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The meningeal lymphatic vessels (mLVs) in central nervous system (CNS) have been
validated by rodent and human studies. The mLVs play a vital role in draining soluble
molecules and trafficking lymphocytes, antigens and antibodies from CNS into cervical
lymph nodes (CLNs). This indicates that mLVs may serve as a link between the CNS and
peripheral immune system, perhaps involving in the neuroinflammatory disease. However,
the morphology and drainage function of mLVs in patients with neuroinflammatory
disease, such as neuromyelitis optica spectrum disorders (NMOSD), remains
unexplored. Using the dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI), we found that slower flow through mLVs along superior sagittal sinus in NMOSD
patients with acute attack instead of NMOSD patients in chronic phase. The reduced flow
in mLVs correlated with the disease severity evaluated by expanded disability status scale
(EDSS). The receiver operating characteristic curve (ROC) indicated DCE-MRI might
provide objective evidence to predict the acute relapse of NMOSD through evaluating the
function of mLVs. Promoting or restoring the function of mLVs might be a new target for
the treatment of NMOSD relapse.

Keywords: meningeal lymphatic vessels, neuromyelitis optica spectrum disorders, acute relapse, DCE-MRI,
superior sagittal sinus
INTRODUCTION

The lymphatic system is an extensive drainage network of tissues, vessels, and organs that transports
lymph throughout the body. It is becoming increasingly clear that the lymphatic system plays an
integral role in immunity by removing inflammatory mediators, directing immune cell trafficking
and coordinating immune responses (1–3). The central nervous system (CNS) is considered an
immune-privileged organ, mainly due to the absence of conventional lymphatic vasculature (4, 5).
However, meningeal lymphatic vessels (mLVs) have been identified and recognized as the CNS
lymphatic system in both rodents and humans (6–8). The discovery of mLVs provides a route for
drainage of macromolecules and immune cells trafficking from CNS directly into the deep cervical
lymph nodes (CLNs) (9, 10).
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Recently, increasing evidences show that mLVs might be
involved in regulating immune response and be associated
with neuroinflammatory disease. Studies suggest that mLVs
could deliver the autoantigens from CNS into CLNs and
induce immune response in CNS (9, 11). Furthermore,
decreasing the lymphatic drainage under neuroinflammatory
conditions could diminish acquisition of encephalitogenic
properties by antigen-specific T cells and ameliorate clinical
symptoms of mice with experimental autoimmune
encephalomyelitis (EAE, an animal model of multiple
sclerosis) (10).

Neuromyelitis optica spectrum disorders (NMOSD) is a
severe neuroinflammatory, demyelinating disease of CNS with
repeated recurrence and poor prognosis (12). It is characterized
by the serum antibodies that targeted the water channel
aquaporin-4 (AQP4–immunoglobulin G [IgG]), which mainly
affects the brain, optic nerves and spinal cord (13, 14). However,
a subset of NMOSD patients were with negative-AQP4 antibody
and positive-myelin oligodendrocyte glycoprotein (MOG)
antibody, and those patients have distinct clinical features,
fewer relapses, and better recovery than patients with positive-
AQP4 antibody (15, 16). As NMOSD patients with positive-
AQP4 antibody were considered to be more readily to relapse
than patients with negative-AQP4 antibody (100% vs. 81.5%)
(17), it is meaningful to investigate the meningeal lymphatic
drainage in these patients and explore the potential target to
alleviate and prevent relapse.

NMOSD with positive-AQP4 antibody is a demyelinating
disease in CNS which pathogenetic AQP4-IgG mediates and
complement participates. Previous vitro studies have showed
that binding of AQP4-IgG to AQP4 could initiates complement
activation, disruption of both water and glutamate homeostasis
(18), astrocyte toxicity (19), membrane lesioning (20, 21),
promotion of the migration of granulocytic leukocytes and
natural killer cell, and increase of the permeability of the
endothelial barrier to plasma proteins (19, 22). Thus, clearing
the AQP4 antibody from CNS effectively is another way to
prevent the acute exacerbation or relapse of NMOSD. As the
mLVs might play an important role in draining immune
associated cells, antigens, and antibodies from CNS to
peripheral immune system (10), one cannot help but wonder
whether the drainage dysfunction of the mLVs is associated with
the development of NMOSD. However, there is no direct
evidence that meningeal lymphatic flow is measured in
NMOSD patients through noninvasive method. The only EAE
animal model showed that the decreased lymphatic drainage was
related to the clinical phenotype of the animal model (10).

In 2017, the visualization of mLVs around superior sagittal sinus
(mLVs-SSS) in human and nonhuman primates has been validated
noninvasively in vivo by high-resolution MRI scans (23). The
clearance of contrast agent in putative mLVs were also evaluated
by the head high-resolution T2 fluid-attenuation inversion recovery
(T2 flair) imaging discontinuously (24). We have recently assessed
the mLVs-SSS flow in patients with idiopathic Parkinson’s disease
or atypical Parkinsonian disorders using the dynamic contrast-
enhanced MRI (DCE-MRI) (25), which may also be useful to
Frontiers in Immunology | www.frontiersin.org 2
measure abnormal mLVs flow in neuroinflammatory diseases.
Here we used DCE-MRI to evaluate the mLVs-SSS flow
quantitatively in NMOSD patients with acute attack (ANMOSD),
NMOSD patients in chronic phase (CNMOSD), and normal
control (NC).
MATERIALS AND METHODS

Approval and Patient Informed Consent
This study was authorized by the Institutional Ethics
Committees of The First Affiliated Hospital of Zhengzhou
University and written informed consent was obtained from all
the subjects.

Participants
Healthy participants were recruited from the Physical
Examination Center of the First Affiliated Hospital of
Zhengzhou University. All the healthy participants were in
good health evaluated by the physical examination,
the laboratory and imaging examination, including the blood
routine, urine routine, liver and kidney function, blood glucose
and lipids, thyroid function tests, MRI and magnetic resonance
angiography scans. All healthy participants were confirmed to be
free of neurological and psychiatric disorders, as determined by
two attending neurologists and a psychiatrist.

