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Complement C4, a key molecule in the complement system that is one of chief
constituents of innate immunity for immediate recognition and elimination of invading
microbes, plays an essential role for the functions of both classical (CP) and lectin (LP)
complement pathways. Complement C4 is the most polymorphic protein in complement
system. A plethora of research data demonstrated that individuals with C4 deficiency are
prone to microbial infections and autoimmune disorders. In this review, we will discuss the
diversity of complement C4 proteins and its genetic structures. In addition, the current
development of the regulation of complement C4 activation and its activation derivatives
will be reviewed. Moreover, the review will provide the updates on the molecule
interactions of complement C4 under the circumstances of bacterial and viral infections,
as well as autoimmune diseases. Lastly, more evidence will be presented to support the
paradigm that links microbial infections and autoimmune disorders under the condition of
the deficiency of complement C4. We provide such an updated overview that would shed
light on current research of complement C4. The newly identified targets of molecular
interaction will not only lead to novel hypotheses on the study of complement C4 but also
assist to propose new strategies for targeting microbial infections, as well as
autoimmune disorders.
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INTRODUCTION

Complement system plays a pivotal role in human innate immunity defending microbial infections,
eliminating foreign pathogens, and maintaining tissue homeostasis. The activation of the
complement system induces the increased production of cytokines, chemokines, and other innate
defense molecules. In addition, complement activation fragments (e.g., anaphylatoxin C3a and C5a)
significantly increased the recognition of antigens by follicular dendritic cells and B cells and
induced the humoral adaptive immune response and production of antibodies and reactive T cells.
Moreover, complement system functions as an effector on the clearance of soluble immune
complexes and cell debris, which otherwise could induce an immune response against auto
antigens and potentially trigger autoimmunity (1–3). Deficiency or dysfunction of the
complement system could cause infections in adult patients (4) and also predispose individuals
org July 2021 | Volume 12 | Article 6949281
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to autoimmune diseases, such as rheumatoid arthritis (RA),
systemic sclerosis, and systemic lupus erythematosus (SLE) (5).

Complement component C4 (Mw = ~200 kDa), an essential
component in complement system, plays an indispensable role in
the activation of classical and lectin complement cascades. It is a
disulfide-bonded three-chain glycoprotein, consisting of an a-
chain (95 kDa), a b-chain (75 kDa), and a g-chain (30 kDa)
(Figure 1) (6, 7). In the process of the activation of classical
complement pathway, C1q from C1 complex [C1q-(C1r)2-(C1s)2]
recognizes antigen–antibody immune complexes or certain
membrane-bound structures, e.g. C-reactive protein (CRP) or
lipopolysaccharides (LPS), resulting in the transition from C1s
zymogen to an active C1s repositions, which would be able to
interact with sulfotyrosine residues on C4 (8, 9). Similar to the
Frontiers in Immunology | www.frontiersin.org 2
activation of classical complement pathway, the lectin
complement pathway is activated by complex carbohydrate
structures and mediated via recognition molecules as mannan
binding lectin (MBL), ficolins, and collectin 10/11, leading to the
activation of mannan-associated serine protease-2 (MASP-2),
which relies heavily on its active sites, two complement control
protein (CCP) domains, and the serine protease (SP) domain for
the efficient binding and cleavage of C4 (10–12). As shown in
Figure 1, the activated C1s and MASP-2 from classical and lectin
pathways respectively cleaves the amino terminal part of the a-
chain at a single site of complement C4 to generate C4a fragment
peptide (9 kDa) and C4b (195 kDa) (13). C4b binds to target
surface via its reactive thioester, which can be inactivated to an
intermediate form iC4b by proteolytic cleavage by the serine
FIGURE 1 | Schematic illustration of fragmentation of complement C4 activation. Complement C4 (~200 kDa) is activated by the serine protease C1s or MASP2
from classical and lectin complement pathway, respectively, to form the activation fragments C4a (~9 kDa) and C4b (~191 kDa). C4b (~191 kDa) is then inactivated
and cleaved by the factor I together with cofactors to generate intermediate product iC4b and then further to generate the thioester linked C4d (~45 kDa) and C4c
(~146 kDa).
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protease factor I together with co-factor CD46 (14, 15). iC4b is
further cleaved to thioester linked C4d (45 kDa) and soluble C4c
(146 kDa), which can be used as a biomarker for complement
activation from classical and lectin pathways. Both classical and
lectin pathways lead to further activation of C2 to generate C3
convertase C4b2a, which will activate C3 to generate C3a and C3b.
C3 convertase binds to C3b to form C5 convertase that will cleave
C5 to generate C5a and C5b. C5b binds to C6, C7, C8, and C9 to
form membrane attack complexes (MAC) C5b-9 that are formed
on the surface of pathogen cell membranes. Comparing crystal
and solution structures of C4b with its paralog C3b, their
conformations are shown surprisingly conserved (16). Further
study revealed that the C3 convertases (C4b2a vs.C3bBb) from the
classical/lectin and alternative pathways are also strikingly similar,
which is in agreement with their identical functions in the cleavage
of the downstream complement proteins C3 and C5 (17).

