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Pancreatic b-cell failure is a critical event in the onset of both main types of diabetes
mellitus but underlying mechanisms are not fully understood. b-cells have low anti-oxidant
capacity, making them more susceptible to oxidative stress. In type 1 diabetes (T1D),
reactive oxygen species (ROS) are associated with pro-inflammatory conditions at the
onset of the disease. Here, we investigated the effects of hydrogen peroxide-induced
oxidative stress on human b-cells. We show that primary human b-cell function is
decreased. This reduced function is associated with an ER stress response and the
shuttling of FOXO1 to the nucleus. Furthermore, oxidative stress leads to loss of b-cell
maturity genes MAFA and PDX1, and to a concomitant increase in progenitor marker
expression of SOX9 and HES1. Overall, we propose that oxidative stress-induced b-cell
failure may result from partial dedifferentiation. Targeting antioxidant mechanisms may
preserve functional b-cell mass in early stages of development of T1D.

Keywords: oxidative stress, beta-cell dysfunction, beta-cell identity, beta-cell dedifferentiation, type 1 diabetes
mellitus (T1D)
INTRODUCTION

Type 1 diabetes (T1D) is a chronic autoimmune disease caused by T cell-mediated destruction of
pancreatic insulin-producing b-cells (1–3). Autoimmune recognition of b-cell antigens leads to
decreased b-cell mass and the subsequent decline of insulin-mediated regulation of glucose levels in
the blood eventually results in chronic hyperglycemia and T1D.

Oxidative stress has been implicated in the onset of b-cell failure in T1D (4–6). Plasma levels of
oxidative stress markers such as malondialdehyde and protein carbonyl groups are increased upon
early onset of T1D and are even higher by early adulthood (7). Oxidative stress occurs when reactive
oxygen species (ROS) levels overcome antioxidant defenses. In physiological conditions, ROS, a by-
product of mitochondrial metabolism, act as signaling molecules for glucose-stimulated insulin
secretion in b-cells. b-cells have been shown to be particularly sensitive to oxidative stress when
compared to other islet cell types, as they display low levels of antioxidant enzymes such as
superoxide dismutase, glutathione peroxidase, and catalase (8–10).

In recent years, loss of b-cell identity has been proposed as a new mechanism underlying the b-
cell failure that is central to the onset and development of diabetes mellitus (11). Alterations in b-cell
identity impact their functionality, as indicated by a decreased expression of key b-cell markers such
org November 2021 | Volume 12 | Article 6903791
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as MAFA, and genes involved in glucose-stimulated insulin
secretion such as the glucose transporter Slc2a2 (GLUT2) (12).
The concept of b-cell identity loss is strongly supported by
experiments performed in murine models and based on
lineage-tracing of b-cells. Most of these in vitro and in vivo
experiments involve genetic manipulations (13). Forced deletion
of the b-cell-specific transcription factor FOXO1 converts adult
murine b-cells into cells with an a-cell, d-cell or pp-cell
phenotype (11). The loss of PDX1, NKX6.1, PAX6 or NKX2.2
leads to b-cells gaining a-cell (14), d-cell (15), ϵ-cell (16) or
polyhormonal cell (17) characteristics, respectively. Additionally,
inducing hyperglycemia in mice triggers b-cells to start
expressing glucagon (18) or the non-endocrine peptide
hormone gastrin (19). Hyperglycemia also leads to b-cell
dedifferentiation in mice, as shown by the loss of key genes
responsible for b-cell identity and function (11, 16). Data on
human b-cell identity loss, on the other hand, remain scarce and
mainly descriptive, based on histological analyses performed on
donor-derived pancreatic tissue sections. In samples from T1D
individuals, there is an increased frequency of hormone-negative
endocrine cells (that express none of the islet hormones but that
do express the endocrine marker chromogranin A) (20). We
reported an eight times increased frequency of insulin-positive
cells co-expressing glucagon and a five times increased frequency
of NKX6.1-positive, insulin-negative cells co-expressing
glucagon in donors with type 2 diabetes compared to the
control group (21). We also found an increased proportion of
a- and b-cells expressing the mesenchymal protein vimentin in
islets from T2D individuals, indicating phenotypic plasticity in
the form of an epithelial-to-mesenchymal transition (22).
Furthermore, pancreatic sections of T2D donors contain
insulin-depleted, degranulated b-cells (23) and show a higher
portion of endocrine cells expressing none of the typical
endocrine cell markers insulin, glucagon, somatostatin or
pancreatic polypeptide (24). Although the concept of b-cell
identity loss in diabetes is gaining ground, its underlying
mechanisms remain unclear.