All 68 NMOSD patients were collected from Neurology
department of the First Affiliated Hospital of Zhengzhou
University from March 2019 to September 2020. All patients
included in this study had to meet the following inclusion
criteria: (1) diagnosis of NMOSD according to the 2015
International Panel diagnostic criteria for NMOSD with
AQP4-IgG (26); (2) CSF positive for AQP4-antibodies; (3) age
above 18 years at disease onset; (4) without contraindications for
MRI examination; (5) without adverse reaction to gadobutrol
and normal renal function; (6) written informed consent.
Exclusion criteria were as follows; (1) diagnosis of other type
of acquired demyelinating syndromes, such as MS or an
infectious, metabolic, vascular, or neoplastic CNS diseases; (2)
with contraindications for MRI examination; (3) with adverse
reaction to gadobutrol or abnormal renal function. All patients
were test for CSF AQP4-IgG using cell-based assay. All patients
were interviewed and examined by two board-certified
neurologists who had experience with autoimmune diseases.
Seven patients were excluded from the research because of
discomfort during MRI scans or blurred images, and a total of
61 NMOSD patients whose MRI data were finally analyzed in
this study, including 32 ANMOSD patients and 29 CNMOSD
patients. The Expanded Disability Status Scale (EDSS) was used
to quantify the disability of NMOSD patients. The EDSS steps 1.0
to 4.5 refer to NMOSD patients who were able to walk without
any aid, while the EDSS steps 5.0 to 9.5 are defined as NMOSD
patients who were with the impairment to walking. Thus, the
patients in the ANMOSD were divided into I-ANMOSD (EDSS
≤ 4.5) group and II-ANMOSD (EDSS > 4.5) group. As the EDSS
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scores of CNMOSD patients were mostly less than 5.0, so the
CNMOSD patients were not divided into two groups.

Imaging Procedures
All examinations were performed on a 3-Tesla MRI unit (Skyra,
Siemens Healthcare, Erlangen, Germany) with 20-channel head-
neck gradient coil for radiofrequency transmission. The
suggested dosing (0.1 mmol/kg) of gadobutrol (Gadovist, Bayer
Pharma AG, Berlin, Germany) was injected intravenously, using
an automatic high-pressure syringe (Spectris MRI Injector
System, Medrad, Indianola, PA, USA).

The MRI protocol included the following:

1) DCE-MRI acquisitions:

In order to evaluate the mLVs-SSS flow, DCE-MRI of the
mLVs-SSS, including left, right, and lower mLVs-SSS (L-
mLVs-SSS, R-mLVs-SSS, and Lo-mLVs-SSS), was performed
after the injection of gadobutrol. The standard 2D T1 black-
blood sequences were employed in the DCE-MRI
acquisitions in each participant, and each series lasted
16.78 s and contained three contiguous slices with 3 mm
thickness. The following parameters in this sequence were as
follows: coronal 2D acquisition, repetition time/echo time
(TR/TE) = 700/11 ms, field of view (FOV) 170 mm,
acquisition matrix 154 × 192, voxel size 0.9 × 0.9 × 3.0
mm3, acquisition time 6 min 26 s.

For the location of mLVs-SSS, the axis perpendicular to the
tangent line of SSS and passing through the posterior edge of
the corpus callosum was drawn as the mid-sagittal axis. The
coronal plane in line with the mid-sagittal axis was
determined as the standard central coronal plane. MRI
scans were moved forward or backward from the standard
coronal plane by 2.0 mm to acquire three coronal planes.

2) High-resolution MRI sequences:

Thirty minutes after injection of gadobutrol, each individual
underwent three high resolution MRI scans consecutively at
one time, including 2D T1 black-blood, 3D T1 black-blood,
and 3D T2 flair scans. The cross-sectional areas of mLVs-SSS
were measured using the three high-resolution MRI scans,
and the sequence parameters were as follows:

(1) Limited T1 black-blood scan: coronal 2D acquisition over the
SSS, TR/TE = 707/210 ms, FOV 170 mm, acquisition matrix
256 × 256, voxel size 0.7 × 0.7 × 2.0 mm3, five contiguous
sections with 2.0 mm thickness, acquisition time 6 min 25 s.
The location and central coronal plane were the same as that
in DCE-MRI, and the coronal MRI scans were moved
forward or backward from the standard coronal plane by
2.0 mm to acquire four coronal planes.

(2) Whole-brain T1 black-blood scan: coronal 3D acquisition,
Sampling Perfection with Application optimized Contrasts
using different flip angle Evolution (SPACE) sequence, TR/
TE = 700/20 ms, FOV 230 mm, acquisition matrix 256 × 256,
voxel size 0.9 × 0.9 × 0.9 mm3, 112 contiguous sections with
0.9 mm thickness, acquisition time 7 min 06 s. The location of
central coronal plane was the same as that in DCE-MRI.
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(3) Whole-brain T2 flair scan: coronal 3D acquisition, SPACE,
TR/TE = 8000/81 ms, FOV 220 mm, acquisition matrix 224 ×
320, voxel size 0.7 × 0.7 × 2.0 mm3, 30 contiguous sections with
2.0 mm thickness, acquisition time 4 min 02 s. The location of
central coronal plane was the same as that in DCE-MRI.

3) Motion correction:

We took a series of measures to reduce movement artifacts
during head MRI scans: (1) Using long-term averaging
(LOTA) method to reduce motion artifacts generated by the
swallowing or cerebral artery pulsation: (2) During the head
MRI scan, folded towels were used to fix the head and neck of
participants in the head coil: (3) Taking behavioral
interventions to reduce the head motion. The participants
were informed to stare at a cross logo which was fixed in the
middle and upper part of the machine throughout the MRI
scan. Those who could not complete the MRI scans, or whose
images were rated as blurred after motion correction were
excluded from the analysis in our study.
Imaging Analysis
The MRI images were analyzed by three expert radiologists with
10 years of MRI experience independently, and each of them was
blinded to the patients’ information. The mLVs were tubular-
shaped structures with a circular cross section, which mainly run
alongside the venous dural sinuses and near the venous sinus in
the coronal slices, especially in the SSS. Before injection of
gadobutrol, the mLVs could not be discerned from SSS and
dura blood vessels. However, after injection of gadobutrol, the
dura blood vessels and SSS both darkened in T1 black-blood and
T2 flair sequences, while Gd would leak out of blood vessels and
collect inside lymphatic vessels in the dura matter, and the mLVs
surrounded SSS would show up as white round like areas in both
sequences. Regions of interest (ROI) representing the mLVs-SSS
was outlined manually by the radiologists expertly according to
the DCE-MRI images before and after the gadobutrol injection in
the central coronal MRI images. The commercial image viewing
software (IntelliSpace Portal v.7, Philips Healthcare) was used to
view the 23 series of DCE-MRI images, which do benefit for us to
compare the mLVs before and after gadobutrol injection, and
this would be convenient for us to draw the ROI of L-, R-, and
Lo-mLVs-SSS in DCE-MRI images in Siemens Workstation. The
DCE-MRI data were analyzed with post-processing software
(syngoMMWP VE40A, Siemens AG).

