panel) or mouse neutrophils (right
panel) in the presence of nigericin (15 µM) or ionomycin (4 µM). Blue, DNA (DAPI); green, H4Cit antibody stain; grey, ASC antibody staining. Red arrows indicate ASC
speck. Scale bar equals 10 µm in the overview and 2.5 µm in the zoom panel. Representative of n=4-5 experiments. (D) Western blot of caspase-1 cleavage
(antibody clone: Casper-1) in neutrophils from wild-type mice in the absence or presence of nigericin (15 µM) or ionomycin (4 µM) for 0.5 hours. Representative of
n=3 experiments. (E) Representative confocal microscopy images (left panel) and arithmetic means ± SEM (right panel; n=4-5 mice) of ASC speck formation in
neutrophils from wild-type (Nlrp3+/+) or Nlrp3–/– mice in the absence (unstimulated, open bars) or presence of nigericin (15 µM, black bars) or ionomycin (4 µM, grey
bars) for 4 hours. Blue, DNA (DAPI); grey, ASC antibody staining. Red arrows indicate ASC speck. Scale bar equals 10 µm. *p<0.05, **p<0.01 and ***p<0.001.
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of the cells. However, nigericin or ionomycin stimulation
resulted in ASC speck formation in about 15% of Padi4fl/fl

cells, while only 6-8% of neutrophils from Padi4Vav1Cre/+ mice
showed ASC speck formation (Figure 2A), which shows that
neutrophil PAD4 is needed to fully stimulate ASC speck
assembly. Since no LPS pretreatment was needed for induction
of ASC speck formation in neutrophils, we decided to compare
the protein levels of NLRP3 and ASC in these cells. Interestingly,
peripheral neutrophils lacking PAD4 (Padi4Vav1Cre/+) displayed
decreased ASC and NLRP3 protein levels when compared with
PAD4-positive neutrophils from Padi4fl/fl mice (Figure 2B),
while LPS pretreatment equalized the ASC and NLRP3 protein
levels in these neutrophils (Figure S2D). Although protein levels
of the NLRP3 inflammasome are transcriptionally regulated by
NFkB in macrophages (43), neutrophils from Padi4fl/fl and
Padi4Vav1Cre/+ mice showed no difference in NLRP3 and ASC
mRNA levels (Figure 2C).

These results indicate that PAD4 has the ability to upregulate
NLRP3 inflammasome components in a post-transcriptional
manner without de novo mRNA synthesis in neutrophils.
Frontiers in Immunology | www.frontiersin.org 7
Overexpresion of PAD4 Bypasses LPS
Priming During NLRP3 Inflammasome
Assembly in Bone Marrow–Derived
Macrophages
To study whether PAD4 also plays a role in ASC speck formation
in other cell types, we prepared primary bone marrow–derived
macrophages (BMDM) from wild-type and Padi4Vav1Cre/+ mice.
While inhibition of citrullinating activity of several PAD
enzymes by Cl-amidine almost completely abrogated ASC
speck formation in primary wild-type BMDMs (Figures S3A, B),
there was no statistically significant difference in ASC speck
formation in primary bone marrow–derived macrophages from
Padi4Vav1Cre/+ mice when compared with Padi4fl/fl BMDMs after
LPS and nigericin exposure (Figure S3C). This observation
confirms a previous report (44) and indicates that in mouse
macrophages, as in neutrophils, citrullination is necessary for
ASC speck formation. However, other PAD enzymes may
compensate for the lack of PAD4 in macrophages.