Here, we investigate the effects of hydrogen peroxide-induced
oxidative stress on human b-cell function and identity to
characterize the underlying molecular mechanisms of b-cell
failure in diabetes.
MATERIALS AND METHODS

Primary Human Islets and Human
b-Cell Line
Pancreata were obtained from cadaveric human organ donors.
Human islet isolations from 16 non-diabetic donors (see
Supplemental Table 1) were performed in the Good
Manufacturing Practice facility of our institute (25). Islets were
used for research only if they could not be used for clinical
purposes and if research consent was present, according to
Dutch national laws. Islets with a purity of at least 80% were
cultured in regular CMRL 1066 medium (5.5 mmol/L glucose)
containing 10% fetal calf serum, 20mg/mL ciprofloxacin, 50mg/mL
Frontiers in Immunology | www.frontiersin.org 2
gentamycin, 2 mmol/L L-glutamin, 10 mmol/L HEPES, and
1.2 mg/mL nicotinamide. Islets were maintained in culture at
37°C in 5% CO2-humidified atmosphere and medium was
refreshed the day after isolation and every two days thereafter.

EndoC-bH1 cells (26) were obtained from Univercell
Biosolutions and were cultured in low glucose DMEM
supplemented with 5.5 mg/ml human transferrin, 10 mM
nicotinamide, 6.7 ng/ml selenit, 2% BSA fraction V, 100 units/
ml penicillin, 100 mg/ml streptomycin and 50 mM b-
mercaptoethanol. Cells were seeded in pre-coated culture
plates containing ECM with fibronectin, maintained in culture
at 37°C in 5% CO2-humidified atmosphere and passaged once
a week.

Hydrogen Peroxide Treatment
Hydrogen peroxide (H2O2, Sigma) was diluted in culture
medium to prepare a stock solution of 10 M. The stock
solution was then further diluted in culture medium to obtain
the final concentrations. Human islets or EndoC-bH1 cells were
treated with either 50 µMH2O2 for 24 hours or 200 µMH2O2 for
90 minutes (with a washing-out period of 22.5 hours afterwards)
with read-outs performed 24 hours after the start of the
treatment with H2O2, unless stated otherwise in the figure
legends. A schematic overview of the experimental setup is
shown in Supplementary Figure 1A . For inhibitory
experiments, human islets or EndoC-bH1 cells were pre-
incubated overnight with tauroursodeoxycholic acid (TUDCA,
Millipore) prior to the H2O2 treatments as shown in
Supplementary Figure 1A, as well as co-incubated together
with H2O2 for the duration of the treatments. TUDCA was
dissolved in water to prepare a stock solution, which was then
further diluted in culture medium to obtain the final
concentration of 1 mM.

FDA/PI Staining
An FDA/PI staining was performed to assess the viability of
human islets or EndoC-bH1 cells after H2O2 treatment. A
staining solution was prepared by diluting an FDA stock
solution (5 mg/mL, consisting of fluorescein diacetate (Sigma)
and aceton) and a PI stock solution (2 mg/mL, consisting of
propidium iodide (Sigma) and PBS) in culture medium without
fetal calf serum. Human islets or EndoC-bH1 cells were washed
once with PBS and staining solution was added for
approximately 5 minutes in the dark at room temperature.
Thereafter, human islets or EndoC-bH1 cells were washed with
PBS and imaging was done using the EVOS (Invitrogen).

