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Group-aggregated responses to tuberculosis (TB) have been well characterized on a
molecular level. However, human beings differ and individual responses to infection vary.
We have combined a novel approach to individual gene set analysis (GSA) with the
clustering of transcriptomic profiles of TB patients from seven datasets in order to identify
individual molecular endotypes of transcriptomic responses to TB. We found that TB
patients differ with respect to the intensity of their hallmark interferon (IFN) responses, but
they also show variability in their complement system, metabolic responses and multiple
other pathways. This variability cannot be sufficiently explained with covariates such as
gender or age, and the molecular endotypes are found across studies and populations.
Using datasets from a Cynomolgus macaque model of TB, we revealed that
transcriptional signatures of different molecular TB endotypes did not depend on TB
progression post-infection. Moreover, we provide evidence that patients with molecular
endotypes characterized by high levels of IFN responses (IFN-rich), suffered from more
severe lung pathology than those with lower levels of IFN responses (IFN-low). Harnessing
machine learning (ML) models, we derived gene signatures classifying IFN-rich and IFN-
low TB endotypes and revealed that the IFN-low signature allowed slightly more reliable
overall classification of TB patients from non-TB patients than the IFN-rich one. Using the
paradigm of molecular endotypes and the ML-based predictions allows more precisely
tailored treatment regimens, predicting treatment-outcome with higher accuracy and
therefore bridging the gap between conventional treatment and precision medicine.

Keywords: tuberculosis, endotypes, individual variability in host response, interferon, immune response, gene set
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INTRODUCTION

Tuberculosis (TB) remains a major threat to human health with
10 million new cases and 1.4 million deaths in 2019 (1). Only a
small proportion of the estimated 1.7 billion individuals infected
with Mycobacterium tuberculosis (Mtb) fall sick with active TB
(1). The vast majority of infected individuals contain Mtb in a
dormant status resulting in latent TB infection (LTBI), making it
difficult to identify the individuals who require treatment (2).

The disparity between progression to TB and continued LTBI
constitutes themost obvious kindof variability amongMtb infected
individuals. This individual variability exists also on more subtle
levels as revealed by gene expression analyses (3–7). Moreover,
prospective cohort studies harnessed transcriptomic signatures to
predict the risk of TB progression (8, 9). Multiple signatures of TB
have been proposed and cross-validated on independent datasets
leading to the identificationof commonmotives thatwere identified
in TB patients by most studies with respect to the interferon (IFN)
response (3, 4, 7, 10, 11). Patterns of TB-related gene expression
regulation however, are heterogeneous and vary within and
between studies. Gene-expression trends observed in the majority
of TB patients were frequently contradicted by individual TB
patients, independently of the applied technology (3). This raises
the question whether active TB induces a unique host response
pattern or alternatively whether there aremultiple, individual host-
dependent patterns and whether these are distinct or overlap.

In 2010 Berry et al. proposed a 393- transcript signature of TB
which was dominated by IFN-signaling genes (3). The authors
investigated transcriptional profiles of TB patients and healthy
individuals, and observed that some of the profiles of healthy
individuals with LTBI clustered with those of TB patients.
Reciprocally, a subgroup of TB patients presented transcriptional
profiles that clustered with healthy LTBI and were thus misclassified
by their transcriptional signature.

Comparison of the transcriptomes of TB patients to those of
healthy individuals gave rise to assumptions regarding the immune
response of TB patients, in particular the stronger IFN response as
compared to healthy controls. In clinical practice, the most widely
used test for Mtb infection is the Interferon Gamma Release Assay
(IGRA) which determines the release of IFN g in vitro after
stimulation of whole blood (WB) samples with Mtb-specific
antigens. The false negative rate of IGRA among Mtb infected
individuals is in the order of 15% (12). Thus, blood cells of 15% of
the patients do not produce detectable IFN-g levels in response to
antigen-specific stimulation. The majority of cohort studies report
differentially expressed IFN signaling pathways in TB patients
versus healthy individuals. Yet, the multiple published ‘TB vs
healthy’ and ‘TB vs LTBI’ signatures only show a limited
abundance of shared transcripts. Arguably, this can be explained
by different assumptions: (1) expression of different genes may be
highly correlated and thus, selecting one or another gene does not
influence the performance of the model; (2) different molecular
mechanisms dominate the response to TB in different cohorts; (3)
various cohorts contain varying numbers of individuals with a
certain type of dominant response which influences outcome
of comparison of ‘all TB patients’ to ‘all healthy subjects’.
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For example, the study of Maertzdorf et al. identified JAK-STAT
signaling and TLR signaling pathways next to IFN response as
dominant inTB(7). In contrast, a studybyVerhagenet al. suggested
the importance of calcium signaling pathway in TB (13). Studies by
Cliff et al. and Cai et al. identified complement system signaling as
important correlates of TB (14, 15). It is tempting to speculate that
these studies detected different modi in the response to TB: while
some cohorts presented dominant regulation of IFN signaling in
response to Mtb infection, other presented stronger regulation of
calcium or complement signaling. However, a cohort-level analysis
cannot determine whether the cohorts comprise patients with
cohort-specific responses to TB or alternatively different
proportions of patients with specific responses.

We postulated various patterns of host responses to TB, and
reasoned that the published WB transcriptomic studies of TB
patients are averaged representations of multiple different
responses to TB. To test this hypothesis, it is necessary to
analyze individual transcriptional profiles between and within
independent studies. To address data heterogeneity, we
conducted a Gene Set Analysis (GSA) on the integrated
transcriptome data with various gene set collections, including
pre-defined blood transcriptional modules (BTMs) (16, 17) to
reliably identify variability on the level of individual patients. We
observed various patterns of gene set enrichment in individuals
within single studies, which were reproduced on the level of the
meta dataset (MDS) and identified expression patterns within
individuals that were significantly correlated with the severity of
pathology in the patients’ lungs and characterized by strong
enrichment in IFN-response-related modules. Using Random
Forest (RF) machine learning (ML) we revealed gene signatures
which distinguished between TB patients with different
transcriptional response patterns. We then detected additional
immune responses, including complement system response, as
strongly correlated with the IFN response and therefore
contributing to what we defined as “IFN-rich” and “IFN-low”
endotypes of TB. To determine whether these two endotypes
were a function of time post infection (p.i.), we analyzed data
from Cynomolgus macaques (18) and observed that even though
the IFN response peaked between 20 and 42 days p.i., in various
animals the onset of IFN response started at various time points
p.i. and lasted for variable periods of time. We further
investigated whether additional elements of the host response
to TB presenting variable activation in the individual patients can
be detected independently of the IFN response. We identified
such patterns in the enrichment of metabolic pathways of D-
arginine and D-ornithine, as well as in the modules related to
insulin and calcium metabolism, using KEGG (19) and MSigDB
(20) based GSA followed by principal component analysis (PCA)
and eigenvector analysis. Based on these findings, we hypothesize
that progression to and severity of TB depend on the variability
between individual host responses. Not only does the
susceptibility to active disease but also kinetics of the crosstalk
between Mtb and the human host differ. Hence, subgroups of TB
patients represent different endotypes who would benefit from a
personalized host-directed therapy in adjunct to canonical TB
drug treatment (2, 21).
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METHODS