The complete or partial deficiency of complement C4 results
in the increased risk of infection and autoimmune diseases. A
plethora of studies demonstrated that complement C4 plays an
essential role in defensing microbial infection. It is also well
established that the complete or partial deficiency of complement
C4 is associated with the increased susceptibility to infections
(18–23). In addition, the deficiency of complement C4 could
lead to various autoimmune diseases (24–33). The reduced
concentrations of C4 protein and the reduced serum
complement activity occur with the active disease in SLE (25,
34), as well as in infections (35).

In this review, we will look into the updated studies on the
role of complement C4 in infectious diseases and autoimmune
disorders. In this way, we aim to elucidate and update the
functions of complement C4 in infectious diseases and
autoimmune disorders, trying to highlight the important role
of complement C4 as a potential intervention target for the
management of those disorders.
DIVERSITY OF COMPLEMENT C4 GENES
AND PROTEINS

The human complement C4 gene (C4A and C4B genes) locus is
located in the highly polymorphic major histocompatibility
complex (MHC) class III gene region on chromosome 6, which
could be a short form (C4S, 14.6 kb) or a long form (C4L, 21 kb),
depending on the absence or the presence of the 6.36 kb
endogenous retroviral sequence HERV-K(C4) in intron 9 of
human C4 genes. Three quarters of C4 genes harbor the 6.36-kb
endogenous retrovirus HERV-K (C4) (36). Each human C4 gene
has 41 exons, which codes for a 5.4 kb transcript. C4 gene lies
within a unit of four consecutive genes known as an RCCX
module, which stands for the serine/threonine nuclear protein
kinase RP, Complement component C4, steroid 21-hydroxylase
CYP21, and extracellular matrix protein tenascin TNX (RP-C4-
CYP21-TNX) (RCCX) (37–44). An elevated level of genomic
copy number variations (CNV) was shown in MHC region III,
supposedly to present immunologic diversity (45). The
duplication of these four genes occurs as a module in the class
III region of a haplotype for the MHC. The gene copy number
Frontiers in Immunology | www.frontiersin.org 3
(GCN) of C4A genes varies from 0 to 5 and GCN of C4B genes
varies from 0 to 4. The highest total C4 gene dosage reported is 7
(46). It took a long time for scientists to make it clear on the
genetic diversity of human complement C4. The initial model
was proposed as a single locus of codominant alleles for C4A and
C4B, and later two-locus or C4A-C4B models dominated the
complement field for about two decades. Extensive molecular
and genetic studies have now provided a clear definition of
genetic structures that are responsible for C4 isotypes (C4A and
C4B) protein expression. Complement C4 protein exists as two
isotypes, C4A and C4B, which are encoded by the C4 genes (C4A
or C4B gene), and share >99% sequence identities. Five
nucleotide variations located in exon 26 confer to four isotype-
specific amino acid substitutions at positions 1101–1106
(PCPVLD for C4A and LSPVIH for C4B) and the major
structural and functional differences between the C4A and C4B
isotypes (47). C4A is named after its acidity and migrates faster
in agarose gel electrophoresis as compared to C4B that is basic
and migrates slower (47–51). In addition, C4A and C4B are
highly polymorphic with more than 40 different alleles, gene
duplications, and “null alleles” (52–55). C4A is generally
associated with the Rodgers (Rg) blood group antigens and is
more reactive with immune complex or the targets containing
free amino groups, whereas C4B is generally associated with the
Chido (Ch) blood group antigens and is more affinity to hydroxyl
groups (56). It was revealed that C4A has a longer half-life in
plasma as compared to C4B, suggesting a role of C4A in the
clearance of the immune complex and a role of C4B for
membrane attack complex formation and the defense against
bacterial pathogens (57). The individuals with long C4 genes
(C4L) have lower serum levels of complement C4 as compared
with short C4 genes (C4S) (36). C4 gene copy number variations
(CNV) are correlated to the serum levels of complement C4
protein and low C4 GCNs predisposes individuals with various
disease susceptibility (58). Low copy numbers or the deficiency of
C4 genes was reported to be one of the strongest risk factors
associated with several immune disorders, such as SLE, chronic
central serous chorioretinopathy, Behçet’s disease, and Vogt-
koyanagi-Harada disease (25, 58–63). It was also reported that
the deficiency of either C4A or C4B has been associated with the
increased susceptibility of infections (18, 64, 65). Interestingly, it
was reported by Bay et al. that low C4 gene copy numbers (< 4
total copies of C4 genes) are associated with superior graft
survival in patients transplanted with a deceased donor kidney
(66). A comprehensive review on the variations of C4 genetic
structures and proteins was presented by Blanchong CA
et al. (36).