Scanner-generated DICOM images were used to measure the
cross-sectional areas of mLVs-SSS on RadiAnt DICOM viewer
software (https://www.radiantviewer.com/dicom-viewer-
manual/v/5.0.0/). The five central coronal slices in the high-
resolution MRI sequences are referenced to measure the cross-
sectional areas of the mLVs-SSS. The largest cross-sectional
areas, the average cross-sectional areas, and the minimal cross-
sectional areas of the mLVs-SSS in each individual were selected
for analysis. The largest, average, and minimal cross-sectional
areas of three mLVs-SSS (L-, R-, and Lo-mLVs-SSS) in different
groups were calculated and compared separately. The obtained
DCE-MRI data were interpreted semi-quantitatively (the TTP
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and AUC) and quantitatively (wash-in rate) using time-intensity
curve (TIC). Using the mean curve function in syngoMMWP
VE40A, TIC was generated by averaging signal intensity within
each ROI at different time points. The TTP values, wash-in rate
values, and AUC values of mLVs-SSS (L-, R-, and Lo-mLVs-SSS)
in different groups were compared.

Statistical Analysis
GraphPad Prism 8.0 software (GraphPad Software Inc., San
Diego, CA, USA) and PASW Statistics 18.0 (IBM, Armonk,
NY) were used for statistical analysis. The observed clinical and
demographic continuous data were expressed by means ±
standard (SD). The average cross-sectional area was shown by
means ± standard error of the mean (SEM), categorical data and
discontinuous variables were expressed by medians, frequencies,
and percentages. Mann-Whitney test and Chi-squared Test were
used to compare demographic factors and clinical characteristics.
Spearman correlation was used to test the association between
EDSS scales and DCE-MRI parameters (TTP, wash-in rate, AUC)
of L-, R-, and Lo-mLVs-SSS in ANMOSD patients, respectively.
Meanwhile, the Spearman correlation analysis was also used to
evaluate the correlations between EDSS scales and the largest,
average, and minimal cross-sectional areas of L-, R-, and Lo-
mLVs-SSS in ANMOSD patients, respectively. The Kruskal-
Wallis test followed by Dunn’s multiple comparisons test were
used to compare the values of DCE-MRI parameters (TTP, wash-
in rate, AUC) of L-, R-, and Lo-mLVs-SSS among three groups
(NC vs. ANMOSD vs. CNMOSD group, NC vs. I-ANMOSD vs.
II-ANMOSD group), respectively. The one-way ANOVA test
followed by Newman-Keuls multiple comparisons test were used
to compare the largest, average, minimal cross-sectional areas of
L-, R-, and Lo-mLVs-SSS among three groups (NC vs. ANMOSD
vs. CNMOSD group, NC vs. I-ANMOSD vs. II-ANMOSD
group), respectively. Receiver operating characteristic curve
(ROC) analysis was used to evaluate the diagnostic accuracy of
DCE-MRI parameters of L-, R-, and Lo-mLVs-SSS in
Frontiers in Immunology | www.frontiersin.org 4
distinguishing ANMOSD patients from CNMOSD patients, or
distinguishing II-ANMOSD patients from CNMOSD patients
separately. Additionally, ROC curve analysis were used to
evaluate the diagnostic capacity of combined DCE-MRI
parameters of L+ R+ Lo-mLVs-SSS, L+ R-mLVs-SSS, L+ Lo-
mLVs-SSS and R+ Lo-mLVs-SSS in distinguishing ANMOSD
patients from CNMOSD patients, or distinguishing II-ANMOSD
patients from CNMOSD patients. Logistic regression models
were used to analyze the effects of clinical factors (sex, age,
disease duration, number of attacks, MRI lesion, EDSS scales)
on the DCE-MRI parameters in ANMOSD patients. P < 0.05 was
considered statistically significant.
RESULTS

Demographics and Clinical Characteristics
In this research, 41 NC subjects (9 males and 31 females, mean
age 36.0 ± 7.9 years), 32 ANMOSD patients (8 males and 24
females, mean age 36.2 ± 9.2 years), and 29 CNMOSD patients
(8 males and 21 females, mean age 37.2 ± 7.4 years) were
enrolled in this study and completed the MRI scans successfully.
The demographics and clinical characteristics of the NC,
ANMOSD and CNMOSD patients were shown in Table 1.
According to the EDSS, the ANMOSD patients were divided
into the I-ANMOSD group (EDSS stage ≤ 4.5, n = 17, 5 males
and 12 females, mean age 35.5 ± 9.7 years) and II-ANMOSD
group (EDSS stage > 4.5, n = 15, 3 males and 12 females, mean
age 37.2 ± 7.4 years). The demographics and clinical
characteristics of the NC, I-ANMOSD and II-ANMOSD
patients were shown in Table 2.

Before and after MRI scan, we monitored the blood pressure
(BP) and heart rates (HR) of each participant. As shown in
Table 1, no significant difference existed among NC, ANMOSD,
and CNMOSD groups in systolic BP (SBP), diastolic BP (DBP)
and HR both before and after the MRI scans, respectively.
TABLE 1 | The demographics and clinical characteristic of subjects.

Characteristic NMOSD patients Normal controls

acute attack (n = 32) chronic phase (n = 29) P Value (n = 41)

Age at onset, mean (SD), years 36.2 (9.2) 37.2 (7.4) 0.660 36.0 (7.9)
Female, no. (%) 24 (75.0%) 21(72.4%) >0.999 31 (75.6%)
Duration, median (range), months 4 (1–36) 42 (11–63) <0.001 NA
Number of attacks, median (range) 1 (1–3) 3 (2–6) <0.001 NA
MRI lesion
Spinal cord, no. (%) 12 (37.5%) 10 (34.5%) >0.999 NA
Optic nerve, no. (%) 11 (34.4%) 11 (37.9%) 0.796 NA
Brain, no. (%) 7 (21.8%) 5 (17.2%) 0.753 NA
others, no. (%) 2 (6.2%) 3 (10.3%) 0.666 NA