Glucose-Stimulated Insulin
Secretion (GSIS)
Approximately 50 IEQ per well were placed in a 96-well
transwell plate. Islets were preincubated for 90 minutes in low
(1.67 mmol/L) glucose-containing KRBH (Krebs-Ringer
Bicarbonate Hepes) buffer (11.5 mmol/L NaCl, 0.5 mmol/L
KCl, 2.4 mmol/L NaHCO3, 2.2 mmol/L CaCl2, 1 mmol/L
MgCl2, 20 mmol/L HEPES, and 0.2% human serum albumin)
at pH 7.4. Islets were subsequently transferred to low (1.67
November 2021 | Volume 12 | Article 690379
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FIGURE 1 | Oxidative stress leads to loss of b-cell function associated with a b-cell stress response. To evaluate the effect of oxidative stress on b-cell function and
stress response, primary human islets (blue graphs) or EndoC-bH1 cells (red graphs) were treated with hydrogen peroxide (H2O2). (A) Treatment of human islets with
100 mM H2O2 for 90 minutes, assessed after 72 hours, leads to shuttling of the transcription factor FOXO1 from its normal cytoplasmic localization to the nucleus, as
seen in the magnifications in the panels on the right. Nuclear FOXO1 translocation (as assessed by the overlap of FOXO1 and Hoechst staining) occurred in 94% of
cells after H2O2 treatment, compared to 5% of cells in the untreated condition. (B) H2O2-induced oxidative stress in human islets leads to decreased glucose-
stimulated insulin secretion. GSIS was performed 24 hours after the start of the 90min 200 mM H2O2 treatment or immediately after the 24h 50 mM H2O2 treatment.
(C) Daily treatment of EndoC-bH1 cells with 100 mM H2O2 for 90 minutes, assessed after 72 hours, leads to shuttling of the transcription factor FOXO1 from its
normal cytoplasmic localization to the nucleus. (D) Oxidative stress induction in EndoC-bH1 cells by treatment with 50 mM H2O2 for 24 hours and 200 mM H2O2 for
90 minutes leads to increased mRNA expression levels of the unfolded protein response-related genes XBP1s/XBP1u, ATF3 and CHOP as measured by qPCR.
(E) Oxidative stress induction in EndoC-bH1 cells by treatment with 50 mM H2O2 for 24 hours leads to a decreased mRNA expression level of the mitochondrial
enzyme SOD2 as measured by qPCR. Data are presented as means ± SEM of fold change over untreated control islets (blue graphs) or EndoC-bH1 cells (red
graphs). n = 3-8 donors/batches; each data point represents one donor/batch. *p < 0.05, **p < 0.01, ***p < 0.0005, ****p < 0.0001 vs. untreated control islets/
EndoC-bH1 cells as determined by an unpaired Student’s t test on the stimulation indices (for the glucose-stimulated insulin secretion data) or a paired Student’s t
test on the dCT values (for the qPCR data). Black circles = untreated control islets/EndoC-bH1 cells, upward-pointing triangles = H2O2-treated islets/EndoC-bH1
cells (50 mM 24h), downward-pointing triangles = H2O2-treated islets/EndoC-bH1 cells (200 mM 90min). h = hours, min = minutes, H2O2 = hydrogen peroxide.
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mmol/L) glucose-containing buffer for 1 hour and then to high
(17 mmol/L) glucose-containing buffer for 1 hour. Insulin
secretion was assessed using a human insulin ELISA kit
(Mercodia) following the manufacturer’s instructions. In
addition, insulin content of the lysed human islets that were
used for the glucose-stimulated insulin secretion assay was
measured using the same human insulin ELISA kit. To
determine basal insulin secretion levels, the insulin secretion
was corrected for the amount of DNA present in the lysed
human islets that were used for the glucose-stimulated insulin
secretion assay. DNA content was measured using a Quant-iT
PicoGreen dsDNA assay kit (Thermo Fisher Scientific) following
the manufacturer’s instructions.

Immunofluorescence Microscopy
Human islets and EndoC-bH1 cells were fixed with 4%
paraformaldehyde for 10 minutes, permeabilized using 0.5%
triton-X for 15 minutes and blocked using goat serum for 15
minutes. Primary and secondary antibodies (Alexa Fluor,
Thermo Fisher Scientific) diluted in buffer containing 5%
bovine serum albumin were sequentially incubated for 1 hour.
After counterstaining with Hoechst (BD), samples were mounted
using DABCO-glycerol on microscopy slides and confocal
imaging was done using the SP8 WLL (Leica). A primary
antibody against FOXO1 (Cell Signaling Technology, 2880)
was used. Manual counting was performed using ImageJ to
assess the overlap of nuclear FOXO1 and Hoechst.