Other causes than genetic variations also can affect the
expression or the function of complement C4. Early studies by
Goldman et al. in cultured guinea pig peritoneal cells
demonstrated that complement component can be regulated
by short-term treatment in vivo or in vitro with monospecific
antibody to individual complement components can have long-
term effects on the production of those components. Antibody
treatment induced specific suppression of C4 in peritoneal cell
monolayers. Further studies revealed that long-term C4
suppression is actively maintained by a soluble suppressor
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factor (FsC4) (67–70). Most of those experiments were carried
out in vitro cellular models from guinea pig. It is still unclear
whether this observation can be replicated in human.

Dysregulation of classic and lectin complement pathways that
complement C4 participates in can lead to complement-mediated
autoimmune diseases. C4 nephritic factor (C4Nef), first described
by Halbwachs et al. in 1980, is an autoantibody to C3 convertase
(C4b2a). C4Nef can prolong the half-life of C3 convertase by
stabilizing C4b2a and protects C4b2a against decay dissociation
by C4 binding protein (C4BP). Multiple clinical studies
demonstrated that C4NeF was associated with post-infectious
acute glomerulonephritis, systemic lupus erythematosus, chronic
proliferative glomerulonephritis and hypocomplementemic
membranoproliferative glomerulonephritis (MPGN), and
meningococcal disease (71–76).

A recent study by Battin et al. using in vitro binding screening
demonstrated that Neuropilin-1 (NRP1) acts as a receptor for
complement split products, such as C4d, C3d, and iC3b. NRP1 is
a highly conserved type 1 transmembrane protein that is involved
in the tumorigenesis, the development of cardiovascular, and
nervous systems through the interaction with vascular endothelial
growth factor (VEGF) and semaphoring 3A (Sema3A). NRP1 is
also expressed in murine immune cells and serves as a marker for
mouse Treg cells. Interestingly, NRP1 was demonstrated to bind
C4d in a concentration-dependent and saturable manner. These
data demonstrated NRP1 functions as a receptor for C4d that is
covalently bound to target surfaces during complement
activation, suggesting that NRP1 might be involved in
regulation of the process of infections and autoimmune
disorders by targeting the split product from classical or lectin
complement pathway (77).
REGULATION OF THE ACTIVATION OF
COMPLEMENT C4

Complement C4 in Microbial Infection
Complement C4 is involved in the activation of both classical
and lectin complement pathways. The classical pathway of
complement system is crucial for anti-microbial defense
through anti-pathogen antibody, which recruits C1 complex
and initiates a cleavage cascade involving C4, C2, C3, and C5
and accomplishing microbial clearance. In addition, lectin
complement pathway is also involved in the anti-microbial
defense. Recent study revealed that loss of classical pathway
results in rapidly progressing septicemia and impaired
macrophage activation, suggesting that the classical pathway is
the dominant pathway for activation of the complement system
during complement innate immunity to S. pneumoniae. In
response to microbial pathogens, lectin pathway is activated as
an innate immune response through direct binding to bacterial
surface sugar components. In contrast, the classical pathway was
an effector of adaptive immune response through activation of
antibody–antigen complexes on bacterial surfaces and plays a
vital role partially targeted by the binding of natural IgM to
bacteria (21).
Frontiers in Immunology | www.frontiersin.org 4
An early research work by Schifferli et al. demonstrated that
C4A isoform of complement C4 was more efficient than C4B
isoform in the processing of immune complexes in humans.
In contrast, hemolysis by C4B isoform was more efficient
than by C4A isoform, suggesting that both C4 isoforms are
complementary (78). A recent study by Liesmaa et al.
demonstrated that homozygous C4A deficiency in patients was
associated with the increased prevalence of lymphomas, celiac
disease, and autoimmune disease SLE. In the same study,
homozygous C4B deficiency in patients was documented to be
linked with the drug intolerance and various post-infectious
symptoms. Homozygous C4B deficiency alone is not considered
as a significant factor in causing invasive infection (79). From the
multiple studies from different laboratories, it seems still
debatable in terms of the role of homozygous C4A or C4B
deficiency in infection-proneness of an individual (64, 79–82).

Complement interfering protein (CIP) expressed on the
surface of group B. Streptococcus (GBS) enables cell adhesion
and penetration and impedes innate and adaptive immune
responses. It was found that CIP was able to interact with the
human C4b ligand and to interfere with the classical- and lectin-
complement pathways (83). Clinical Staphylococcus aureus
(S. aureus) strains can recruit complement regulator C4-binding
protein (C4BP) to S. aureus surface to inhibit C4 complement
effectors through binding significant amounts of the C4BP
from serum. The complex (S. aureus-bound C4BP) functions
as a cofactor for factor I-mediated C4b cleavage to iC4b and
C4d, which was used as a strategy by S. aureus for immune
evasion (84).

A recent study revealed that gram-negative Bordetella
pertussis could evade the attack from the human complement
system by releasing virulent protein Vag8 of B. pertussis.
Endogenously secreted and recombinant Vag8 can inhibit
complement deposition on the bacterial surface at the level of
C4b. The binding of C1 inhibitor (C1-inh) to C1s, C1r, and
MASP-2 was disrupted by the association of Vag8 with human
C1-inh, which will free active proteases to cleave C2 and C4 away
from the bacterial surface, revealing a mechanism of the unique
complement evasion strategy of B. pertussis (85).