The overview of the workflow of the study and the used statistical
methods can be found in the Supplementary Figure 1.
Data Acquisition and Preprocessing
All utilized datasets are publicly available in Gene Expression
Omnibus (GEO) data repository (22). Study-normalized datasets
were acquired from GEO via the R-package GEOquery (23).

Included studies met the following criteria: (i) they contained
WB data from untreated TB patients and healthy controls
(including LTBI) each; (ii) they contained at least eight
samples from TB patients and healthy controls each; (iii) they
were performed using platforms which measured expression of
at least 16,000 overlapping genes; (iv) they were performed using
platforms with annotations available in BiomaRt R package (24,
25). Seven datasets were used to create MDS and two independent
datasets were used for validation. Additionally, three datasets from
sepsis patients who also present strong IFN responses were
acquired to validate the presented method.

Data analysis was performed with R (26). The analysis script
including all analytical steps is available on the website: (https://
github.com/terkaterka/immune-response-to-TB). Datasets were
analyzed with R package limma for differential expression
analysis (27). Microarray data was quantile normalized within
single studies to assure comparability. During pre-processing
HGNC and ENSEMBL identifiers were mapped to mRNA-array
probe names using biomaRt ‘mapIds’ function (biomaRt version
2.24.1 (24, 25). Figures were created with the packages ggplot2
and UMAP (28, 29).

We utilized the processed data provided by the respective
studies for the integrative meta-analysis. Each dataset was
randomly split into 80%/20% partitions with the 80% being
used to train the ML algorithm and the 20% being selected for the
test set. Only samples classified by the studies as either healthy,
LTBI, affected by other diseases (OD) and samples of untreated
TB patients were included. MDS was created out of the training
sets from each study using only common genes. Nonparametric
standardization based on median and interquartile range (IQR)
values (Equation 1) was used to standardize the expression values
measured in each study, in order to minimize batch effects and
heterogeneity between the experiments.

e’i,j =
ei,j −mediane:,j

IQR:,j
(1)

Where:
e’i,j – normalized expression value for gene i,
ei,j – expression measurement of gene i,
IQR.,j – IQR for expression measurement of gene i across

all samples.
All utilized data underwent initial quality controls which

comprised outliers and artifact-detection and quality-assurance.
We ascertained that case and control cohorts clustered according to
TBand IFNstatus andnot by their studyoforigin.Umap-algorithm
(29) derivedfigures depicting the clustering pattern are found in the
Supplementary Figure 2. To test whether the transformation
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caused a bias in the GSA (for example significantly changing the
findings), we have compared, for each data set, whether the
outcome of the GSA changed after applying the transformation.
(Supplementary Method 1, Supplementary Figure 3).

GSA for Individual Patients
To perform GSA for individual patients , row-wise
z-transformation of gene expression values was applied. For
each gene, mean expression and standard deviation of its
expression were calculated for healthy individuals from every
cohort. Subsequently, the mean gene expression of healthy
individuals was subtracted from the expression measurements
of every individual present in the MDS and the result was divided
by standard deviation of gene expression for healthy individuals.
The z-score was calculated based on all samples from healthy
individuals. Thus, for each patient and gene, the expression z-
score is the number of standard deviations below or above the
average for healthy individuals. The larger the absolute value of
the z-score, the higher the deviation of the expression of that
gene from the average in the healthy population.

GSA with CERNO test (30) was performed for every donor
on the list of genes ordered by decreasing absolute z-score using
tmodCERNOtest function from the R-package tmod (31, 32) and
BTMs (16, 17).

Definition of IFN I and IFN II Modules
Two previously published sets of BTMs were utilized (16, 17). A
third custom set was generated, based on the classification of
genes as IFN I stimulated genes, as IFN II stimulated genes and
as genes activated by both IFN I and IFN II signaling pathways
according to Interferome v2.0 database (33). The sets consisted
of genes which overlapped between originally defined BTMs and
genes from the MDS classified by the Interferome v2.0 database
either as IFN I inducible genes (IFN I gene sets), IFN II inducible
genes (IFN II gene sets) or IFN I and II inducible genes (IFN I
and II gene sets). Two additional modules contained (i) all genes
classified as IFN I genes and (ii) all genes classified as IFN II
genes. The defined module sets are available on the website:
(https://github.com/terkaterka/immune-response-to-TB).

Identification of IFN+ and IFN- TB
Patient Groups
GSA was performed on the list of genes from every individual
included in MDS sorted by increasing z-score using the three
created module sets. Individuals presenting no significant
enrichment in any of the IFN I modules were defined as IFN-
low and are represented graphically as ‘IFN I-’. Individuals
presenting enrichment in at least one IFN I module were
defined as IFN-rich and are further represented graphically as
‘IFN I+’. Similarly, the ‘IFN II-’ and ‘IFN I and II-’ individuals
presented no enrichment in the IFN II or IFN I and II module
set, respectively. Those presenting respective enrichments were
defined as ‘IFN II+ or ‘IFN I+ and II+’. Ultimately, the overlaps
between study participants classified as IFN I+, IFN II+, and IFN
I+ and II+ were analyzed and their classification was compared
to IFN+ and IFN- participant groups based on the original BTMs
(16, 17).
August 2021 | Volume 12 | Article 694680
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Analysis of the Influence of Clinical
Factors on IFN Status
To investigate the influence of discrete features (sex, diabetes,
HIV, smoking status) on the IFN status the chi-square test was
performed and Cramér’s V effect size was calculated. Moreover,
the odds ratio (OR) was calculated with 95% CI and the test for
OR was conducted (H0: OR=1). For continuous variables (age),
the Mann-Whitney test was performed and rank biserial
correlation was calculated as effect size.