To further investigate the role of PAD4 in NLRP3
inflammasome assembly in macrophages, we generated PAD4
A

B C

FIGURE 2 | ASC speck formation in neutrophils is, in part, directed by PAD4-dependent regulation of ASC and NLRP3 protein levels (A) Representative confocal
microscopy images (left panel) and arithmetic means ± SEM (right panel, n=4-6 mice) of ASC speck formation in neutrophils from wild-type (Padi4fl/fl, black bars) or
hematopoietic cell-specific Padi4-deficient mice (Padi4Vav1Cre/+, grey bars) in the absence (unstimulated) or presence of ionomycin (4 µM) or nigericin (15 µM) for 4
hours. Blue, DNA (DAPI); grey, ASC antibody staining. Red arrows indicate ASC speck. Scale bar equals 10 µm. *p<0.05. (B) Representative western blots (upper
panel) and arithmetic means ± SEM (lower panel, n=4 mice) of ASC and NLRP3 protein levels in naive neutrophils from wild-type (Padi4fl/fl, black bars) or
hematopoietic specific Padi4-deficient mice (Padi4Vav1Cre/+, grey bars). **p<0.01. (C) Arithmetic means ± SEM (n=3 mice) of relative mRNA levels in naive neutrophils
from wild-type (Padi4fl/fl, black bars) or hematopoietic specific Padi4-deficient mice (Padi4Vav1Cre/+, grey bars).
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overexpressing immortalized bone marrow–derived macrophages
(iBMDM). While these cells exhibited a 4-fold increased PAD4
protein level compared with wild-type iBMDM (Figures S4A, B),
PAD4 overexpression had no effect on IL-1ß mRNA levels in
iBMDM (Figure S4C). Although in vitro stimulation of NLRP3
assembly in iBMDMs requires pretreatment with LPS and
subsequent stimulation with nigericin, we observed that
nigericin alone was able to induce ample ASC speck formation
Frontiers in Immunology | www.frontiersin.org 8
and IL-1ß production in PAD4 overexpressing iBMDMs
(Figures 3A, B). Stimulation of control iBMDMs (empty
vector-treated cells) with nigericin or LPS alone did not induce
ASC speck formation or IL-1ß production (Figures 3A, B). In
agreement with the observation in neutrophils, PAD4
overexpression in iBMDMs resulted in significantly increased
NLRP3 protein levels and a small but significant increase in ASC
levels when compared with empty vector expressing cells, without
A

B
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FIGURE 3 | PAD4 overexpression leads to priming-independent ASC speck formation and IL-1ß secretion with an increase in ASC and NLRP3 protein levels in
immortalized bone marrow–derived murine macrophages (A) Confocal microscopy images of immunostained native mouse immortalized bone marrow–derived
macrophages (iBMDM; control, left panel) and PAD4 overexpressing iBMDM (right panel) in the absence (unstimulated) or presence of LPS only (1 µg/mL), nigericin
only (15 µM), or LPS and nigericin (15 µM, 0.5 hours). Blue, DNA (Hoechst); green, NLRP3 antibody staining; grey, ASC antibody staining. Scale bar equals 5 µm.
Representative of n=4 experiments. (B) Arithmetic means ± SEM (n=4) of percentage of ASC speck formation (left panel) and IL-1ß production (right panel) in native
iBMDM (control, black bars) or PAD4 overexpressing iBMDM (grey shaded bars) in the absence (unstim.) or presence of LPS only (1 µg/mL), nigericin only (15 µM),
or LPS (1 µg/mL) and nigericin (15 µM, 0.5 hours). **p<0.01 and ***p<0.001. (C) Representative western blots (upper panel) and arithmetic means ± SEM (lower
panel, n=4) of ASC and NLRP3 protein levels in native iBMDM (ctrl.) or PAD4 overexpressing (P4 oe) iBMDM. *p<0.05 and **p<0.01. (D) Arithmetic means ± SEM
(n=4) of relative mRNA levels in native iBMDM (control) or PAD4 overexpressing iBMDM.
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a significant change in the corresponding mRNA levels
(Figures 3C, D).

These results show the importance of PAD4 activity in
inflammasome/ASC speck assembly in iBMDM cells under
sterile conditions.