An alkaline protease Alp1p secreted from A. fumigatus
mycelia can facilitate early immune evasion by deactivating the
complement defense in the human host, either by directly
cleaving the complement components C3, C4, and C5 or by
cleaving them to a form that is further fragmented by other
proteases (86, 87).

Some small organisms other than microbials are also involved
in the activation or the inhibition of complement systems. For
examples, complement activation-inhibition substance from
maggot excretions, which splits complement proteins C3 and
C4 in a cation-independent manner, could provide a novel
treatment for several diseases that result from the activation of
complement system (88). ES-62, a protein with an N-linked
glycan linked with phosphorylcholine (PCh) produced from
parasitic nematodes, was bound to C-reactive protein (CRP) in
normal human serum. C1q can capture ES-62-CRP to form a
larger complex ES-62-CRP-C1q in serum. Following CRP
interaction, ES-62 was able to deplete early complement
July 2021 | Volume 12 | Article 694928
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component C4 and inhibit classical pathway activation (89). The
immune evasion strategies used by those microorganisms
aforementioned were summarized in Table 1.

It is now becoming apparent that microbial organisms
generate various mechanisms to defend the attacks from innate
immunity of complement system. Elucidation of those
mechanisms will potentially provide strategies to treat
microbial infectious diseases, as well as to explore the anti-
complement therapeutic interventions.

Complement C4 in Viral Infection
Infection of Hepatitis B
There are extensive studies on the role of complement system in
viral infections (93–95). A study by Bugdaci et al. was carried out
in 143 patients on the relationship of serum complement C4 levels
and chronic hepatitis B (CHB) infection with high transaminase
level. Serum C4 levels in patients with CHB with high
transaminase level were found significantly lower. In addition,
Child score in patients with cirrhosis inversely correlated with C4
levels, suggesting that the levels of complement C4 in plasma
significantly correlate with liver biopsy findings and may be a
useful indicator of disease activity and/or damage in patients with
CHB with high transaminase levels (96).

Infection of Hepatitis C
A study by the same research group of Bugdaci et al. on
100 patients with chronic hepatitis C found that complement
C4 levels showed significant correlation with alanine
aminotransferase but could not find any relationship between
serum complement C4 level and fibrosis (97). It remains
Frontiers in Immunology | www.frontiersin.org 5
unanswered why C4 activity was significantly lower in patients
with chronic hepatitis C virus (HCV) infections. One speculation
could be due to excessive activation of C4 protein by the
activation of classical and lectin complement pathways during
HCV infections. Several studies evaluated the expression of C4 in
terms of anti-HCV therapeutic response and disease progression
in chronic hepatitis C (CHC) patients. The studies revealed that
mRNA and protein levels of complement C4 were significantly
increased after anti-HCV treatment. A positive alteration in C4
level represents as an independent predictor for treatment
response and reflects viral clearance after anti-HCV therapy in
CHC patients (98–100). Further studies revealed that hepatitis
C virus proteins [HCV core; non-structural (NS) 5A] render
transcriptional suppression of the expression of complement C4.
Liver biopsy specimens from chronic HCV patients displayed
significantly lower levels of complement C4 mRNA as compared
to the liver tissue samples from patients with other types of liver
disease. HCV core protein was found to decrease the expression
of upstream stimulating factor 1 (USF-1), a transcription factor
essential for basal C4 expression. In addition, HCV NS5A
protein can inhibit the expression of interferon regulatory
factor 1 (IRF-1), which is important for IFNg-induced
complement C4 expression. These results highlight the roles of
HCV proteins in establishing a chronic infection through the
regulation of innate immunity by affecting the expression of
complement C4 (90).

Another study by Mawatari et al. demonstrated that HCV
NS3/4A protease could cleave the g-chain of complement C4 in a
concentration-dependent manner, suggesting that complement
C4 is a novel cellular substrate of HCV N3/4A protease,
TABLE 1 | The evasion mechanisms of microorganisms from the attack of innate immunity of complement system by targeting complement C4.

Microorganisms Molecule(s) involved Expression or Function of C4 Reference

Hepatitis C
HCV Core protein USF-1 and C4 mRNA (90)

HCV NSSA IRF-1 and C4 nRNA (90)

HCV NS3/4A Cleavage of C4 g-chain (91)

HCV NS2/NS5B Disruption of the interaction of MICA/B and NKG2D (92)

Flavivirus (DENV, WNV, YFV)
NS1 Cleavage of C4 (93)

B. Streptococus Complement interfering protein (CIP) (83)

S. aureus C4-binding protein (C4BP) (84)

B. pertussis Vag8 (85)

A. fumigatus mycelia Alkaline protease Alp1p (86, 87)

Maggot Inhibition substance of complement activation (88)

Parasitic nematodes ES-62 (89)
July 2021 | Volume 12 | Art
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which reveals new insight into the mechanisms underlying
persistent HCV infection (91).