Principal Component Analysis
PCA was performed on the MDS as well as on the subset of MDS
containing only samples from active TB patients using R-
packages stats, pca3d and tmod (26, 31, 34, 35). The fraction of
variance (loading) explained by each factorial predictor (TB
status, IFN status, study, ethnicity, residence, HIV, OD,
mRNA-array technology) was calculated for each principal
component (PC; Supplementary Figure 4).

Correlation Between IFN Status
and Disease Severity
The dataset GSE19491 (3) was used to compare the IFN status
with the disease severity assessed by lung X-Ray studies of TB
patients and healthy individuals. The IFN status was determined
by transcriptome analysis and a GSA of all participants contained
in the study (61 TB patients, 105 healthy individuals including 69
LTBI and 36 non-LTBI, and 274 OD patients). 72 individuals from
the study underwent lung X-Ray investigation and were diagnosed
as ‘healthy’ (n = 34), ‘minimal disease (n = 14), ‘moderate disease’
(n = 13), or ‘advanced disease’ (n = 11) by physicians blinded to
the transcriptome analysis and the clinical diagnosis of the patients
(3). The X-Ray based diagnosis was compared with the IFN status
assigned on the basis of GSA.

Machine Learning
Random Forest Models With 10-Fold
Cross Validation
Random Forest (RF) models were generated using R package
randomForest (36, 37) to classify TB patients with or without
IFN-rich immune response and non-TB individuals including
uninfected, LTBI and OD. Class balancing was used to retain the
proportion of one case to three control individuals by down-
sampling of the majority class. 10-fold cross-validation using R
package caret was implemented to test the models and their
performance was evaluated by creating receiver-operator
characteristic (ROC) curves using R package pROC (38).

Determination of the Signature Size
We ranked the transcripts found in either model according to the
amount of statistical importance in the RF model to identify a
cut-off for the number of transcripts required to effectively
discriminate TB patients from non-TB samples. TB IFN+ and
TB IFN- signatures were defined consisting of top (i) 5, (ii) 7,
(iii) 10, (iv) 20, (v) 50 or (vi) 200 ranked transcripts, and new
models which were trained only on the transcripts that surpassed
the cut-off threshold were created. The new models were tested
Frontiers in Immunology | www.frontiersin.org 4
using 10-fold cross validation within the training MDS and their
performance was evaluated using ROC plot. The optimal
signature size was chosen when the increase of the number of
selected transcripts ranked by highest statistical importance did
not cause further significant improvement of signature’s area
under curve (AUC) in classification of TB patients and non-TB
disease controls.

Determination of the TB IFN+ and
TB IFN- Transcriptional Signatures
For the identification of TB IFN+ and TB IFN- signatures two
new class balanced RF models retaining the proportion of one TB
to three non-TB cases were trained using the subsets of the
complete training MDS subsets containing (i) all TB IFN+ and
non-TB (Signature Model 1), (ii) all TB IFN- and non-TB
(Signature Model 2). A signature consisting of the 20 top
ranking transcripts from the Signature Model 1 was defined as
IFN+ signature. A signature of 50 top ranking transcripts from
the Signature Model 2 was defined as IFN- signature. Obtained
TB IFN+ and TB IFN- signatures were tested on the test MDS
and their performance was evaluated by a ROC curve analysis.

Validation of the TB IFN+ and TB IFN- Signatures
The obtained TB IFN+ and TB IFN- signatures were tested on
the external dataset from Cai et al. (15) and Blankley et al. (39)
and their performance was evaluated by a ROC curve analysis.
The performances of IFN+ and IFN- TB signatures in detection
of sepsis patients were tested to assure that the signatures were
disease and not only IFN-response specific.

Influence of Time Post Infection of
Cynomolgus Macaques on IFN Status
To determine whether the IFN status in individuals with active
TB is the result of time p.i., a longitudinal dataset was procured
to assess the changes in the WB gene expression after Mtb
infection in Cynomolgus macaques (GSE84152 (18);, acquired
from the GEO database. The dataset contained mRNA-array
data collected from 38 macaques at two time points before Mtb
infection and at days 3, 7, 10, 20, 30, 42, 56, 90, 120, 150, 180 p.i.,
when the diagnosis of TB vs LTBI was made. The samples were
normalized and z-scores were calculated using the above-
described method. GSA using BTMs was performed on
samples from individual macaques. The samples were assigned
IFN I+/IFN I- status which was compared with their binary
clinical diagnosis and severity of lung inflammation.

Identification of Other TB Endotypes
To determine other endotypes of TB the KEGG (19, 40) and
Hallmark (20) gene set collections were investigated by CERNO
enrichment method. At first, the results of AUC values from
enrichment of each pathway for each patient were extracted.
Then, a PCA was performed on a matrix of AUC values and the
previously defined IFN+ group was labeled on 2D projection
(Supplementary Figure 5). To extract other endotypes the
eigenvalues of the first PCA component were calculated for all
KEGG pathways as well as for all Hallmark MSigDB gene sets
and IFN modules across active TB patients. Next, the Spearman
August 2021 | Volume 12 | Article 694680
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rank correlation coefficient was calculated between each KEGG
or Hallmark pathway and previously defined IFN modules.
Pathways not showing a statistically significant correlation with
IFN modules were considered as new TB endotypes.
Additionally, we tested whether the proportion of individuals
presenting enrichment (adjusted p-value<0.05, Benjamini-
Hochberg correction (41); in given enriched gene set and in
the IFN gene set was independent using chi square test.
RESULTS

GSA Reveals Individual Variability in
Transcriptional Profiles Among TB
Patients Within and Between Cohorts
The MDS was generated from seven publicly available datasets
using IQR based standardization (Equation 1) for successful
integration (Supplementary Figures 2, 3). We conducted a GSA
for every donor in the MDS on the list of genes sorted by z-score-
transformed expression values. Despite visible trends including
strong enrichment in T-cell, IFN response and inflammation
modules, the enrichment profiles differed between individual TB
patients within cohorts which was reproduced between cohorts
(Figure 1). The group of modules presenting substantial variability
between the samples in the enrichment included IFN related
modules, generally considered characteristic for TB patients.