EDSS score 4.5 (1.5-9.0) 2.0 (1.0-5.5) <0.001 NA
SBP before MRI 123.2 ± 13.1 119.5 ± 13.1 0.289 119.1 ± 14.0
DBP before MRI 77.5 ± 10.9 76.7 ± 11.1 0.782 76.9 ± 8.3
SBP after MRI 120.0 ± 13.5 117.5 ± 13.6 0.479 118.4 ± 11.3
DBP after MRI 80.2 ± 12.4 74.1 ± 13.0 0.089 74.3 ± 9.3
HR before MRI 74.1 ± 11.4 71.1 ± 10.1 0.411 72.3 ± 10.5
HR after MRI 75.2 ± 10.7 72.1 ± 10.1 0.225 73.5 ± 11.8
June 2021 | Volume 1
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Quantitative Assessment of the
mLVs-SSS Flow
The meningeal lymphatic flow was evaluated by DCE-MRI, which
was able to detect the uptake of gadolinium-based contrast media
by mLVs-SSS. Representative DCE-MRI images of the mLVs-SSS
before (Figures 1Aa, c, e) and after (Figures 1Ab, d, f) vascular
administration of the gadobutrol in NC, ANMOSD, and
CNMOSD were displayed. Representative pictures of TIC for
mLVs-SSS from each group showed that TTP values of mLVs-
SSS (L, R and Lo-mLVs-SSS) in ANMOSD group were prolonged
(Figures 1Ag–i). The statistical results showed that TTP values of
mLVs-SSS in ANMOSD patients were significantly prolonged
than that in NC and CNMOSD group, however, TTP values of
mLVs-SSS in NC and CNMOSD group were not significantly
different with each other (Figures 1Ba–c). In addition, wash-in
rate values of mLVs-SSS in ANMOSD patients were significantly
slower than that in NC and CNMOSD group, however, that in NC
and CNMOSD patients were not significantly different compared
with each other (Figures 1Bd–f). Moreover, AUC values of
mLVs-SSS in ANMOSD patients were significantly larger than
that in NC and CNMOSD patients; however, AUC values of
mLVs-SSS in NC and CNMOSD group were not significantly
different compared with each other (Figures 1Bg–i).

Next, the parameters (TTP, wash-in rate, and AUC) of TIC in
I-ANMOSD, II-ANMOSD, and NC groups were further
compared. Our findings showed that TTP values of mLVs-SSS
(L, R, and Lo-mLVs-SSS) in both I-ANMOSD and II-ANMOSD
were significantly prolonged than that in NC, and TTP values of
mLVs-SSS in II-ANMOSD were significantly longer than that in
I-ANMOSD (Figures 1Ca–c). Additionally, wash-in rate values
of mLVs-SSS in both I-ANMOSD and II-ANMOSD groups were
significantly decreased than that in NC, and wash-in rate values
of the mLVs-SSS in I-ANMOSD group were significantly slower
than that in II-ANMOSD group (Figures 1Cd–f). Moreover,
AUC values of mLVs-SSS in I-ANMOSD and II-ANMOSD
Frontiers in Immunology | www.frontiersin.org 5
groups were both significantly larger than that in NC, and
AUC values of mLVs-SSS in II-ANMOSD group were
significantly increased than those in I-ANMOSD group
(Figures 1Cg–i).

To investigate whether these parameters were related to the
severity of NMOSD, the correlations between the EDSS scale and
the parameters (TTP, wash-in rate, or AUC) in ANMOSD were
tested, respectively. Our results indicated that TTP values of
mLVs-SSS in ANMOSD patients were positively correlated with
EDSS scale (Figures 2Aa–c). However, wash-in rate values of
mLVs-SSS were negatively correlated with the EDSS scale in
patients with ANMOSD (Figures 2Ad–f). Moreover, AUC
values of mLVs-SSS were positively correlated with the EDSS
scale in patients with ANMOSD (Figures 2Ag–i). Additionally,
the logistic regression analysis also showed that the disease
severity according to EDSS scale was correlated with the DCE-
MRI parameters of mLVs (Supplementary Table 1). In a word,
DCE-MRI parameters of mLVs-SSS in ANMOSD patients were
related to the EDSS scale.

Then, ROC curve analysis was used to evaluate the diagnostic
accuracy of DCE-MRI parameters of separate and combined
mLVs-SSS for distinguishing ANMOSD from CNMOSD
(Figures 2Ba–i and Table 3). The statistical results showed
that TTP values of L-mLVs-SSS, R-mLVs-SSS, L+ R+ Lo-
mLVs-SSS, L+R-mLVs-SSS, L + Lo-mLVs-SSS, and R+ Lo-
mLVs-SSS had the capacity to distinguished ANMOSD
patients from CNMOSD patients with high accuracy, high
sensitivity, and specificity (Figures 2Ba, b and Table 3), while
the TTP values of Lo-mLVs-SSS with moderate accuracy, low
sensitivity, and high specificity (Figure 2Bc and Table 3). Wash-
in rate values of L-mLVs-SSS, R-mLVs-SSS, Lo-mLVs-SSS, L+ R+
Lo-mLVs-SSS, L+R-mLVs-SSS, L + Lo-mLVs-SSS, and R+ Lo-
mLVs-SSS distinguished ANMOSD patients from CNMOSD
patients with moderate accuracy, moderate sensitivity, and low
specificity (Figures 2Bd–f and Table 3). Similarly, AUC values
TABLE 2 | The demographics and clinical characteristic of I-ANMOSD and II-ANMOSD.

Characteristic ANMOSD patients

Ⅰ-ANMOSD Ⅱ-ANMOSD P Value
(n = 17) (n = 15)

Age at onset, mean (SD), years 35.5 (9.7) 37.2 (7.4) 0.633
Female, no. (%) 12 (70.6%) 12 (80.0%) 0.691
Duration, median (range), months 4 (1–36) 6 (2–32) 0.560
Number of attacks, median (range) 1 (1–3) 2 (1–3) 0.188
MRI lesion
Spinal cord, no. (%) 7 (41.2%) 5 (33.3%) 0.737
Optic nerve, no. (%) 5 (29.4%) 6 (40.0%) 0.712
Brain, no. (%) 4 (23.5%) 3 (20.0%) >0.999
others, no. (%) 1 (5.9%) 1 (6.7%) >0.999