Natural killer (NK) cells have been revealed to contribute to
regulating complement synthesis. Studies using co-culture of NK
cells (NK3.3) with human hepatoma cells (Huh7.5) expressing
HCV core or NS5A protein revealed a significantly increased
synthesis of complement C4 and C3 via increased specific
transcription factors. The regulatory activity is mediated through
a direct interaction between the hepatocyte protein major
histocompatibility complex class I-related chains A and B
(MICA/B) and NKG2D on NK cells. However, when NK cells
were co-cultured with Huh7.5 cells infected with cell culture-grown
HCV, complement C4 and C3 synthesis was impaired. MICA/B
expression in HCV-infected hepatocytes was found to be repressed
during co-culture because the HCV-associated expressions of NS2
and NS5B proteins can disable a crucial receptor ligand in infected
hepatoma cells, resulting in the disability of infected cells to
respond to stimuli from NK cells to up-regulate the expression of
complement C3 and C4 (92). This piece of data revealed that HCV
synthesizes the proteins that can down-regulate complement C4
expression to evade the attack from complement systems.

Infection With Flaviviridae and Other Viruses
Flavivirus infection, such as West Nile virus (WNV) and Dengue
virus (DENV), was restricted through an antibody-independent
fashion. N-linked glycans on the structural proteins of
flaviviruses was recognized by mannose-binding lectin (MBL),
resulting in neutralization and efficient clearance via a C3- and
C4-dependent mechanism that applied both the canonical and
bypass complement lectin activation pathways, which recognizes
terminal mannose-containing carbohydrates on the viruses
(101). A recent study by Avirutnan et al. demonstrated that
flavivirus non-structural (NS)1 protein from dengue virus
(DENV), West Nile virus (WNV), and yellow fever virus
(YFV) binds to C4 to enhance cleavage of C4 and reduce C4b
deposition and C3 convertase (C4bC2a) activity that confers to
immune evasion function for the viruses (93).

Interestingly, Puumala (PUUV) hantavirus triggers
complement system activation via the alternative pathway,
which is complement C4-independent, causing the increase of
sC5b-9 and the decrease of C3. In the acute stage of PUUV
infection, the level of complement activation correlates with
disease severity, indicating that complement activation may
contribute to the pathogenesis of acute PUUV infection (102).

A recent study by Bottermann et al. revealed a novel antiviral
mechanism that is C4-dependent and late-acting complement
components-independent. C4 inhibits human adenovirus
infection by the deposition of cleaved C4b on capsid, which
inhibits it disassembly, preventing endosomal escape and
cytosolic access (103). The mechanisms that viruses applied to
downregulate the expression or the function of complement C4
are summarized in Table 1.

Coronavirus (SARS-CoV1, SARS-CoV-2, and
MERS-CoV)
In the midst of pandemic with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2)/COVID-19. The infection involves
Frontiers in Immunology | www.frontiersin.org 6
in multiple organs and cause striking elevations in pro-
inflammatory cytokines and high risk of thrombosis.
Numerous postmortem studies have revealed deposits of
complement fragments on interalveolar endothelial cells, high
incidence of venous thromboembolism (VTE), and diffused
microvascular thrombi with endothelial swelling with a
thrombotic microangiopathy (TMA). Preclinical studies with
SARS-CoV-1 and MERS-CoV, which have significant
homology to SARS-CoV-2, confirm that complement
activation is not only linked to virus related organ damage but
also is possible causative (104). In mouse models with infection
with MERS-CoV or SARS-CoV-1, increased tissue deposition of
C5b-9, C3b, and C4d and correlation with severity of injury were
observed. Given the fact that deficiency of complement C3, C4,
and factor B can protect mice from virus caused by lung injury,
classical, lectin, and alternative complement pathways might be
involved in mediating SARS-CoV-1 or SARS-CoV–triggered
lung injury (105, 106). In the few published post-mortem
studies of COVID-19 patients, the increased deposits of C3b,
MBL, MASP-2, C4b, and C5b-9 were observed (107, 108). It
shows excessive activation of lectin pathway, which is in line with
the fact that the spike protein in SARS-CoV-2 is heavily
glycosylated with L-fucose and mannose, which provides
recognition sites for MLB binding and causes activation of
lectin pathway (109). There is no doubt that complement C4
will be hyper-activated in SARS-CoV-2 infection. Is there any
relationship between the complement C4 activation and
COVID-19 infection caused endothelial swelling and diffused
microvascular thrombi that resemble TMA? We would speculate
that the hyperactivation of lectin pathway might cause
endothelial disruption that might be one of the mechanisms to
induce microvascular thrombi in COVID-19 patients. It remains
to be evaluated how the lectin pathway and complement
C4 activations cause endothelial swelling and diffused
microvascular thrombi.