Enrichment of IFN Signaling Gene Sets in
the Majority of TB Patients
Given the critical role of IFN type I in the pathogenesis of TB, we
focused on the variability of the enrichment of the IFN I-related
Frontiers in Immunology | www.frontiersin.org 5
modules among TB patients since numerous studies have
identified IFN I signaling as dominant mechanism in TB (3, 4,
7). The roles of IFN I and IFN II responses in TB differ markedly:
IFN I pathways are generally considered detrimental while IFN II
is generally assumed beneficial (42). Since many of the IFN
stimulated genes (ISGs) can be stimulated by both IFN I and IFN
II signaling, we compared the IFN I and IFN II responses in TB
patients. We created novel module sets based on the BTMs (16,
17) as well as on the assignment of genes as ‘IFN I inducible’,
‘IFN II inducible’, and ‘IFN I and II inducible’ by Interferome
v2.0 database (33). We conducted a GSA with the modules
containing genes whose activity was inducible by IFN I signaling
and assigned an IFN I status to TB patients based on the
following enrichment results: TB patients presenting no
significant enrichment in IFN I modules were termed ‘IFN-low’
(‘IFN I-’ for the purpose of graphical representation in this
manuscript) and those presenting enrichment were designated as
IFN-rich (‘IFN I+’). Out of 457 TB patients, 70% were classified as
IFN I+, and 30% as IFN I-. In a similar way we constructed IFN II
modules and determined their enrichment in individual TB
patients. Intriguingly, enrichment for the modules related to IFN
I and IFN II signaling were frequently shared by the same TB
patients. Out of 319 TB patients presenting enrichment in IFN I
modules (IFN I+ patients), 267 (84%) also showed enrichment in
IFN II modules resulting in substantial overlap between IFN I and
IFN II induction.

In the following, we use the terms ‘IFN+ patient group’ and
‘IFN- patient group’ based on the enrichment defined using IFN
I modules since we focus on IFN I responses, however the high
redundancy within the enrichment in IFN II modules implied
that that they refer to TB patients with both IFN I and IFN II
FIGURE 1 | GSA identifies substantial variability among TB patients. Columns show the transcriptional profiles of individual patients and blue squares represent p-
values from CERNO test in modules described by the row names. The intensity of the color is proportional to the p-value of enrichment. Study cohorts are separated
by vertical purple lines. The horizontal purple lines mark IFN modules. Clearly, in every studied cohort there are individuals presenting enrichment in IFN gene sets as
well as presenting no significant enrichment in those sets.
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signaling enrichment in 84% of the cases. Our terminology of
‘IFN+’ status is not to be confused with the abundance of IFN I
signalingmolecules in blood cells since abundance of ISGs in blood
could be related to events at the sites of infection and should be
interpreted only as prevalence of IFN inducible transcripts among
the significantly regulated genes inTBpatients compared to healthy
individuals. Similarly, ‘IFN-’ status does not imply a lack of
upregulated IFN or ISGs in blood of TB patients but a lack of
significant enrichment of IFN modules in an individual sample.

To benchmark the modules, we conducted a GSA on the
MDS and compared the enrichment status with the differences in
the expression levels of several ISGs, among others the BATF2
gene, described as an important ISG (43, 44) which were
significantly higher in the IFN+ compared to IFN- patient
groups (Figure 2A). This indicates that genes identified as
crucial for classification of TB patients had different activities
in IFN+ and IFN- individuals.

Finally, we tested whether other factors influence predictors of
IFN+ status among TB patients. Categorical variables, i.e., sex,
diabetes, HIV and smoking status were tested using a chi-square
test. Possible association with age was tested using a Mann-
Whitney test. For all these investigated factors we did not
observe differences and dependencies regarding IFN status
(p-value>0.05).

PCA Supplemented by GSA Indicates
Influence of T-Cell and NK-Cell Activity
on IFN Status
To further benchmark the implemented division into IFN+ and
IFN- groups we tested the differences between the TB patients
categorized into the two groups using PCA. The results indicated
that although the clusters of IFN+ and IFN- TB patient groups
overlapped, the two centers of the clusters were geometrically
shifted in regards to each other as best shown by PC2 and PC7
(Figure 2B, Supplementary Figure 6). GSA applied on genes
sorted by their weights in these PCs resulted in a list of
significantly enriched BTMs which were dominated by
modules related to inflammatory response, induced by IFN
type I signaling, and T cells, the main producers of IFN type II
(Figures 2C, D). This result based on unsupervised analysis
strengthens the proposed distinction between gene expression
profiles of IFN+ and IFN- TB patient groups.

IFNR and ISG, but Not IFNa, IFNb or IFNg
Genes Proper Are More Abundant in the
IFN+ Than in IFN- TB Patient Groups
Enrichment of ISGs in WB does not imply elevated abundance of
IFN transcripts in the same tissue but could be related to
increased transcription of IFN e.g., at the site of infection. We
tested whether the observed enrichment was related to increased
expression of the actual IFN a, b or g genes, IFN receptor genes
(IFNR), or ISGs. To avoid using the genes on which the division
into IFN+ and IFN- patient groups was based, we identified
genes described in IFN signaling pathways, but not included in
the original BTMs (16, 17), and determined whether their
expression levels varied significantly between IFN+ and IFN-
TB patient groups. There were no significant differences of
Frontiers in Immunology | www.frontiersin.org 6
mRNA-transcript levels of the actual IFN a, b or g genes
(IFNA2, IFNB1 or IFNG) between IFN+ and IFN- TB patient
groups. In contrast, differences were observed in several of the
IFNR (e.g., IFNAR2, IFNGR2) and ISGs (e.g., CXCL10) between
IFN+ and IFN- TB patient groups (Figure 3, Supplementary
Figures 7A–C). Hence, differences in IFN+ and IFN- TB patient
groups were not a result of increased expression of the actual IFN
genes in the WB. Additionally, the differential expression of the
IFNR genes and ISGs outside of the defined gene sets confirmed
that the transcriptional activation of IFN signaling pathways
differed between the patient groups and was not an artifact of the
method used for the division.

Interestingly, despite IFN type I and type II signaling
pathways being the most studied in the immune response to
TB, we found that also IFN l receptor gene (IFNLR1), but not
IFN l gene (IFNL) itself, which both belong to type III IFN
signaling pathway was significantly overexpressed in IFN+
compared to IFN- TB patients or healthy (Supplementary
Figures 7D, E). IFN l has been described to have largely
overlapping expression and function to IFN type I and to be
ubiquitously expressed on epithelial surfaces such as in
respiratory tract (45).