RNA Isolation and Quantitative PCR
Human islets or EndoC-bH1 cells were washed in PBS. Total
RNA was extracted using (Micro) RNeasy kit (Qiagen) according
to the manufacturer’s instructions and the concentration was
determined using NanoDrop (Thermo Fisher Scientific). Total
RNA was reverse transcribed using M-MLV reverse transcriptase
(Invitrogen) and oligo(dT). Quantitative PCR was performed in
a CFX system (Bio-Rad). Fold change was calculated using the
delta delta CT method with human b-actin or GAPDH as
reference gene. Primers used are listed in Supplemental Table 2.

Western Blot
Human islets were washed with cold PBS and lysed using
Laemmli sample buffer (60 mmol/l tris pH 6.8, 10% glycerol,
Frontiers in Immunology | www.frontiersin.org 4
1% SDS, 0.001% blue bromophenol and 5% b-mercaptoethanol).
Protein content in the supernatant was quantified using a BCA
assay and immunoblotted with antibodies MAFA (Bethyl, A700-
067), PDX1 (Abcam, AB47267) and SOX9 (Cell Signaling
Technology, 82630S). HRP-conjugated secondary antibodies
were used and the signal was developed using enhanced
chemiluminescent substrate. The bands were quantified using
ImageLab software (BioRad).

Statistical Analysis
All data are expressed as means ± SEM, unless stated otherwise.
For analysis of qPCR data, statistical significance of differences
between two groups was determined by a paired or unpaired
Student’s t test on the delta CT values calculated from the
reference gene (b-actin or GAPDH) and the gene in question.
A P value below 0.05 was considered statistically significant.
RESULTS

Oxidative Stress Leads to Loss of b-Cell
Function Associated With a b-Cell
Stress Response
To assess the effect of oxidative stress on human b-cell function,
we treated primary human islets with 50 mM H2O2 for 24 hours,
or with 200 mM H2O2 for 90 minutes followed by a wash-out
period of 22.5 hours (Supplementary Figure 1A). These
conditions were chosen because they have been shown to
induce an oxidative stress response in pancreatic b-cells with
limited cytotoxicity (27–29) and the objective of this study was to
investigate the identity of the cells surviving oxidative stress. We
monitored the potential toxicity of the H2O2 treatments on
primary human islets with an FDA/PI staining performed at
the end of the treatments (Supplementary Figure 1B) and
relative RNA content was determined as indirect measurement
of cell number (Supplementary Figure 1C). Although we found
a decrease in relative RNA content in the 200 mM H2O2

condition in particular, we also confirmed a high viability of
the remaining cells at t=24h, the main endpoint in this study.

We validated the effect of H2O2 in human islets by showing a
shuttling of the transcription factor FOXO1 from its normal
November 2021 | Volume 12 | Article 690379
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cytoplasmic localization to the nucleus upon H2O2 treatment
(Figure 1A), a known adaptation response to oxidative stress
(30). Nuclear FOXO1 translocation occurred in 94% of cells after
H2O2 treatment, compared to 5% of cells in the untreated
condition. Furthermore, glucose-stimulated insulin secretion
(GSIS) displayed a 30% reduction in the 50 mM H2O2

condition and a 45% decrease after treatment with the 200 mM
H2O2 condition, as compared to the untreated control condition
(Figure 1B), indicating impaired b-cell function. Basal
insulin secretion of the islets that were used for the GSIS assay
was not significantly altered after both H2O2 treatments
(Supplementary Figure 1D).

In order to evaluate the effect of oxidative stress on b-cells
specifically, we used the human b-cell line EndoC-bH1 as a
model. H2O2-induced oxidative stress induced some significant
cell death on these cells as reflected by reduced relative RNA
content at the end of both treatments (Supplementary
Figure 1F). Yet, as for human islets, we found a high viability
of the remaining cells at t=24h (Supplementary Figure 1E). We
also observed a shuttling of FOXO1 from the cytoplasm to the
nucleus (Figure 1C). Furthermore, we found an increased
expression of the typical ER stress markers XBP1s/XBP1u,
ATF3 and CHOP (Figure 1D) that correlated with a reduced
expression of the mitochondrial enzyme SOD2 (manganese
superoxide dismutase) (Figure 1E), which may indicate a
failure in the adaptive mechanism to oxidative stress.