Complement C4 Activation Under Other
Pathological Conditions
A recent study by Romano et al. revealed that anti–interleukin-6
receptor monoclonal antibody (Tocilizumab) could dramatically
decrease serum level of complement C4 in rheumatoid arthritis
patients. Neither circulating immunocomplexes nor any patients
ever displaying clinical features of immunocomplex diseases was
found. The study concluded that C4 consumption is because of
the direct action of the drug rather than immunocomplex-
induced complement activation (110).

Histone H3 and H4 can be released from the damaged or
lysed cells. One recent study by Qaddoori et al. revealed that
histone H3 and H4 strongly bind to C4b region of complement
C4, result in significant inhibition of classical and mannose-
binding lectin pathways. Histone H3 and H4 did not affect the
cleavage of C4 to C4a and C4b, indicating a possible natural
feedback mechanism to prevent the excessive injury of host cells
by the inhibition of complement activation by histones (111).

A recent study by Vogt et al., using highly specific antibody
against a cleavage neoepitope in C4d, identified pigment
epithelium-derived factor (PEDF) from synovial fluid of
July 2021 | Volume 12 | Article 694928
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rheumatoid arthritis patients as an activator of classical
complement pathway, which belongs to the serine proteinase
inhibitor family. C1q protein can bind PEDF, in particular, head
regions of C1q, which is known to interact with other activators
of the classical pathway. The results suggested PEDF activated
classical complement and might mediate inflammatory processes
in joint (112). The interactions of virus, bacteria, and some
pathological conditions causing the consumption or inhibition of
complement C4 through classic or lectin complement pathway
are illustrated in Figure 2.

Using computational approach (protein-protein docking and
molecular dynamics simulation), a recent study tried to understand
Trypsin (Tryp)-mediated C4 activation by comparing with the co-
crystalized structure of C4-MASP2. Comparative analysis of C4
alone, C4-Tryp, and C4-MASP2 discovered the impact of Tryp on
C4 was like that of MASP2. These studies define the role of sessile
loop in the interaction with serine domain, which could be
beneficial to understand the interactions of complement C4 with
other complement components (113).

C2- and C4-Bypass Lectin Pathways
It seems that sometimes the activation of three complement
pathways is not clear-cut. Recent studies in mice established that
the complement activation via the alternative pathway requires
the presence of C4 and MBL proteins and the complement
activation by Cryptococcus spp. can take place via multiple
complement pathways (114, 115).

Although complement C4 does not directly participate in the
activation of alternative complement pathway (AP), several early
Frontiers in Immunology | www.frontiersin.org 7
studies from the 1980s to 1990s of last century demonstrated that
C4b generated from classical pathway activation could trigger the
alternative pathway without involvement of complement C2
(116–118). It was reported that MBL can activate complement
C3 and AP without the involvement of MASP-2, C2, or C4 (119,
120). A recent study by Tateishi and Matsushita demonstrated
that upon the attachment to serogroup C-specific oligosaccharide
from Salmonella, in contrast to that MBL activates the alternative
pathway via a C2-bypass pathway without the involvement of
MASP-2, C2 or C4, mannan-bound MBL can activate the
alternative pathway via a C2-bypass pathway that requires both
MASP-2 and C4, suggesting that there may be two distinct MBL-
mediated C2-bypass activation of alternative complement
pathway, depending on the ligands to which MBL binds (121).
It seems that there are some issues related to those in vitro assays.
First, those MBL preparations could possibly have the trace
contamination with MASP-2. Another question is how pure
the serum preparations with the depleted MBL, C2, or C4 can
be. The mechanism of MLB mediated C2-bypass AP activation
remains to be determined and further studies are needed to
elucidate the molecular base of MBL-mediated C2-bypass
pathways as indicated in the paper.

Several studies suggested that MLB complement pathway
could activate C3 or C5 through C4-bypass mechanisms (119,
122–125). The study in a mouse model by Schwaeble et al.
demonstrated that in the absence of complement C4, in vitro
lectin pathway-mediated activation of C3 requires MASP-2, C2,
and MASP-1/3. In a model of transient myocardial postischemic
reperfusion injury (IRI), comparing to their wild-type
FIGURE 2 | Interactions of various microorganisms (including viruses and E. coli.) and pathological conditions with complement C4 to cause consumption or inhibition
of complement C4 through classical, lectin, and undefined pathways. HCV, hepatitis V virus; HBV, hepatitis B virus; IR, ischemia reperfusion; RA, rheumatoid arthritis.
Black solid arrow represents the activation of complement C4; Blue dash line represents the inhibition of complement C4.
July 2021 | Volume 12 | Article 694928

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wang and Liu Complement C4 in Infections and Autoimmune Disorders
littermates, infarct volumes of MASP-2-deficient mice were
smaller. However, mice deficient in complement C4 were not
protected, the observation implies the presence of a previously
undocumented C4-bypass and lectin pathway-dependent
mechanism. As monoclonal Antibody-based inhibitors of
MASP-2 and MASP-2 deficiency can also protect mice from
gastrointestinal IRI, suggesting the benefit of anti-MASP-2
antibody therapy in reperfusion injury and other lectin
pathway-mediated disorders (126). In this study, it was unclear
how the correlation between complement C3 activation by C4-
bypass lectin pathway and the disease state of infarct volume. IRI
may not be due to the complement C3 activation, but could be
attributed by MASP-2- or MASP-1-induced direct activation of
coagulation systems, leading to the formation of a fibrin clot
(127, 128). Lectin pathway complement activation plays a critical
role in contributing to ischemia reperfusion (IR) injury. One
recent study in a mouse model corroborates the effect of MASP-
2, an essential enzyme for lectin pathway, which mediates tissue
injury and renal ischemia reperfusion injury independent of
complement C4 (129). C2- and C4-bypass lectin pathways
activation are depicted in Figure 3.