IFN+ Status Correlates With Severe Lung
Pathology in TB Patients
Based on X-Ray images of their lungs, Berry et al. (3) assigned 80
of their study participants to one out of four groups: (i) no
pathology, (ii) minimal pathology, (iii) moderate pathology, and
(iv) advanced pathology by three independent physicians
blinded to mRNA-array data and clinical diagnosis of the
donors. We defined the IFN+/IFN- status of these 80
individuals based on GSA and compared them with the X-Ray
based on pathologic classifications. 21% of donors classified into
‘no disease’ category presented IFN+ status (Figure 4). Among
patients with ‘minimal disease’ 46% were IFN+ TB patients, in
‘moderate disease’ category 85% and in ‘advanced disease’
category 100% patients were IFN+. Pairwise comparisons of
IFN+ patients in the four categories indicated a correlation
between the enrichment in IFN I gene set and the severity of
pulmonary pathology of TB patients. This agrees with and
extends previous findings of Berry et al. (3) showing that the
transcriptional signature of blood cells correlates with extent of
pathology in TB patients.

Gene Signatures in IFN+ and
IFN- TB Patient Groups Are Distinct
Gene signatures are frequently used to differentiate between TB
patients and healthy individuals (8, 9, 46). We created random
forests (RF) models trained on subsets of IFN- and IFN+ TB
patients and non-TB controls and tested performances of five
different sizes of gene signatures derived from these models to
determine whether IFN- and IFN+ TB patient groups’ signatures
differed. The optimal balance between signature size and model
performance was 20 transcripts in case of the IFN+ and 50
transcripts in case of the IFN- signature (Supplementary
Figure 8 and Supplementary Table 1). We then derived the two
signatures from the training MDS and tested their performances
August 2021 | Volume 12 | Article 694680
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with respect to identification of TB patient groups in the test MDS
and two independent TB validation data sets, as well as in the
identification of sepsis patients who also present IFN responses.
This strategy allowed us to determine whether the signatures were
TB-specific and not only IFN-specific. The study scheme is
presented in the Figure 5A and the performance of the IFN+ and
IFN- TB signatures in cross-validation in the Figure 5B.

The IFN- signature showed a slightly better overall
performance in the identification of TB patients (AUC = 0.86,
95% CI = 0.82-0.90; Figure 5C) in the validation set over the
IFN+ TB signature (AUC = 0.84, 95% CI = 0.80-0.89;
Frontiers in Immunology | www.frontiersin.org 7
Figure 5C). Even though greatest sensitivity and specificity
were obtained by the IFN+ signature in the classification of
IFN+ TB patients, this model had lower specificity when
discerning between IFN- and IFN+ TB patients against OD
patients as well as the between the IFN- TB patient groups
versus healthy individuals.

Performance of IFN+ and IFN- Signatures
on Validation Datasets
We next validated the IFN- and IFN+ RF models on two
independent datasets [(15, 47); Table 1]. In the first validation
A B

C D

FIGURE 2 | Differences in the gene expression patterns of IFN- and IFN+ TB patients. (A) Normalized expression of the BATF2 gene is significantly higher in IFN+
than IFN- TB patient or healthy groups. The p-values were calculated for pairwise comparisons using Wilcoxon test. (B) PC2 and PC7 present the difference in the
gene expression data of IFN+ and IFN- TB patient groups from the training MDS. (C) GSA performed on the list of genes from TB patients from training MDS sorted
by decreasing weights in PC2. (D) GSA performed on the list of genes from TB patients from MDS sorted by decreasing weights in PC7. GSA indicates that
modules related to T cells and inflammation are responsible for differences in IFN status of the TB patients.
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set of 21 samples from China containing IFN+ TB patient group
and healthy individuals, both models achieved robust
discrimination between TB patients and healthy individuals
(Figure 5D). In contrast, on the set of 202 samples containing
a mixed population of IFN+ TB patient group, sarcoidosis
Frontiers in Immunology | www.frontiersin.org 8
patients and healthy individuals of different ethnicities from
London, the IFN- TB signature failed to correctly discriminate
the IFN- TB patient group from patients with sarcoidosis
(Figure 5E). Even though the IFN- signature was more
universal and stable in discriminating TB patients against
healthy and OD controls, it was insufficient for discrimination
of TB from sarcoidosis.

Additionally, we used the TB IFN+ and TB IFN- signatures
on datasets from sepsis patients to test whether our signatures
did not only detect the IFN responses but also were specific for
TB. Both IFN+ and IFN- TB signatures were not sensitive to
sepsis (Supplementary Figure 9).

Influence of Time After Infection
on IFN Status
We embarked on clarifying whether the IFN status of TB patients
was influenced by time p.i. TB patients are diagnosed at various
time periods of unknown lengths p.i. Therefore, we interrogated
the impact of time p.i. between infection and diagnosis on IFN
status. To this end, we harnessed a data set from a controlled Mtb
infection experiment of 38 Cynomolgus macaques (18). In this
study, animals were infected with Mtb at a fixed time point and
blood samples were collected at 11 time points within 6 months
p.i. The WB transcriptome had been profiled by mRNA-array at
each time point and diagnosis of infection outcome was based on
clinical definitions of active TB and LTBI, as well as on the basis
of total lung inflammation measured by positron emission
tomography - computed tomography (PET-CT) as abundances
of [18F] fluorodeoxyglucose (FDG) as surrogate marker of
severity of pulmonary pathology (18). Sixteen out of the 38
infected macaques developed active TB while 22 remained with
LTBI during the time frame of the study (18).
FIGURE 3 | Expression of IFN inducible CXCL10 gene, IFNAR2 and IFNGR2 receptor genes in IFN+ and IFN- TB patient groups and healthy controls. Significant
differences have been observed between the expression of IFN-inducible genes between IFN- and IFN+ TB patients. The p-values were calculated for pairwise
comparisons using Wilcoxon test.
FIGURE 4 | Relationship between IFN status and lung pathology of TB
patients. The vast majority of TB patients with moderate (p = 10-3) and
advanced (p = 4∙10-4) pathology is IFN+ whereas absence of pathology is
most prevalent in the IFN- TB patient group, indicating that the IFN endotype
is associated with a higher level of pathology in TB patients. The p-values
were calculated for pairwise comparisons using Fisher’s exact test for count
data with Bonferroni correction.
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At each time point of the study, we assigned these animals
either the IFN+ or IFN- status based on the GSA. We observed
the peak of the type I IFN response between the 20th and 42nd
day p.i. Intriguingly, enrichment in IFN modules was
independent from the disease status: between days 20 and 42
p.i., the majority of animals which developed active TB disease as
well as those which remained asymptomatic presented strong
enrichment in IFN gene sets (Figure 6, Supplementary
Figure 10). Animals progressing to active TB had a prolonged
activation of IFN type I response in comparison to animals with
LTBI: 75% of them presented enrichment with p-value < 0.0001
Frontiers in Immunology | www.frontiersin.org 9
at day 56 p.i. compared to 27% with LTBI. Average numbers of
time points in which animals with active TB presented
enrichment in “IFN type I” gene set with p-value < 0.0001
were 5.9 compared to 4.6 time points in which LTBI animals
presented the enrichment in the same module. Additionally, the
animals with active TB which had to be at certain time point
excluded from the study due to high pathology presented peak of
the “IFN type I” gene set enrichment in the last measurement
before the exclusion from the experiment, which indicates that
the strong IFN enrichment corresponded with heavy disease
manifestation. We conclude that the strong regulation of IFN
A