EDSS score 3.5 (1.5-4.5) 7.0 (5.0-9.0) <0.001
SBP before MRI 125.1 ± 13.0 121.1 ± 13.1 0.390
DBP before MRI 75.7 ± 10.6 79.5 ± 11.4 0.340
SBP after MRI 121.6 ± 13.1 118.1 ± 14.2 0.480
DBP after MRI 78.2 ± 9.4 82.4 ± 15.0 0.343
HR before MRI 76.1 ± 10.4 71.8 ± 12.4 0.301
HR after MRI 77.1 ± 9.5 73.1 ± 11.8 0.291
June 2021 | Volume 12 | Article
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optica spectrum disorders (EDSS scale > 4.5); SBP, systolic blood pressure.
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FIGURE 1 | Quantitative assessment of mLVs-SSS flow by DCE-MRI. (A) Representative DCE-MRI images of the mLVs-SSS (L-mLVs-SSS, R- mLVs-SSS and Lo-
mLVs-SSS) before (a, c, e) and after (b, d, f) vascular administration of the gadobutrol in NC (a, b), ANMOSD (c, d), and CNMOSD (e, f) groups. scale bar, 2 cm.
The red rectangles stand for the mLVs-SSS. L-mLVs-SSS, R- mLVs-SSS and Lo- mLVs-SSS represented the left, right and lower mLVs-SSS, respectively. The
representative time-intensity curves (TIC) in NC (g), ANMOSD (h), and CNMOSD (i) were obtained by DCE-MRI images. (B) Comparison of the TTP (a–c), wash-in
rate (d–f), and AUC (g–i) of mLVs-SSS in NC, ANMOSD, and CNMOSD groups. (C) The TTP (a–c), wash-in rate (d–f), and AUC (g–i) of mLVs-SSS in NC and
ANMOSD patients (I-ANMOSD group, II-ANMOSD group) were further compared. I-ANMOSD group, EDSS scale ≤ 4.5; II-ANMOSD group, EDSS scale > 4.5. TTP,
time to peak; AUC, area under curve.
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FIGURE 2 | Correlation between EDSS scales and DCE-MRI parameters, and the diagnostic accuracy of DCE-MRI parameters. (A) Correlations between the EDSS
stage and the TTP (a–c), wash-in rate (d–f), and AUC (g–i) of mLVs-SSS in ANMOSD patients. The parameters were correlated with the EDSS stage. (B) Receiver
operating characteristic (ROC) curve of the TTP (a–c), wash-in rate (d–f), and AUC (g–i) of mLVs-SSS in distinguishing ANMOSD from CNMOSD group. (C) ROC of
the TTP (a–c), wash-in rate (d–f), and AUC (g–i) of mLVs-SSS in distinguishing I-ANMOSD group from CNMOSD group.
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of L-mLVs-SSS, R-mLVs-SSS, Lo-mLVs-SSS, L+ R+ Lo-mLVs-
SSS, L+R-mLVs-SSS, L + Lo-mLVs-SSS, and R+ Lo-mLVs-SSS
distinguished ANMOSD patients from CNMOSD patients with
moderate to high accuracy, moderate to low sensitivity, and
moderate to low specificity (Figures 2Bg–i and Table 3).

Furthermore, ROC curve analysis was used to evaluate the
diagnostic accuracy of DCE-MRI parameters of separate and
combined mLVs-SSS for distinguishing I-ANMOSD patients
from CNMOSD patients (Figures 2Ca–i and Table 4). Our
results showed that TTP values of L-mLVs-SS, R-mLVs-SSS, L
+R+Lo-mLVs-SSS, L+R-mLVs-SSS, and L + Lo-mLVs-SSS had
the capacity to distinguish I-ANMOSD patients from CNMOSD
patients with high accuracy, moderate sensitivity and moderate
to high specificity (Figures 2Ca, b and Table 4), while the TTP
values of Lo-mLVs-SSS and R+Lo-mLVs-SSS distinguished I-
ANMOSD patients from CNMOSD patients with low to
moderate accuracy, low to moderate sensitivity and low
specificity (Figure 2Cc and Table 4). Wash-in rate values of L-
mLVs-SSS, R-mLVs-SSS, Lo-mLVs-SSS, L+ R+ Lo-mLVs-SSS,
L+R-mLVs-SSS, L + Lo-mLVs-SSS, and R+ Lo-mLVs-SSS
distinguished I-ANMOSD patients from CNMOSD patients
with low accuracy, low to moderate sensitivity and low
specificity (Figures 2Cd–f and Table 4). AUC values of L-
mLVs-SSS, R-mLVs-SSS, Lo-mLVs-SSS, L+ R+ Lo-mLVs-SSS,
L+R-mLVs-SSS, L + Lo-mLVs-SSS, and R+ Lo-mLVs-SSS
distinguished I-ANMOSD patients from CNMOSD patients
with moderate to high accuracy, low to moderate sensitivity,
and low specificity (Figures 2Cg–i, Table 4).

In summary, our results showed that DCE-MRI parameters of
L-mLVs-SSS, R-mLVs-SSS, L+ R+ Lo-mLVs-SSS, L+R-mLVs-
Frontiers in Immunology | www.frontiersin.org 8
SSS, L + Lo-mLVs-SSS, and R+ Lo-mLVs-SSS could distinguish
ANMOSD or I-ANMOSD from CNMOSD, especially the TTP
values of L-mLVs-SSS, R-mLVs-SSS, and L+R-mLVs-SSS, they
distinguished ANMOSD or I-ANMOSD from CNMOSD
patients with high sensitivity and specificity.

Measurement of Cross-Sectional Areas of
mLVs-SSS
After DCE-MRI, in order to measure the cross-sectional areas of
the mLVs-SSS, every participant completed three high-resolution
MRI scans continuously thirty minutes after injection of
gadobutrol, including 2D T1 black-blood, 3D T1 black-blood,
and 3D T2 flair MRI scans. The cross-sectional areas of mLVs-
SSS (L-, R-, and Lo-mLVs-SSS) were measured in each
participant of the three MRI sequences, respectively. The
representative mLVs-SSS in 2D T1 black-blood (Figures 3Aa–
c) and 3D T2 flair (Figures 3Ad–f) images in NC, ANMOSD,
and CNMOSD patients were shown in Figure 3A. The results
showed that no significant differences in the largest cross-
sectional areas of the mLVs-SSS among NC, ANMOSD, and
CNMOSD in 2D T1 black-blood (L-mLVs-SSS: F = 0.1208, P =
0.8863; R-mLVs-SSS: F = 0.7752, P = 0.4634; Lo-mLVs-SSS: F =
0.1414, P = 0.8683. Figure 3Ba), 3D T1 black-blood (L-mLVs-
SSS: F = 0.0886, P = 0.9153; R-mLVs-SSS: F = 0.3521, P = 0.7041;
Lo-mLVs-SSS: F = 0.9536, P = 0.3889; Figure 3Bb), and 3D T2
flair (L-mLVs-SSS: F = 0.0866, P = 0.9171; R-mLVs-SSS: F =
0.0514, P = 0.9500; Lo-mLVs-SSS: F = 0.0346, P = 0.9660;
Figure 3Bc), respectively.

Then, the largest cross-sectional areas of the mLVs-SSS in I-
ANMOSD and II- ANMOSD groups were compared with that in
TABLE 3 | Diagnostic accuracy of DCE-MRI parameters of separate and combined mLVs-SSS for distinguishing ANMOSD patients from CNMOSD patients.