NLRP3 Inflammasome Supports NETosis
by Promoting Nuclear Envelope and
Plasma Membrane Breakdown
Since ASC speck formation was observed in neutrophils forming
NETs, we addressed the importance of the NLRP3
inflammasome assembly on NETosis. To this end, we
examined the effects of inflammasome perturbations on
NETosis in in vitro assays. Neutrophils isolated from Nlrp3–/–

mice showed significantly decreased NETosis after nigericin or
ionomycin stimulation when compared with neutrophils from
wild-type mice (Figure 4A). The role of NLRP3 was further
substantiated both in mouse and human neutrophils by
pharmacological inhibition of the NLRP3 inflammasome.
Pretreatment for 30 minutes with the specific small molecule
NLRP3 inhibitor MCC950 (33) resulted in significantly
decreased NETosis after nigericin or ionomycin stimulation
than observed in vehicle-treated neutrophils (Figures 4B, C).
Thereby, the inhibition was more pronounced in mouse
than human neutrophils, but was statistically significant in
both cases. In line with results from NLRP3 perturbations, we
found that pharmacological inhibition of the NLRP3
inflammasome effector molecule caspase-1 also revealed
markedly reduced NETosis in human neutrophils (Figure S5),
indicating that NLRP3-mediated caspase-1 activation is needed
for efficient NETosis.

To determine the underlying NLRP3-dependent cellular
processes in NETosis, we performed time-lapse microscopy of
ionomycin-stimulated neutrophils from Nlrp3+/+ and Nlrp3–/–

mice. Spinning disk confocal and DIC microscopy of cells
stained with SiR-DNA as a marker of chromatin and ER-
tracker as a marker of the endoplasmic reticulum (ER) and
nuclear envelope confirmed a significantly impaired NET
formation in neutrophils from Nlrp3–/– mice when compared
with wild-type neutrophils. While neutrophils from Nlrp3+/+

mice showed a robust breakage of the plasma membrane
(NETosis) starting 60 minutes after stimulation, Nlrp3-
deficient neutrophils displayed four-fold reduced plasma
membrane rupture (Figure 4D). While nuclear rounding,
another described cellular characteristic of NETosis (45),
occurred both in neutrophils from Nlrp3+/+ and Nlrp3–/– mice,
most Nlrp3–/– neutrophils arrested the NETosis process at this
stage (Figure 4E and Videos S1, S2). Accordingly, the rupture of
the nuclear envelope was significantly impaired in neutrophils
from Nlrp3-/- mice when compared with wild-type controls
(Figure 4F).

The above observations demonstrate an important role of
the NLRP3 inflammasome in nuclear envelope and
plasma membrane breakdown after sterile inflammation,
thus pointing to a central role of the NLRP3 inflammasome
in NETosis.
Frontiers in Immunology | www.frontiersin.org 9
NLRP3 Inflammasome Promotes NETosis
In Vivo and Supports Venous Thrombus
Progression in Mice
We next sought to verify that NLRP3 also regulates NETosis in
deep vein thrombosis (DVT) to unravel the physiological
importance of our findings. To this end, we applied a mouse
model of stenosis-induced DVT, which is an acknowledged
murine model for sterile thrombo-inflammation, in wild-type
(Nlrp3+/+) and Nlrp3–/– mice. In our previous work with PAD4-
deficient mice, we noted that NETs likely stabilize the thrombus,
since lack of NETosis displayed a more important phenotype at
later timepoints of venous thrombus progression (14). Therefore,
we induced vascular stenosis for 6 or 48 hours to monitor
thrombus progression. While the incidence of formed thrombi
in Nlrp3+/+ and Nlrp3–/– mice was similar at both time points
(Figure 5A), there was a significant NLRP3-dependent difference
in thrombus progression. Interestingly, thrombus length and
weight did not differ between Nlrp3+/+ and Nlrp3–/– mice 6 hours
after stenosis. By contrast, a significant reduction in thrombus
size was observed inNlrp3–/–mice after 48 hours when compared
with Nlrp3+/+ mice. Furthermore, although the thrombi from
Nlrp3+/+ mice increased in weight and length over the 48-hour
period, thrombi from NLRP3-deficient mice reached their final
small size already after only 6 hours, resulting in smaller thrombi
in NLRP3–/– mice when compared with thrombi from wild-type
mice (Figure 5B). This observation points to a role of NLRP3 in
venous thrombosis progression under sterile conditions.