B C

D E

FIGURE 5 | Performance of IFN+ and IFN- signatures on test and validation datasets. (A) The validation scheme. To assure the performance of the method four
types of validation were used. (B) ROC curve presenting the trade-off between sensitivity and specificity of the signature derived from training set consisting of
transcriptomic profiles from IFN- TB patients and non-TB controls (healthy, LTBI and OD) and tested on the test set. (C) Signatures’ performance in classifying TB
patients in the test MDS containing IFN+ TB, IFN- TB, healthy and OD controls. (D) Signatures’ performance in classifying TB patients in the validation dataset from
China containing only IFN+ TB patient group and healthy controls. (E) Signatures’ performance in classifying TB patients in the validation dataset derived from the samples of
individuals from London, including IFN+ TB patient group, sarcoidosis patients and healthy individuals. Error bars represent 95% confidence intervals for mean value.
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signaling genes is not specific for active TB, yet, it was present for
a longer time in animals with active TB. The enrichment in IFN
modules was not correlated with time p.i. In fact, in the LTBI
animals the IFN response decreased after a peak between days 20
and 30 p.i. (Figure 6 and Supplementary Figure 10) while in
animals with active TB the enrichment remained on a high level
after the peak between the days 20 and 42 p.i.

Gene Set Analysis Suggests Additional
Potential Endotypes in TB Patients
Given the differences between groups of TB patients classified as
IFN+ and IFN- using GSA we hypothesized that the IFN+ TB
endotype can be characterized by additional properties other
than intensities of IFN responses, and that potentially also other
endotypes of TB patients may exist, which are not correlated with
Frontiers in Immunology | www.frontiersin.org 10
the IFN responses. To this end, we performed an explorative
analysis targeted at discovering gene sets which differ in their
enrichment between individual patients, accounting for their
correlation to IFN responses. We calculated the correlation
between eigengenes of the KEGG and MSigDB Hallmark gene
set collections and IFN gene set (first PCA components). These
databases have a broader (although less specific) scope than the
BTMs. Next, we performed GSA using those gene set collections
and tested the independence from IFN gene set enrichment in
individual proportions. For several of them, the enrichment in
individual patients strongly correlated (positively or negatively)
with the IFN status. This was the case among others for
“Hallmark p53 pathway” module (correlation coefficient of the
eigengenes r=0.98), “NF-kappa B signaling pathway” (r=0.96),
“Hallmark complement” (r=0.96), “T cell receptor signaling
TABLE 1 | List of publicly available studies acquired for the analysis.

MDS

Accession number Citation Study location Number of cases

GSE19491 (3) London, South Africa 54 TB
96 OD
93 CTRL

GSE47673 (6) Malawi, South Africa 215 TB
194 OD
175 CTRL

GSE28623 (7) The Gambia 46 TB
62 CTRL

GSE34608 (10) Germany 8 TB
18 sarcoidosis
18 CTRL

GSE42834 (4) London 35 TB
91 OD
113 CTRL

GSE39941 (48) South Africa, Malawi, Kenya 114 TB
175 OD
57 CTRL

GSE73408 (49) USA 35 TB
39 pneumonia
35 CTRL

Validation data sets

Accession number Citation Study location Number of cases

TB

GSE54992 (15) China 9 TB
12 CTRL

GSE83456 (39) London 45 TB
47 EPTB
49 OD
61 CTRL

Sepsis

GSE13904 (50) USA 32 sepsis
67 septic shock
22 SIRS
18 CTRL

GSE9960 (51) Australia 70 sepsis
GSE28750 (52) Australia 27 sepsis

30 post-surgical sepsis
20 CTRL
August 2021 | Volu
OD, patients with disease other than TB; CTRL, healthy control patients; EPTB, extrapulmonary TB patients; SIRS, systemic inflammatory response syndrome.
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pathway” (r=-0.94), “Th17 cell differentiation” (r=-0.94).
Likewise, the proportion of patients presenting enrichment in
those modules significantly overlapped with the enrichment in
the IFN gene set (p-value from chi2 test <0.05). This suggests that
the “IFN-rich” endotype is distinguished not only by its
pronounced IFN response but also by pronounced NF-kappa B
signaling and complement system signaling, while the genes
belonging to T cell receptor signaling pathway and Th17 cell
differentiation are strongly down-regulated in this endotype
(Figure 7A and Supplementary Table 2). This allowed us to
additionally characterize the IFN+ TB endotype not only based
on its IFN response but also on other characteristic gene
expression features presented by the TB patients with a
pronounced IFN response.