Although classical and the alternative pathways can still be
activated, MASP-2 deficient mice fail to opsonize Streptococcus
Frontiers in Immunology | www.frontiersin.org 8
pneumoniae in the none-immune host and therefore are highly
susceptible to pneumococcal infection. Mouse ficolin A, human
L-ficolin, and collectin 11 in both species, but not mannan-
binding lectin (MBL), are the pattern recognition molecules that
drive lectin pathway activation on the surface of S. pneumoniae.
pneumococcal opsonization in the absence of complement C4.
This study corroborates the crucial function of MASP-2 in the
lectin pathway and underlines the prominence of MBL-
independent lectin pathway activation in the host defense
against pneumococci (130).

Recent study in mice demonstrated that MASP-2 deposits
complement C4 onto mitochondria, revealing the potential role
of the complement lectin pathway in mitochondrial immune
handling. These processes are speculated to be involved either in
the induction of problematic inflammatory reactions or in
homeostatic clearance of mitochondria (131).

As discussed above, the complement lectin pathway has a
protective function against invading pathogens and plays an
essential role in ischemia/reperfusion (I/R)-injury as well. The
serpin C1-inhibitor and aprotinin, a Kunitz-type inhibitor can
inhibit MASP-2. Recombinant tissue factor pathway inhibitor
(rTFPI) was identified as a novel selective inhibitor of MASP-2,
without disturbing the activity of MASP-1 or the classical
FIGURE 3 | Anti-inflammatory functions by complement C4 activation fragments C4a and C4d. On the surface of pathogens, the activation of complement C4 is
triggered through classical (antibody) or lectin (sugar) pathways that will activate C1s or MAPSs, which will rapidly cleave C4 to generate C4a and C4b. C4b will be
further fragmented by factor I and cofactors to generate C4d and C4c. C4b will associate with C2a to form a complement C3 cleavage enzyme (C3 convertase),
C4b2a, which will cleave C3 to generate C3a and C3b. C3b will be associated with C4b2a to converge to C5 convertase (C4bC2aC3b), which will cleave C5 to
generate C5a and C5b. C5b will associate with C6, C7, C8, and C9 to form membrane attack complexes (MAC) C5b-9 on the surface of pathogens. For the
alternative pathway, C3b is spontaneous C3 turnover or generated by classical or lectin pathways. C3b bound to factor B (B). The complex is converted by factor D
(D) to C3-cleaving enzyme C3bBb that is stabilized by properdin (P) and further form C3bBbC3b, which can cleave C5 to generate C5a and C5b. Plasma membrane
(blue) represents the surface of pathogen cells.
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pathway proteases C1s and C1r. Ex vivo assay revealed that
Kunitz-2 domain in TFPI was necessary for the inhibition of
MASP-2 activity. TFPI could be a therapeutic approach to
constraint the tissue injury in the conditions of cerebral stroke,
myocardial infarction, or solid organ transplantation (132).
THE SIGNALING PATHWAYS OF C4
ACTIVATION FRAGMENTS

C4a, one of the activation fragments of complement C4,
identified in 1979, was regarded as the third anaphylatoxin
although it is still under debate (133, 134). C4a has been
described to possess a strong chemotaxis inhibitory effect on
monocytes at the concentration as low as 10-16 M (135). C4a was
also reported to inhibit C3a-induced O2·− generation in guinea
pig macrophages, to produce immediate erythema/edema when
injected into human skin, and to induce contraction of guinea
pig ileum (133, 136). It was suggested that a function for C4a is
closely related to C3a due to its ability to desensitize the action of
C3a-induced contraction of guinea pig ileum (133). It was later
revealed that human C4a acted as an agonist for the guinea pig
but not the human C3aR receptor (137). Studies using
recombinant human C4a have also demonstrated that C4a can
impair C5a-induced neointima formation, reduce C3a- or C5a-
mediated chemoattractant and secretagogue activities in mast
cells, and prevent hyperoxic lung injury via a macrophage-
dependent signaling pathway (138–140). It remains to be
established how C4a can modulate the functions of monocytes/
macrophages to generate anti-inflammatory effects.