Since thrombus growth in the DVT model is substantially
dependent on NETosis, we finally investigated the density of
citrullinated histone H4 (H4Cit) in thrombi from Nlrp3+/+ and
Nlrp3–/– mice after 48 hours of stenosis as a direct marker for the
presence of NETs. As shown in Figures 5C, D, NET density, and
thus their formation, was significantly reduced in thrombi
from Nlrp3–/– mice when compared with wild-type controls
(Figures 5C, D). Neutrophil density in the corresponding
thrombi were comparable between Nlrp3+/+ and Nlrp3–/– mice
(Figure 5E), emphasizing an NLRP3-dependent enhancement of
NETosis with subsequent increase in venous thrombus growth
in vivo.

Our results demonstrate that, at least in the mouse, NLRP3
inflammasome is critical for NETosis in vivo.
DISCUSSION

NETs and NLRP3 inflammasome are formed in a similar set of
human disorders and infectious diseases. Among these
pathologies, noninfectious diseases such as cancer,
immunothrombosis, myocardial infarction, and stroke are the
main causes of death (46). In particular, it is known that
neutrophils and NETosis are major inducers of venous
thrombosis (47) and hypoxia-induced venous thrombosis is
linked to elevated IL-1ß and NLRP3 levels in thrombi (37, 48).
However, it was not known if canonical inflammasome assembly
takes place in neutrophils under these noninfectious conditions,
and if inflammasome assembly contributes to NETosis.
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FIGURE 4 | The NLRP3 inflammasome promotes activation-dependent NET formation through nuclear envelope and plasma membrane breakdown in primary
neutrophils. (A) Overview (left panel) and arithmetic means ± SEM (right, n=5-7 mice) of NET formation by neutrophils from wild-type (Nlrp3+/+, black bars) or Nlrp3–/–