We also identified several gene sets which were not correlated
with IFN responses, but which nonetheless showed a significant
variability in individual patients while at the same time showing
differences in enrichment between patients and healthy controls.
The enrichment in those modules was much weaker
(p-value <0.05 before Benjamini-Hochberg adjustment; p-value
>0.05 after the adjustment) and occurred far less commonly
among TB patients from different cohorts than the enrichment in
the IFN modules. To unravel these, for each given gene set, we
tested the correlation of enrichments across all TB patients
Frontiers in Immunology | www.frontiersin.org 11
between the given gene set and the IFN response. This yielded
16 gene sets (out of 388 analyzed in total) which showed
enrichment (p-value <0.05 before Benjamini-Hochberg
adjustment) in at least 10% of TB patients in the MDS and
with no enrichment in the remaining TB patients and, at the
same time, no significant correlation with the IFN response
(p-value ≥ 0.05; Figure 7C). The collection of those 16 gene
sets could be grouped into 4 TB endotypes within which the
enrichment of the gene sets among the TB patients was
correlated (Figure 7C). Since such defined endotypes were
characterized by correlated, weak enrichment in gene sets with
unclear biological connection that we could identify, we named
them “Weak TB endotype I-IV” (“WTBE I”, “WTBE II”, “WTBE
III”, and “WTBE IV”). The WTBE I, WTBE II, and WTBE III
each included at least one gene set which is related to
mechanisms that have been previously described as important
in TB disease and could lead to diverse clinical characteristics of
TB among patients: (1) calcium reabsorption, (2) insulin
secretion, and (3) amino acid (D-Arginine and D-ornithine)-
metabolism (53–55).

We also observed a spectrum of responses presenting strong
enrichment in various subgroups of patients, which only partially
overlapped with the IFN endotype. To narrow down the results,
we focused only on the responses which were present in more
FIGURE 6 | Enrichment of the “IFN I” module in individual macaques over time p.i. Horizontal axis corresponds to time p.i.; vertical axis shows the –log10 of FDR in
the enrichment (higher values mean lower adjusted p-values; values above the blue line are significant at p < 0.05). Each line corresponds to one animal. Top panel
shows macaques which developed active TB disease; lower panel shows macaques which did not develop disease.
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than 10% of the TB patients in MDS, where the 10% consisted of
TB patients from at least 6 out of 7 investigated cohorts.
Furthermore, to exclude gene sets linked strongly to the IFN
endotype, we considered only gene sets which were enriched
independent of IFN gene set enrichment. Nine modules
presented strong enrichment correlated with r<0.5 and chi2 p-
value > 0.05: “platelet activation - actin binding”, “PLK1
signaling events” , “Mitochondrial Stress/Proteasome”,
“Platelets”, “cell cycle”, “Erythrocytes”, “Monocytes”, “mitotic
cell cycle in stimulated CD4 T cells”, “Hallmark heme
metabolism” (Figure 7B and Supplementary Table 2). The
role of platelets has been previously described as detrimental in
primary progressive TB (56).
DISCUSSION

Using a novel approach to transcriptome analysis, we discovered
individual variability among TB patients across seven cohorts,
Frontiers in Immunology | www.frontiersin.org 12
in particular with respect to IFN responses. Principally, IFN
responses are induced by IFN type I or IFN type II which cause
harmful or beneficial sequelae, respectively, in TB.We found that
IFN responses were not equally distributed amongst TB patients.
Rather, in a subgroup of TB patients, IFN responses were the
dominant immune responses, which we defined as IFN+ group
of TB patients while they were less pronounced in the group
defined as IFN- group of TB patients. The distinct population of
TB patients who did not develop IFN responses detectable by
GSA presented less severe lung pathology. The findings were
complemented by non-human primate studies which revealed
that enrichment in IFN gene sets is not a result of time p.i.
Finally, we determined that the gene signature from the IFN- TB
patient group provided comparable, slightly higher sensitivity
and specificity for overall diagnosis of TB, primarily because of
better classification of IFN- TB patients from OD patients, and
analyzed further mechanisms differentially regulated between
subgroups of TB patients which should be further explored as
new potential TB endotypes with different underlying host
A

B

C

FIGURE 7 | Exploratory analysis suggests additional potential endotypes of TB. The enrichment in KEGG and Hallmark MSigDB gene collections presented
variability among individual TB patients which was strongly correlated (A), completely uncorrelated (C) or moderately correlated but occurring only in a not-significant
proportion of patients with IFN+ status (B). Red color in each plot represents high eigen value from PC1 for particular gene set and patient, while blue shows low
eigen value. Colors are normalized row-wise within panels.
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immune responses. Our results revealed various enrichment
patterns among TB patients within cohorts, which could be
reproduced between cohorts. The dominant patterns included
enrichment of modules including T cells, B cells, innate
immunity, IFN signaling, monocytes and erythropoiesis.
However, 30% of the TB patients did not present enrichment
in IFN related modules.

Two types of IFN signaling are considered crucial for the
outcome of TB: (i) the IFN I signaling pathway is thought to be
mostly detrimental and (ii) the IFN II pathway is considered to
play a major role in protection (42). Yet, our analyses revealed
that the majority of TB cases shared IFN I and IFN II response
enrichments indicating that detrimental and beneficial
mechanisms coexist in active TB disease in a fine-tuned way.
Consistently, lung pathology was far more prevalent in the IFN+
than IFN- TB patient groups. Possibly, the balance between both
types of IFN determines the outcome of the infection.

Unsupervised analysis identified that samples collected from
IFN- and IFN+ TB patient groups cluster together but are shifted
with regard to each other. GSE on the weights of genes revealed
contribution of T cells, which are potent producers of IFN g and
IFN a cytokines (42). PCA of samples from TB patients showed
that even though the data had been normalized, differences
between datasets from different studies still stratified the data
(Supplementary Figure 4D).

Our analysis demonstrates that differences in the enrichment of
IFN relatedmodules is not a consequence of varying abundances of
IFN a, IFN b or IFN g in WB since the IFN+ and IFN- patient
groups presented similar expression of IFN a, IFN b and IFN g
genes. Rather, significant differences in the expression of IFNa and
IFN g receptors and ISGs such as CXCL10 between the IFN+ and
IFN-TBpatient groupswere critical.Weconclude that regulationof
geneexpression in IFN+and IFN-TBpatient groupswasnot caused
by differential expression of IFN a, b or g, but by differential
expression of IFNR genes and ISGs.

The abundance of the transcript BATF2 contributed to the
differences in enrichment observed between IFN+ and IFN- TB
patient groups. The BATF2 levels were significantly higher in
IFN+ than IFN- TB patient groups. This leucine zipper
transcription factor has been shown to exacerbate lung
pathology in an experimental mouse model (43) and has been
suggested as a single biomarker for TB (44). We conclude that
BATF2 is regulated by IFN and primarily detrimental in TB.

We defined diagnostic signatures of IFN+ and IFN- TB
patient groups using ML methods. The selected IFN+ signature
comprised 20 transcripts, while the optimal IFN- signature
consisted of 50 transcripts. 7 transcripts were present in both
IFN+ and IFN- TB signatures: GBP5, AIM2, GBP2, POLB,
WARS1, LHFPL2, DUSP3. Several of these genes are related to
IFN-signaling which emphasizes the important role of IFN in TB
even in patients in whom IFN signaling is enriched marginally.