Collectively, these data indicate that oxidative stress leads to
reduced b-cell function associated with a b-cell stress response.
Oxidative Stress Leads to Loss of b-Cell
Maturity Markers and a Concomitant
Increase in Progenitor Marker Expression
We next hypothesized that oxidative stress could alter b-cell
identity, as a potential mechanism allowing these cells to survive.
We first determined the effect of oxidative stress induction on
key b-cell genes in primary human islets. At 24 hours after the
start of a 90min treatment with H2O2, gene expression of the
maturity marker MAFA was strongly decreased, both at mRNA
(Figure 2A) and protein level (Figure 2B). Similarly, gene and
protein expression of the key transcription factor PDX1 was
reduced by over 60% (Figures 2A, B). A similar trend was
observed 24h after treatment with 50 mM H2O2 (Figure 2A), as
well as for the gene expression of insulin, of the regulator of b-
cell fate PAX4 and of the key b-cell transcription factor NKX6.1
(Figure 2A). Other b-cell-related genes that were noticeably
decreased after treatment with 200 mM H2O2 for 90 minutes,
were KIR6.2, MAFB, FOXA2, PAX6, NKX2.2 and NEUROD1
(Figure 2A). Gene expression of the glucose transporter GLUT1,
which plays an important role in b-cell glucose metabolism, was
also decreased after treatment with 200 mMH2O2 for 90 minutes,
partly explaining the impaired function shown in Figure 1A.

We confirmed these findings in EndoC-bH1 cells, in which
gene expression of MAFA, PDX1, PAX4, NKX6.1, insulin,
KIR6.2, MAFB, FOXA2, PAX6, NKX2.2, NEUROD1 and
GLUT1 was reduced upon H2O2 treatment (Figure 2C).
Frontiers in Immunology | www.frontiersin.org 5
Reduced MAFA and PDX1 expression was also validated at
protein level (Figure 2D).

Next, we assessed the effect of oxidative stress on endocrine
progenitor markers in b-cells. Strikingly, gene expression of
SOX9 and HES1 was increased by 50% and 60% after 24h
treatment with 50 mM H2O2, and up to 8- and 6-fold increased
after 90min treatment with 200 mM H2O2, respectively
(Figure 2E). The increased SOX9 gene expression in EndoC-
bH1 cells was confirmed on the protein level in primary human
islets (Figure 2F).

Altogether, these data show that oxidative stress results in
severe alterations in b-cell maturity marker expression,
associated with increased expression of progenitor markers,
indicating b-cell dedifferentiation as a response to oxidative stress.

TUDCA Partially Inhibits Oxidative Stress-
Induced Detrimental Effects
Finally, we hypothesized that oxidative stress-induced
detrimental effects on b-cells were partly resulting from ER
stress. We targeted the ER stress response by using
tauroursodeoxycholic acid (TUDCA), a chemical chaperone
that is known to attenuate ER stress and prevent unfolded
protein dysfunction (31, 32). Primary human islets were pre-
incubated overnight with 1 mM TUDCA prior to the H2O2

treatments, as well as co-incubated together with H2O2 for the
duration of the treatments. As expected, oxidative stress reduced
gene expression of MAFA, MAFB, KIR6.2, PAX6, NKX2.2,
NEUROD1 and GLUT1 (Figure 3A). Interestingly, this effect
was partially or completely prevented by TUDCA treatment
(Figure 3A). This was confirmed on the protein level for
MAFA (Figure 3B).

Collectively, these findings are in line with our proposed
model that oxidative stress-induced ER stress is a key factor in
altered b-cell identity, and therefore function.
DISCUSSION

Our study demonstrates that oxidative stress leads to loss of b-
cell function that is associated with a stress response and
evidence of dedifferentiation, as indicated by the loss of b-cell
maturity markers and the upregulation of endocrine
progenitor markers.

Our finding that b-cell function is decreased upon oxidative
stress is supported by studies performed in animal b-cell lines,
where the decreased insulin gene expression that follows
supraphysiologic concentrations of glucose is prevented by
antioxidant treatment, suggesting the involvement of oxidative
stress in b-cell failure (33).