AUROC 95% CI threshold Sensitivity (%) 95% CI Specificity (%) 95% CI

TTP
L-mLVs-SSS 0.9671 0.9228–1.0000 193.0 90.63 74.98–98.02 96.55 82.24–99.91
R-mLVs-SSS 0.9601 0.9132–1.0000 193.0 87.50 71.01–96.49 93.10 77.23–99.15
Lo- mLVs-SSS 0.8847 0.8054–0.9640 125.9 71.88 53.25–86.25 86.21 68.34–96.11
L+R+Lo-mLVs-SSS 0.9564 0.9082–1.0000 469.8 93.75 79.19–99.23 86.21 68.34–96.11
L+R-mLVs-SSS 0.9688 0.9251–1.0000 377.6 93.75 79.19–99.23 93.10 77.23–99.15
L+ Lo-mLVs-SSS 0.9499 0.8982–1.0000 293.7 93.75 79.19–99.23 86.21 68.34–96.11
R+Lo-mLVs-SSS 0.9386 0.8822–1.0000 293.7 87.50 71.01–96.49 86.21 68.34–96.11
Wash-in rate
L-mLVs-SSS 0.7554 0.6289–0.8819 2.429 81.25 63.56–92.79 62.07 42.26–79.31
R-mLVs-SSS 0.6972 0.5564–0.8380 2.282 78.13 60.03–90.72 62.07 42.26–79.31
Lo- mLVs-SSS 0.8190 0.7097–0.9282 2.980 78.13 60.03–90.72 72.41 52.76–87.27
L+R+Lo-mLVs-SSS 0.8039 0.6871–0.9207 7.854 87.50 71.01–96.49 68.97 49.17–84.72
L+R-mLVs-SSS 0.7317 0.5992–0.8642 4.723 84.38 67.21–94.72 62.07 42.26–79.31
L+ Lo-mLVs-SSS 0.8297 0.7216–0.9379 5.092 90.63 74.98–98.02 72.41 52.76–87.27
R+Lo-mLVs-SSS 0.7877 0.6671–0.9083 5.170 81.25 63.56–92.79 72.41 52.76–87.27
AUC
L-mLVs-SSS 0.9030 0.8303–0.9757 53644 84.38 67.21–94.72 79.31 60.28–92.01
R-mLVs-SSS 0.8772 0.7901–0.9642 48790 84.38 67.21–94.72 72.41 52.76–87.27
Lo- mLVs-SSS 0.8836 0.8000–0.9673 23755 78.13 60.03–90.72 82.76 64.23–94.15
L+R+Lo-mLVs-SSS 0.9073 0.8377–0.9770 125130 81.25 63.56–92.79 79.31 60.28–92.01
L+R-mLVs-SSS 0.9073 0.8371–0.9776 103512 81.25 63.56–92.79 79.31 60.28–92.01
L+ Lo-mLVs-SSS 0.9256 0.8637–0.9876 74937 84.38 67.21–94.72 82.76 64.23–94.15
R+Lo-mLVs-SSS 0.8815 0.7990–0.9640 95080 71.88 53.25–86.25 89.66 72.65–97.81
June
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ANMOSD, neuromyelitis optica spectrum disorders patients with acute attack; AUC, area under curve; AUROC, area under receiver operating characteristic curve; CI, confidence interval;
CNMOSD, neuromyelitis optica spectrum disorders patients in chronic phase; L-mLVs-SSS, left meningeal lymphatic vessels around superior sagittal sinus; Lo-mLVs-SSS, lower
meningeal lymphatic vessels around superior sagittal sinus; R-mLVs-SSS, right meningeal lymphatic vessels around superior sagittal sinus; TTP, time to peak.
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NC in different MRI sequences. Our results showed that there
were no differences in the largest cross-sectional areas of the
mLVs-SSS in NC, I-ANMOSD, and II-ANMOSD in 2D T1
black-blood (L-mLVs-SSS: F = 0.0533, P = 0.9481; R-mLVs-
SSS: F = 0.2775, P = 0.7585; Lo-mLVs-SSS: F = 0.1540, P =
0.8576; Figure 3Bd), 3D T1 black-blood (L-mLVs-SSS: F =
0.1620, P = 0.8507; R-mLVs-SSS: F = 0.2056, P = 0.8147; Lo-
mLVs-SSS: F = 0.7412, P = 0.4802; Figure 3Be) and 3D T2 flair
(L-mLVs-SSS: F = 0.1141, P = 0.8923; R-mLVs-SSS: F = 0.0446,
P = 0.9565; Lo-mLVs-SSS: F = 0.2052, P = 0.8150;
Figure 3Bf), respectively.

Lastly, the correlation between the EDSS scale and the largest
cross-sectional areas of mLVs-SSS (L, R, and Lo-mLVs-SSS) in
ANMOSD patients were tested in different MRI sequences. The
results indicated that the largest cross-sectional areas of mLVs-
SSS in ANMOSD were not significantly correlated with EDSS
scale in 2D T1 black-blood (Figures 3Ca–c), 3D T1 black-blood
(Figures 3Cd–f), and 3D T2 flair (Figures 3Cg–i), respectively.

Additionally, we further compared the average and minimal
cross-sectional areas of the mLVs-SSS in different groups
separately. The results showed that the average and minimal
cross-sectional areas of the mLVs-SSS were not significantly
different among NC, ANMOSD, and CNMOSD patients in 2D
T1 black-blood, 3D T1 black-blood and 3D T2 flair sequences,
respectively. The F and P values were shown in Supplementary
Table 2. Furthermore, no significant differences were found in
the average and minimal cross-sectional areas of mLVs-SSS
among NC, I-ANMOSD and II-ANMOSD in 2D T1 black-
blood, 3D T1 black-blood, and 3D T2 flair sequences,
respectively. The detailed F and P values were shown in
Frontiers in Immunology | www.frontiersin.org 9
Supplementary Table 3. The average and minimal cross-
sectional areas of mLVs-SSS in ANMOSD were not
significantly correlated with EDSS scale in 2D T1 black-blood,
3D T1 black-blood, and 3D T2 flair sequences, respectively. The r
and P values were shown in Supplementary Table 4.

In summary, our results showed that the cross-sectional area
of mLVs-SSS in NMOSD (ANMOSD and CNMOSD) were not
significantly different from that in NC, and the cross-sectional
area of mLVs-SSS in ANMOSD patients was not associated with
EDSS scale.
DISCUSSION

In this study, DCE-MRI was used to quantitatively assess the
mLVs-SSS flow in NC and NMOSD patients. The slow lymphatic
flow was found in ANMOSD patients instead of CNMOSD
patients and NC. The correlation analysis showed that DCE-
MRI parameters of mLVs-SSS in ANMOSD patients were
correlated with the disease severity. Then, the cross-sectional
areas of the mLVs-SSS in ANMOSD patients, CNMOSD patients
and NC in different high-resolution MRI sequences were
measured, and no significant difference of the size of mLVs-
SSS was found. Our findings demonstrated that meningeal
lymphatic flow impaired in ANMOSD patients rather than
that in CNMOSD patients.