mice (grey bars) in the absence (unstimulated) or presence of nigericin (15 µM) or ionomycin (4 µM) for 4 hours. Blue, DNA (DAPI); green, H4Cit antibody stain. Red
arrows indicate NETs. Scale bar equals 50 µm. *p<0.05, **p<0.01 and ***p<0.001. (B) Overview (left panel) and arithmetic means ± SEM (right, n=5-6 mice) of NET
formation in untreated (solvent control, black bars) or MCC950 pretreated (1 µM, grey bars) mouse neutrophils in the absence (unstimulated) or presence of nigericin
(15 µM) or ionomycin (4 µM) for 4 hours. Blue, DNA (DAPI); green, H4Cit antibody stain. Red arrows indicate NETs. Scale bar equals 50 µm. *p<0.05 and **p<0.01.
(C) Overview (left panel) and arithmetic means ± SEM (right, n=4-8 donors) of NET formation in untreated (solvent control, black bars) or MCC950 pretreated (1µM,
grey bars) human neutrophils in the absence (unstimulated) or presence of nigericin (15 µM) or ionomycin (4 µM) for 4 hours. Blue, DNA (DAPI); green, H4Cit
antibody stain. Red arrows indicate NETs. Scale bar equals 50 µm. *p<0.05, **p<0.01 and ***p<0.001. (D) Representative time-lapse differential interference
contrast (DIC) spinning-disk confocal microscopy images at indicated time intervals (left panel) and arithmetic means ± SEM (center/right panel; n=5 mice) of
percentage of total (middle) and time course (right) of plasma membrane rupture (NETosis) in neutrophils from wild-type (Nlrp3+/+, black bars) or Nlrp3–/– mice (grey
bars) in the presence of ionomycin (4 µM). Blue, DNA (siR-DNA); red, nuclear envelope (ER-tracker). Red arrows indicate area of plasma membrane rupture. Scale
bar equals 5 µm. **p<0.01. (E) Arithmetic means ± SEM (n=5 mice) of percentage of total (left panel) and time course (right panel) of nuclear rounding in neutrophils
from wild-type (Nlrp3+/+, black bars) or Nlrp3–/– mice (grey bars) in the presence of ionomycin (4 µM). (F) Arithmetic means ± SEM (n=5 mice) of percentage of total
(left panel) and time course (right panel) of nuclear envelope rupture in neutrophils from wild-type (Nlrp3+/+, black bars) or Nlrp3–/– mice (grey bars) in the presence of
ionomycin (4 µM). *p<0.05.
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In 2018, two groups of investigators clearly demonstrated that
GSDMD pore formation is implicated in NETosis in an NLRP3
inflammasome–independent manner. They proposed that
GSDMD is activated either by neutrophil proteases that play a
role in NETosis and can cleave GSDMD to its active fragments
(49) or by caspase-11-mediated GSDMD cleavage after cytosolic
infection by gram-negative bacteria (50). However, as our
Frontiers in Immunology | www.frontiersin.org 11
experiments were exclusively performed under sterile
conditions, the observed effects are most likely mediated by
caspase-1-dependent mechanisms. In macrophages the cleaved
N-terminal GSDMD fragment is established as pore-forming
compound (51), while in neutrophils, the elastase (NE)-
dependent activation of GSDMD can lead to alternative
GSDMD cleavage and localization resulting in pyroptosis-
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FIGURE 5 | NLRP3 deficiency decreases NETosis and thrombus growth in a stenosis-induced model of deep vein thrombosis. (A) Thrombus incidence in wild-type
(Nlrp3+/+, open bars) or Nlrp3–/– mice (grey bars) after 6 or 48 hours of stenosis of the inferior vena cava (IVC). (B) Thrombus weight (left panel) and thrombus length
(right panel) of thrombi from wild-type (Nlrp3+/+, black) or Nlrp3–/– mice (white) after 6 or 48 hours of stenosis of the IVC. Each dot represents a thrombus. *p<0.05,
**p<0.01 and ***p<0.001. (C) Representative composite images of thrombi by confocal microscopy (upper panels) and zoom images (lower panels) of thrombi from
wild-type (Nlrp3+/+) or Nlrp3–/– mice after 48 hours of stenosis of the IVC. Blue, DNA (DAPI); green, H4Cit antibody stain; red, Ly6G antibody staining. Overview
images were composed of several photographs. Scale bar equals 300 µm (thrombus overview), 50 µm (upper panel) or 10 µm (lower panel) in the zoom panels.
(D) Percentage of thrombus area covered by H4Cit in thrombi from wild-type (Nlrp3+/+, black) or Nlrp3–/– mice (white) after 48 hours of stenosis of the IVC. Each dot
represents a thrombus. *p<0.05. (E) Percentage of thrombus area covered by Ly6G positive cells in thrombi from wild-type (Nlrp3+/+, black) or Nlrp3–/– mice (white)
after 48 hours of stenosis of the IVC. Each dot represents a thrombus.
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independent signaling (52). Nevertheless, caspase-11 as well as
NE-dependent GSDMD processing affect nuclear extension (49)
and nuclear permeabilization (50) in neutrophils. In this context,
the importance of caspase-1 or 11 in NETosis is consistent
with our collaborative observations showing that caspase-1/11-
deficient mice do not expel NETs (53) and that pharmacological
perturbation of caspase-1 activity using a specific caspase-1
inhibitor resulted in impaired NET formation (Figure S5).
Interestingly, all types of sterile stimulation that we tested
produced significant ASC speck/inflammasome assembly
(Figure 1). However, further research is needed to clarify the
exact roles of caspase-1 and GSDMD in neutrophil activation.
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Since occasional speck formation was observed in resting
neutrophils and not in naive mononuclear cells, it appears that
neutrophils are already primed for inflammasome formation
(Figure 6).