We observed that reduced human b-cell function is associated
with shuttling of FOXO1 to the nucleus, which has been shown
to protect murine b-cells from oxidative stress by increasing the
expression of NeuroD and MAFA (34). On the other hand, we
found the gene expression of the mitochondrial enzyme SOD2 to
be downregulated upon H2O2 treatment. Since SOD2 functions
as an antioxidant, its reduced expression could lead to excessive
November 2021 | Volume 12 | Article 690379
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FIGURE 2 | Oxidative stress leads to loss of b-cell maturity markers and a concomitant increase in progenitor marker expression. To evaluate the effect of oxidative
stress on b-cell maturity markers and progenitor markers, primary human islets (blue graphs) or EndoC-bH1 cells (red graphs) were treated with hydrogen peroxide
(H2O2). (A) Oxidative stress induction in human islets by treatment with 200 mM H2O2 for 90 minutes leads to decreased mRNA expression levels of the b-cell-
specific genes MAFA, PDX1, KIR6.2, MAFB, FOXA2, PAX6, NKX2.2, NEUROD1 and GLUT1 as measured by qPCR. (B) The level of b-cell-specific protein MAFA is
decreased in human islets upon treatment with 200 mM H2O2 for 90 minutes as measured by Western blot. (C) Oxidative stress induction in EndoC-bH1 cells by
treatment with 50 mM H2O2 for 24 hours and 200 mM H2O2 for 90 minutes leads to decreased mRNA expression levels of the b-cell-specific genes MAFA, PDX1,
PAX4, NKX6.1, insulin, KIR6.2, MAFB, FOXA2, PAX6, NKX2.2, NEUROD1 and GLUT1 as measured by qPCR. (D) The level of b-cell-specific proteins MAFA and
PDX1 is decreased in EndoC-bH1 cells upon treatment with 200 mM H2O2 for 90 minutes as measured by Western blot. (E) Oxidative stress induction in EndoC-
bH1 cells by treatment with 50 mM H2O2 for 24 hours and 200 mM H2O2 for 90 minutes leads to increased mRNA expression levels of the progenitor cell-specific
genes SOX9 and HES1 as measured by qPCR. (F) The level of progenitor cell-specific protein SOX9 is increased in human islets upon treatment with 200 mM H2O2

for 90 minutes as measured by Western blot. Data are presented as means ± SEM of fold change over untreated control islets (blue graphs) or EndoC-bH1 cells (red
graphs). n=1-10 donors/batches; each data point represents one donor/batch. *p < 0.05, **p < 0.01, ***p < 0.0005, ****p < 0.0001 vs. untreated control islets/
EndoC-bH1 cells as determined by a paired Student’s t test on the dCT values. Black circles = untreated control islets/EndoC-bH1 cells, upward-pointing triangles =
H2O2-treated islets/EndoC-bH1 cells (50 mM 24h), downward-pointing triangles = H2O2-treated islets/EndoC-bH1 cells (200 mM 90min). h = hours, min = minutes,
H2O2 = hydrogen peroxide.
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ROS, which is known to suppress b-cell mitochondrial activity
and other components of the insulin secretion pathway, thereby
leading to b-cell dysfunction (35–37).

Oxidative stress-induced altered b-cell function was also
associated with an ER stress response, as shown by the
upregulation of the ER-stress-related genes XBP1s/u (38),
ATF3 (39) and CHOP (40). Activation of the unfolded protein
response (UPR) is involved in the preservation of b-cell survival
and function (41). However, in case of persistent or severe ER
stress as in T1D, UPR activation leads to the opposite cell fate, i.e.
b-cell dysfunction and death (42–44). In our study, both the
FOXO1 shuttling and the initial ER stress response upon H2O2

treatment may represent attempts to protect b-cells from
oxidative stress-induced damages.

Oxidative stress leads to loss of the maturity genes MAFA and
PDX1 in human b-cells. We recently described a similar
adaptation in primary human islets in a model of drug-
induced diabetes (45). In addition, these findings are in line
with earlier studies in rodent b-cell lines or islets that link
oxidative stress to alterations in b-cell identity, through
reduced expression of the key b-cell transcription factors
PDX1, NKX6.1 and MAFA (46–49). Additionally, reduced
nuclear MAFA expression found in islets of diabetic db/db
mice is restored by overexpression of the antioxidant enzyme
endogenous glutathione peroxidase-1 (GPX1) (49, 50). Likewise,
decreased nuclear expression of PDX1 and MAFA seen in islets
of diabetic ZDF rats is prevented by treatment with ebselen, a
GPX mimetic (51). Most of these studies were performed in
rodent islets or cell lines, whereas our study confirms the link
between oxidative stress and the decrease in maturity markers in
primary human b-cells. Besides MAFA and PDX1, gene
expression of other important regulators of b-cell maturity and
identity, such as MAFB (52), PAX6 (16), NKX2.2 (53) and
NEUROD1 (54) were also decreased upon H2O2 treatment,
further indicating the link between oxidative stress and altered
b-cell identity. Decreased expression of key regulators of glucose
sensing and insulin secretion, such as GLUT1 (55), FOXA2 (56)
and KIR6.2 (57) after H2O2 treatment could explain the impaired
b-cell function upon oxidative stress.