The conventional contrast enhanced MRI was used to assess
the function of glymphatic system after intrathecal injection of
gadolinium at different time points, which was invasive,
discontinuous, and unacceptable (24). In our study, DCE-MRI
TABLE 4 | Diagnostic accuracy of DCE-MRI parameters of separate and combined mLVs-SSS for distinguishing I-ANMOSD patients from CNMOSD patients.

AUROC 95% CI threshold Sensitivity (%) 95% CI Specificity (%) 95% CI

TTP
L-mLVs-SSS 0.9381 0.8572–1.0000 176.2 88.24 63.56–98.54 89.66 72.65–97.81
R-mLVs-SSS 0.9249 0.8402–1.0000 176.2 82.35 56.57–96.20 86.21 68.34–96.11
Lo- mLVs-SSS 0.7870 0.6581–0.9159 109.1 58.82 32.92–81.56 68.97 49.17–84.72
L+R+Lo-mLVs-SSS 0.9178 0.8315–1.0000 344.0 88.24 63.56–98.54 86.21 68.34–96.11
L+R-mLVs-SSS 0.9412 0.8613–1.0000 377.6 88.24 63.56–98.54 93.10 77.23–99.15
L+ Lo-mLVs-SSS 0.9057 0.8137–0.9977 293.7 88.24 63.56–98.54 86.21 68.34–96.11
R+Lo-mLVs-SSS 0.8844 0.7856–0.9831 276.9 82.35 56.57–96.20 79.31 60.28–92.01
Wash in rate
L-mLVs-SSS 0.6450 0.4838–0.8063 2.429 70.59 44.04–89.69 62.07 42.26–79.31
R-mLVs-SSS 0.5963 0.4308–0.7619 2.282 64.71 38.33–85.79 62.07 42.26–79.31
Lo- mLVs-SSS 0.7424 0.5994–0.8854 2.759 70.59 44.04–89.69 68.97 49.17–84.72
L+R+Lo-mLVs-SSS 0.7262 0.5759–0.8765 7.584 82.35 56.57–96.20 68.97 49.17–84.72
L+R-mLVs-SSS 0.6268 0.4648–0.7887 4.723 76.47 50.10–93.19 62.07 42.26–79.31
L+ Lo-mLVs-SSS 0.7525 0.6068– 0.8983 5.092 88.24 63.56–98.54 72.41 52.76–87.27
R+Lo-mLVs-SSS 0.7079 0.5549–0.8609 5.170 70.59 44.04–89.69 72.41 52.76–87.27
AUC
L-mLVs-SSS 0.9030 0.8303–0.9757 53644 70.59 44.04–89.69 79.31 60.28–92.01
R-mLVs-SSS 0.8093 0.6764–0.9422 47518 82.35 56.57–96.20 68.97 49.17–84.72
Lo- mLVs-SSS 0.8093 0.6793–0.9394 19853 82.35 56.57–96.20 65.52 45.67–82.06
L+R+Lo-mLVs-SSS 0.8458 0.7351–0.9566 125130 70.59 44.04–89.69 79.31 60.28–92.01
L+R-mLVs-SSS 0.8458 0.7336–0.9581 92146 82.35 56.57–96.20 68.97 49.17–84.72
L+ Lo-mLVs-SSS 0.8682 0.7636–0.9727 61531 88.24 63.56–98.54 68.97 49.17–84.72
R+Lo-mLVs-SSS 0.8134 0.6873–0.9395 62213 88.24 63.56–98.54 62.07 42.26–79.31
June
 2021 | Volume 12 | A
I-ANMOSD, neuromyelitis optica spectrum disorders patients with acute attack (EDSS ≤ 4.5); AUC, area under curve; AUROC, area under receiver operating characteristic curve; CI,
confidence interval; CNMOSD, neuromyelitis optica spectrum disorders patients in chronic phase; L-mLVs-SSS, left meningeal lymphatic vessels around superior sagittal sinus; Lo-mLVs-
SSS, lower meningeal lymphatic vessels around superior sagittal sinus; R-mLVs-SSS, right meningeal lymphatic vessels around superior sagittal sinus; TTP, time to peak.
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FIGURE 3 | Visualization and measurement of mLVs-SSS in different groups by high-solution MRI sequences. (A) Visualization of mLVs-SSS in NC (a, d), ANMOSD
(b, e), and CNMOSD (c, f) by 2D T1 black-blood (a–c) and 3D T2 flair (d–f) sequence. The red rectangles stand for the three mLVs-SSS (L-mLVs-SSS, R-mLVs-
SSS, Lo-mLVs-SSS), L-mLVs-SSS, R-mLVs-SSS and Lo- mLVs-SSS represents the left, right and lower mLVs-SSS, respectively. Scale bar, 2 cm. (B) Measurement
and comparison of the cross-sectional area of mLVs-SSS in different MRI sequences. The cross-sectional area of mLVs-SSS in three groups (NC, ANMOSD,
CNMOSD) were not significantly different with each group in 2D T1 black-blood (a), 3D T1 black-blood (b) and 3D T2 flair (c) sequences. The cross-sectional area of
mLVs-SSS in NC and ANMOSD patients (I-ANMOSD group, II-ANMOSD group) in 2D T1 black-blood (d), 3D T1 black-blood (e) and 3D T2 flair (f) sequences.
There was no difference between groups in all MRI sequences. I-ANMOSD group, EDSS stage ≤ 4.5; II-ANMOSD group, EDSS stage > 4.5. (C) Correlations
between the EDSS scale and the cross-sectional area of mLVs-SSS in ANMOSD patients in 2D T1 black-blood (a–c), 3D T1 black-blood (d–f) and 3D T2 flair (g–i)
sequences. The cross-sectional area of mLVs-SSS was not correlated with the EDSS scale.
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was performed to acquire head MRI images successively after
intravenous gadolinium injection, and it was accurate,
convenient, and acceptable. The signal intensity of mLVs-SSS
at different time points were analyzed and exhibited by the TIC,
which reflects the flow of mLVs-SSS. Our study indicated that the
meningeal lymphatic flow around SSS is significantly impaired in
ANMOSD patients compared to NC and CNMOSD patients.
Additionally, the slower mLVs flow was correlated with the
severity of ANMOSD evaluated by EDSS scale.