Apart from NLRP3, other inflammasomes present in
neutrophils, such as the NLRC4, NLRP1 and AIM2
inflammasomes, are also known to induce ASC speck-
dependent caspase-1 activation (19, 26, 55). NLRP3 and
NLRP1 expression levels in neutrophils are higher than in
macrophages (56) and especially NLRP1 was recently described
as mediator of anthrax lethal toxin induced neutrophil activation
(55). Additionally, the AIM2 inflammasome is vastly activated by
FIGURE 6 | Schematic representation of the proposed mechanism of NLRP3/PAD4-induced NETosis in the absence of infection. PAD4 is present both in the
nucleus and cytoplasm (15). In the nucleus, PAD4 orchestrates chromatin decondensation, whereas in the cytoplasm, PAD4 increases NLRP3 and ASC protein
levels post-transcriptionally, thus favoring NLRP3 inflammasome/ASC speck assembly. The NLRP3 inflammasome activates caspase-1, which is known to generate
the N-terminal fragment of GSDMD pore that facilitates nuclear expansion (49) and nuclear permeabilization (50). In addition to GSDMD, caspase-1 has many other
intracellular substrates (54) and therefore its activation could support the cytoskeletal and nuclear disassembly necessary for NETosis (12).
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cytosolic dsDNA, which is a characteristic of NETosis. These
observations by others may explain why residual ASC speck
formation is still observed in Nlrp3–/– (Figure 1E) or MCC950-
treated neutrophils (Figures 4B, C). Further investigations are
needed to determine the role of inflammasomes other than
NLRP3 in NETosis.

PAD4-dependent citrullination events are important
in NETosis (12, 15). PAD4 deficiency protects mice from
thrombosis, ischemia reperfusion injury, and age-related tissue
fibrosis (5, 15). The observation that NLRP3 is linked to similar
conditions and functional decline in aging (57, 58) suggested
to us that PAD4 could also be regulating the NLRP3
inflammasome. Indeed, we found an impaired ASC speck
formation in neutrophils from PAD4-deficient mice when
compared with wild-type neutrophils (Figure 2A). Recently, a
study was published showing that PAD enzymes were also
necessary for NLRP3/ASC speck formation in macrophages.
While Cl-amidine treatment fully inhibited ASC speck
formation, PAD4 deficiency alone, however, had no effect on
ASC speck formation (44) (Figure S3), showing that PAD4 is
more important in neutrophil inflammasome assembly than in
macrophages. These observations point to a compensatory effect
of other PAD enzymes in macrophages, such as PAD2, which is
the main PAD isoform in these leukocytes (59). Since post-
translational modifications such as phosphorylation,
ubiquitination, or the change in the charge of a single amino
acid are known to modify the oligomerization or stability abilities
of the NLRP3 inflammasome (60, 61), citrullination of arginine
residues by PAD4 could regulate NLRP3 inflammasome
oligomerization. Particularly, treatment with the calcium
ionophore ionomycin increases intracellular calcium levels and
thus likely induce the enzymatic activity of PAD4 with
subsequent citrullination of inflammasome components. The
same mechanisms is assumed for the potassium ionophore
nigericin, by indirectly increasing cytosolic calcium
concentrations with subsequent inflammasome activation (62).
Another way by which PAD4 could promote inflammasome
assembly is the upregulation of NLRP3 production (26, 43).
PAD4-dependent citrullination of the NFkB subunit p65 has
been described as a mediator of its nuclear translocation (63).
Thus, PAD4 elevation in disease (15) could regulate NLRP3 and
ASC protein levels in neutrophils and, when overexpressed, also
in iBMDMs, as we observed in our study (Figures 2B, 3C).
Although nigericin rarely induces caspase-1 activation in
unprimed macrophages and monocytes (64, 65), PAD4
overexpression results in LPS-independent inflammasome
activation upon stimulation with nigericin (Figures 3A, B)
without affecting IL-1ß mRNA levels (Figure S4C).
Remarkably, relative mRNA levels of ASC or NLRP3 were not
different in wild-type or PAD4-deficient neutrophils as well as in
empty vector or PAD4 overexpressing iBMDMs (Figures 2C,
3D). The post-transcriptional effect of PAD4 on NLRP3 and
ASC protein levels was further substantiated, as induction of
transcription by LPS priming showed similar ASC and NLRP3
protein levels between wild-type and PAD4-deficient neutrophils
(Figure S2D). Consequently, these findings show that the
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inflammasome protein levels are most likely regulated by an
increase in translation or a reduced clearance of NLRP3. Indeed,
it will be interesting to investigate the mechanism by which
citrullination controls NLRP3 inflammasome in the future.