In parallel to the downregulation of key b-cell genes, we
observed a concomitant increase in SOX9 and HES1 expression
in EndoC-bH1cells. Increased progenitor cell marker expression
(alongside decreased b-cell markers) was previously shown in
FGF2- and viral infection-induced dedifferentiation models in
EndoC-bH1 cells (58, 59). Similarly, upregulated progenitor
markers have been shown in rat pancreatic islets treated with
hydrogen peroxide, as seen by the increased expression of C-
MYC (60), a transcription factor known to inhibit b-cell
differentiation (61, 62).

The decreased expression of b-cell maturity genes and the
increased expression of progenitor cell markers could indicate that
oxidative stress-induced b-cell failure may result from partial
dedifferentiation. It is proposed that dedifferentiation might be a
way for b-cells to escape from immune-mediated destruction.
A study performed in the NOD mouse model indicates
that under inflammatory stress, a subpopulation of b-cells
Frontiers in Immunology | www.frontiersin.org 8
decreases its characteristics of mature b-cells while displaying
increased stemness-like features to escape from T-cell-mediated
death (63). Furthermore, Lee et al. reported that the loss of b-cell
maturity genes (induced by b-cell-specific IRE1a deletion)
prevents insulitis, the autoimmune destruction of b-cells and
therefore the development of diabetes in NOD mice (64).

We observed that the chemical chaperone TUDCA partially
prevents the decrease of b-cell markers such as MAFA, MAFB
and PAX6 upon oxidative stress. TUDCA is known to alleviate
ER stress in b-cells (65, 66). Additionally, TUDCA has been
shown to have anti-oxidant capacities in certain neurological
disorders (67, 68). Our findings indicate that oxidative stress-
induced ER stress could be a key factor in altered b-cell identity.

In this study, we focused specifically on human b-cells. The
impact of oxidative stress on human a-cell identity and function
remains to be elucidated, which could potentially be a future
focus area. Overall, we propose that oxidative stress-induced b-
cell failure may result from partial dedifferentiation, which may
be an adaptive mechanism for cells to survive. Targeting
antioxidant mechanisms could be an important step in
preserving functional b-cell mass in T1D.
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Supplementary Figure 1 | Schematic overview of the experimental setup and
validation of the H2O2 treatments. (A) Primary human islets or EndoC-bH1 cells were
treated with 50 mM H2O2 for 24 hours or with 200 mM H2O2 for 90 minutes.
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After 90 minutes (t = 90min), the 200 mMH2O2 was washed away and new medium
without H2O2 was added to the islets or cells. At 24 hours after the start of both
treatments (t = 24h), all conditions were harvested for the readouts. (B) Viability of
human islets after H2O2 treatments was assessed at t = 24h by FDA/PI staining.
(C) Relative RNA content of human islets after H2O2 treatments was measured at
t = 24h. (D) The basal insulin secretion levels of the islets that were used in the
glucose-stimulated insulin secretion assay are unaltered after both H2O2 treatments.
(E) Viability of EndoC-bH1 cells after H2O2 treatments was assessed at t = 24h by
FDA/PI staining. (F) Relative RNA content of EndoC-bH1 cells after H2O2 treatments
was measured at t=24h. Data are presented as means ± SEM over untreated
control islets (blue graphs) or EndoC-bH1 cells (red graphs). n = 3-12 donors/batches;
each data point represents one donor/batch. **p < 0.01, ****p < 0.0001 vs.
untreated control islets/EndoC-bH1 cells as determined by an unpaired Student’s t
test on the RNA concentrations. Black circles = untreated control islets/EndoC-bH1
cells, upward-pointing triangles = H2O2-treated islets/EndoC-bH1 cells (50 mM
24h), downward-pointing triangles = H2O2-treated islets/EndoC-bH1 cells (200 mM
90min). h = hours, min = minutes, H2O2 = hydrogen peroxide, FDA = fluorescein
diacetate, PI = propidium iodide.
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