Numerous studies have demonstrated that mLVs played an
important role in maintaining brain tissue homeostasis and
dysfunction of mLVs was involved in the progression of
neurodegenerative diseases (6, 9, 27). Dysfunction of mLVs
would aggravate deposition of Ab in brain tissue and cognitive
impairment in AD mouse model (28–30). However, mLVs also
drain some immune cells, antigens, antibodies and lymphocytes to
CLNs (6, 10, 31), suggesting that mLVs may be involved in the
regulation of neuroimmune. Previous studies have suggested that
mLVs were physiologically or pathologically altered in
neuroinflammatory disease, such as multiple sclerosis (MS) (32).
In MS patients and some animal models, changes in tertiary
lymphoid structures also occurred (33, 34). Our findings indicated
that meningeal lymphatic function was impaired in ANMOSD
patients, and it also indicated that mLVs’ dysfunction was
associated with the neuroinflammatory disease.

It is not clear about the specific mechanism leading to the
mLVs drainage dysfunction in neuroinflammatory disease, we
inferred that it might be caused by the acute inflammation in the
meanings. The meninges around the brain are filled with various
types of immune cells that not only provide immune surveillance
but also influence brain function (32). When CNS inflammation
occurs, immune cells in the meninges participate in the
inflammatory response, which in turn produces a series of
inflammatory factors, such as IL-1, TNF, CCL-2, and IL-17A
(35). These inflammatory factors may damage the meningeal
lymphatic endothelial cells, destroy the tight connection of
lymphatic vascular endothelial cells, and affect the drainage
function of lymphatic vessels (35, 36). The mLVs worked as an
important drainage pathway for immune cells’ excretion from
CNS to the periphery lymph nodes, and its drainage dysfunction
will lead to the accumulation of antigens, antibodies and immune
cells in CNS. The impaired AQP4–IgG excretion and
autoimmune inflammation might interact as both cause and
effect, which ultimately leads to immune damage of CNS. The
increase of AQP4-IgG would activate complement, and the
depositional of complement would activate the terminal
complement pathway, which might lead to the formation of
the membrane attack complex (MAC) (37, 38) and the antibody-
dependent cell-mediated cytotoxicity, which involved in the
inflammatory demyelination (39). Moreover, the bound of
astrocyte with Fc region of the AQP4-IgG would also activate
several infiltrating immune cells, such as macrophages and
neutrophils (40, 41). All of the above pathological processes
finally caused demyelination and necrosis in the certain CNS
regions that express high levels of AQP4, such as optic nerve and
spinal cord. Moreover, the mLVs played an important role in
Frontiers in Immunology | www.frontiersin.org 11
connecting the central and peripheral immune system (11), and
some AQP4–IgG in peripheral blood of NMOSD patients would
enter CNS through the destroyed blood brain barrier (BBB). As
shown in the previous studies about neuroinflammatory disease,
BBB has been destroyed by inflammatory factors, such as IL-1,
TNF-, CCL-2, and IL-17A, through degrading some tight-
junction proteins (35). The dysfunction of mLVs would reduce
the excretion of inflammatory factors from CSF, and aggravate
the BBB damage further. Damage to the BBB, in turn, stimulates
AQP4–IgG in the peripheral blood to enter the CNS.

Our study showed that dysfunction of mLVs occurred in
NMOSD patients with acute attack, and the dysfunction was
associated with the disease severity. However, the function of
mLVs was almost normal in NMOSD patients with chronic
phase. This maybe because the meningeal inflammation is more
severe in acute phase of NMOSD, which leads to acute
impairment of lymphatic function, while in chronic phase of
NMOSD, the meningeal inflammation is less severe and
lymphatic drainage function is relatively normal. Moreover, we
found that the drainage dysfunction of mLVs has occurred in
patients with mild neurological impairment of ANMOSD (I-
ANMOSD), which further suggested that dysfunction of mLVs
might occur in the early onset of the disease. Meanwhile, the
dysfunction of mLVs might involve in the disease progression.
Therefore, promoting or restoring the drainage function of
mLVs might be a new target for the treatment of NMOSD
acute attack. Such as treatment with the recombinant of vascular
endothelial growth factor C (VEGF-C) or the adeno-associated
virus serotype 1 (AAV1) vector expressing VEGF-C. Previous
research has demonstrated that treatment with recombinant
VEGF-C increases the diameter of meningeal lymphatic vessels
(6). Additionally, delivery of VEGF-C by adenoviral gene therapy
could efficiently promote and boost peripheral lymphatic
sprouting and function (42, 43). However, AQP-4 is the
predominant water channel expressed in perivascular astrocytic
end-feet and astrocyte membranes that face the pia mater and
ependymal cells, and it played an important role in the
glymphatic clearance, so it is likely that the glymphatic system
impairment is also involved in the pathology of NMOSD.
Nevertheless, whether glymphatic system dysfunction occurred
in NMOSD patients was still unknown and need to be
evaluated further.

DCE-MRI might provide a novel method to predict the acute
relapse of NMOSD. Up to now, the NMOSD diagnosis criteria
mainly depends on the detection of AQP4-IgG, clinical
characteristics and MRI images. Nevertheless, the sensitivity of
traditional detection methods is limited and it always takes a long
time to get the results. The clinical symptoms, such as
paresthesia, are often lack of objective criteria for evaluation.
Through evaluating the function of mLVs, DCE-MRI will
provide objective evidence to predict the relapse of NMOSD.
The exact diagnosis is of great significance for the timely
treatment and prevention of disease progression, as patients
with NMOSD relapses require timely immunomodulatory
therapy, including high-dose steroids (44, 45) , IV
immunoglobulin (IVIg) therapy (45, 46) and plasma exchange
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(44, 47, 48) in the acute phase. In this study, the DCE-MRI
parameters, especially the TTP values of L-mLVs-SSS, R-mLVs-
SSS, and L+R-mLVs-SSS, had the capacity to distinguished
ANMOSD patients from CNMOSD patients with high
accuracy, high sensitivity and specificity.

A recent report suggested that the autoimmune response
might link with lymphedema. However, our findings
demonstrated that the size of mLVs did not change, as the
cross-sectional area of mLVs in NMOSD were not different with
that in NC. This suggested that lymphedema or dilation of mLVs
were not main culprit in dysfunction of mLVs.

In summary, our study demonstrates that the impairment of
meningeal lymphatic flow is associated with the relapse and
deterioration of the NMOSD. Greater understanding of
meningeal lymphatic flow dysfunction in NMOSD will provide
better insights into the pathogenesis of NMOSD. Improvement
of the meningeal lymphatic function might be meaningful for the
diagnosis and treatment of NMOSD, and even slow the
progression of the disease.
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