We examined how NLRP3 deficiency impaired NETosis by
using time-lapse microscopy. This revealed that initiation of
NETosis appeared normal, including plasma membrane
vesiculation and nuclear rounding (45); however, following
rounding there was diminished rupture of the nuclear envelope
and, importantly, almost absent plasma membrane rupture
(Figures 4D, F). While GSDMD was shown to induce nuclear
membrane permeability in neutrophils, it has been suggested
that this could promote nuclear membrane breakdown (50).
However, plasma membrane rupture during pyroptotic cell
death is a well-established event of GSDMD activity after
inflammasome activation (51). Since we observed that plasma
membrane permeabilization occurs prior to plasma membrane
rupture in NETosis (12), inflammasome-dependent GSDMD
pore likely prepares the plasma membrane for rupture. In
neutrophils, subjected to sterile stimulation, this process is
NLRP3 dependent.

Our data point to an important connection between
inflammasome/ASC speck and NETosis (Figure 6) and
thereby possibly promoting inflammatory noninfectious
disorders. Diseases that are associated with increased PAD4
expression in neutrophils and elevated susceptibility to
NETosis could possibly be linked to elevated NLRP3
inflammasome assembly in both neutrophils and macrophages,
as we observed. Neutrophils from diabetic patients for instance
showed a four-fold increase in PAD4 levels leading to augmented
NETosis (7), and NLRP3 inflammasome is long well-known in
type 2 diabetes (66). PAD4-dependent NETosis is also a crucial
part of venous thrombosis (14). Thus it is not surprising that we
observed that NLRP3 deficiency also diminished venous
thrombosis (Figure 5). Moreover, considering the clinical
importance of excessive IL-1ß generation in a wide variety of
thrombo-inflammatory disorders, as shown by the CANTOS
trial (67, 68), PAD-dependent regulation of NLRP3 protein levels
could be an important mechanism in inflammasome-driven
diseases and makes PADs promising new targets in the therapy
of cardiovascular diseases (15, 69, 70).

It is likely that inflammasome-driven chronic diseases could
be promoted further by neutrophilic inflammasome, as we found
ASC speck expelled with extracellular chromatin on NETs
(Figure 1C). These ASC specks could be taken up by other
cells and propagate inflammation. Indeed, ASC has been
described as a “prionoid”, that, when phagocytosed by
macrophages, induce inflammasome assembly (27, 71, 72).

To conclude, here we have evaluated the link between
canonical inflammasome and NETosis in sterile environment
(Figure 6). Our results show inflammasome-dependent signaling
is part of NETosis and PAD4 regulates ASC speck formation.
These observations open many new avenues that may provide a
base for new approaches in the prevention and treatment of
inflammatory diseases. Finally, this work revealed additional
positive effects of known drugs in development. We show that
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an inhibitor of NLRP3 will also reduce the toxic effects of NETs
and propose that PAD inhibitors may improve inflammasome-
driven human disorders, including cardiovascular disease
and thrombosis.
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