The IFN+ and IFN- signatures were assessed on the test MDS
and validated on two independent datasets, one including
healthy controls and TB patients from China (15) and one
including healthy controls as well as TB and sarcoidosis
patients from an ethnically diverse population in London (47).
Frontiers in Immunology | www.frontiersin.org 13
The signature derived from the IFN+ TB patient group was
highly sensitive and specific towards IFN+ TB patient groups,
however its performance was unsatisfactory with respect to
discriminating between the IFN- TB patient group from
healthy, and in particular against patients with OD. The IFN-
TB signature presented slightly higher AUC values for
identification of TB patients in the test set, but lower ones in
the two validation sets. To the advantage of the IFN- TB
signature, its classification was characterized by similar
sensitivity and specificity for discriminating IFN- and IFN+
patient groups against healthy, OD and all non-TB controls.
The exception was the discrimination of TB versus sarcoidosis
patients, which was only satisfactory for the IFN+ TB signature.
TB and sarcoidosis have been shown to present a remarkably
high overlap between biomarkers that discriminate versus
healthy controls (10). In summary, our results demonstrate that:
(i) the IFN+ and IFN- TB patient groups were characterized by
different signatures; (ii) the IFN- TB signature identified the IFN+
TB patient group whereas the IFN+ signature failed to diagnose the
IFN-TB patient group; (iii) even though the TB IFN- signature was
more stable in detecting TB patients, it failed to differentiate
between IFN+ TB patient group and sarcoidosis patients.

Using datasets from the macaque TB model from Gideon
et al. (18) we probed whether the IFN status in TB can be
explained by the time p.i. The heterogeneity in IFN responses
was observed in the animals independent of the severity of TB
disease and did not correlate with the time p.i. We observed a
slight overall increase of IFN responses between 20- and 40-day
p.i. corresponding with the findings of Gideon et al. (18). During
this time period adaptive immunity kicks in (57). The effect size
and p-value of enrichment in IFN gene sets in given animals did
not correspond with the establishment of active TB or LTBI and
varied among diseased as well as LTBI animals. Thus, a strong
IFN response upon Mtb infection did not correlate with a
particular stage of infection and progression to active disease,
and its dynamics was highly individual.

In the study of Berry et al. (2010) the transcriptomes of eight
out of 52 LTBI patients clustered with profiles of TB patients and
four out of 21 TB patients presented transcriptional profiles
resembling those of LTBI. Similar observations were reported by
Blankley et al. (47) who determined transcriptional profiles of 61
healthy donors, 47 patients with extrapulmonary TB, 45 patients
with pulmonary TB and 49 donors with sarcoidosis. They found
that a subset of patients with TB clustered with the healthy
donors. The GSA enrichment scores of modules related to IFN
responses reflected the extent of symptoms presented by the
study participants (47). As suggested by the recent studies of Zak
et al. (8), Suliman et al. (9) and Singhania et al. (58), classification
as ‘TB’ and ‘non-TB’ by clinical assessment and transcriptomic
profiling can be confounded by subclinical incipient TB and early
stages of progression to active TB disease. Transcriptomic
profiling, but not clinical diagnosis, identifies subclinical TB
and risk of progression to active TB within 12 months (8, 9).
Our study further emphasizes the need to better define the
continuum from LTBI to subclinical TB to active TB disease
and also to distinguish between different endotypes of active TB.
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To this end, we next explored the possibility of further novel,
molecular endotypes of TB, which are not directly linked to IFN
responses. We found that TB patients differ in the activity of
genes associated with calcium signaling, insulin signaling and
amino acid metabolism. These findings introduce an exciting
new avenue of exploring pathways linked to TB. We are aware
that our results are based on lack of an observed correlation with
the IFN response – and thus might indicate lack of evidence for
association with IFN rather than evidence of lack. However,
given the large number of patients on which we based our study,
we feel reasonably confident that if such effect exists, its
magnitude must be small. Clearly, as these findings are based
on an exploratory analysis, a further validation targeted directly
at our hypotheses will be essential. The concept of endotypes to
describe subgroups of patients on the basis of distinct
transcriptomic, epigenetic or metabolic features has been
applied to several diseases, most recently also to TB (21). A
combination of a specific endotype and certain environmental
factors has important impact on the disease phenotype. It is
likely that different endotypes require distinct types of host-
directed therapy (2). Our data support the definition of
molecular endotypes of TB with the IFN subtypes described
here as major but not exclusive contributors.

Although our study provides deeper insight into individual
variability among TB patients at the level of gene expression,
there are limitations: first, human cohorts are highly variable due
to numerous factors including genetic variability, conditions of
life and circumstances of infections (such as coinfections, the
frequency of reinfection with Mtb, and time to and reason of
diagnosis). Additional confounders include varying study
designs and conduct, as well as technical variation. To partly
account for these confounders, we validated our results in several
ways including cross-validation and leaving 20% of the acquired
studies unprocessed for independent testing, acquisition of
independent validation datasets and testing the gene signatures
of IFN+ and IFN- TB on a different disease - sepsis. Application
of our data collection, normalization and analytical methods in
numerous external datasets revealed that the proposed analytical
framework is robust and can be used in other multi-cohort
studies. Our dataset collection selected out of published TB
datasets and newly defined sets of IFN I, IFN II as well as IFN
I and II inducible genes can be accessed on the website: (https://
github.com/terkaterka/immune-response-to-TB).

An important conclusion from our study is that TB disease
signatures are confounded and biased if they do not account for
individual variability between study participants. The complexity
of human TB presenting a continuum from LTBI to subclinical
TB to different forms of active TB disease implies that the
Frontiers in Immunology | www.frontiersin.org 14
assignment of TB patients into one of the two general classes:
‘diseased’ or ‘healthy’ is insufficient. Future focus should lie on
detection and exploration of other than IFN determinants of the
course of TB in individual patients. It is thus most likely that
active TB manifests as different endotypes which may need
personalized treatment regimens as alternative or in adjunct to
canonical treatment regimens. Notably, host-directed therapy will
most likely differ in these two endotypes of active TB described
here with the IFN+ group likely benefiting from IFN dampening
and the IFN- group likely from IFN promoting therapy.
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