C4d, another cleavage product by complement C4 activation,
has long been considered as a biomarker for disease activity in
autoimmune disorders or antibody-mediated allograft rejection.
A recent study identified Ig-like transcript (ILT) 4 and ITL5v2 as
cellular receptors for C4d and interaction of C4d with ILT4
conferred a dose-dependent inhibition of TNFa and IL-6
secretion and attenuation of intracellular [Ca2+] flux in
monocytes activated via Fc-cross-linking of up to 50% as
compared to control (141). ILT4 has been involved in the
control of autoreactivity (142, 143), induction of transplantation
tolerance (144), and maintenance of feto-maternal tolerance
during pregnancy (145). Mice lack of PIR-B, the ortholog of
ILT4, suffer from autoimmune glomerulonephritis (146) and
exacerbated graft versus host disease (147). It appears that the
interactions of complement C4 activation cleavage fragments
(such as C4a and C4d) with their respective receptors plays
inhibitory roles to impede inflammatory reactions induced by
cytokines, chemokines, and other anaphylatoxins (C3a, C5a).
One interesting paradigm will be that upon complement
activation (i.e., microbial or viral infection, immunocomplex, or
apoptotic debris), complement C4 activation fragments may act
as regulators to maintain homeostasis and to contain downstream
anaphylatoxins’ proinflammatory effects, which may trigger
hyper-inflammatory reactions. The activation of complement
C4 and potential immune-regulation mechanisms of split
products from complement C4 are illustrated in Figure 3.
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COMPLEMENT C4 DEFICIENCY LINKS
INFECTIONS AND AUTOIMMUNE
DISEASES

It remains incompletely understood why total deficiencies of
some complement components are associated with some
autoimmune diseases (148). Complement C4 plays a vital role
in the activation of classical and lectin pathways and the
formation of C3 convertase, which leads to the generation of
the membrane attack complex (MAC) against microbes. It was
reported that complement C4 is protective for autoimmune
lupus disease independent of C3 in mice (30). C4(-/-) mice have
significantly more IgM anti-double-strand DNA antibodies
than C4(+/+) control mice (32). Increased frequency of C4
deficiency phenotypes was reported in IgA nephropathy and
Henoch-Schönlein purpura (HSP) (26), insulin-dependent
d i abe t e s me l l i t u s ( IDDM) (149 ) , s y s t emic lupus
erythematosus (SLE) (150, 151), repeated infections (152),
juvenile idiopathic arthritis patients (27). glomerulonephritis
(153). The lack of complement C4 can trigger inapt clearance of
apoptotic debris and stimulate chronic activation of myeloid
cells. The deficiency in complement component C4 also results
in a breakdown in the elimination of autoreactive B-cell clones
at the transitional stage, depicted by a relative increase in their
response to a series of stimuli, entering into follicles, and a
higher tendency to form self-reactive germinal centers (GCs),
allowing the maturation and activation of self-reactive B-cell
clones (154). Using two well-defined murine models to examine
complement deficiency in peripheral tolerance, the study
revealed that complement C4 protein and the receptors
CD21/CD35 are involved in negative selection of self-reactive
B lymphocytes, suggesting an immune deficiency of
complement C4 predisposes mice to SLE (29). A low serum
C4 level in patients with autoimmune disease may be due to
ongoing disease activity associated with the consumption
caused by complement activation and or it may be due to
genetic factors (155). One of the questions still remains:
whether and how does infections link to autoimmune disease
upon the deficiency of complement C4? It is speculated that C4
deficiency would negatively affect the efficiency and progression
of complement activation, decrease phagocytes functions and
the clearance of apoptotic and necrotic cells (156).

A recent study by Yammani et al. demonstrated that
complement C4 deficiency is a predisposing factor for
streptococcus pneumonia-induced anti-dsDNA IgA autoantibody
production. In a C4KO mice model, serotype 19F and virulent
serotype 3 pneumococci induce systemic anti-dsDNA IgA
production; interestingly which is more pronounced in female
C4KO mice. Further study revealed that pneumococci
pneumococcal polysaccharide (PPS) vaccination alone induced
increases in anti-dsDNA IgA levels, which can be completely
blocked by TLR2/4 antagonist, OxPAPC. Pam3CSK4, a TLR2
agonist, equally stimulated anti-dsDNA IgA production in C4KO
mice, suggesting complement C4 plays a role in subduing
autoantibody production stimulated by cross-reactive antigens
and TLR2 agonists associated with S. pneumonia (33).
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A complete analysis of the potential Epstein-Barr virus (EBV)
peptide cross-reactome has been performed to search for peptides
common to SLE-EBV and human SLE autoantigens. The study
found EBV proteome can act as an immunological potential.
Using publicly available databases, fifty-one SLE-related proteins
were analyzed for hexapeptide sharing with EBV proteome and
found 34 of hexapeptides are shared between human SLE
autoantigens and EBV proteins. Interestingly, the study also
revealed that peptide sharing mostly occurred with complement
component C4 and Interleukin-10 (IL-10). This study
demonstrated that the EBV vs. SLE autoantigens peptide
overlap and powerfully supports cross-reactivity as a major
mechanism in EBV-associated SLE etiopathogenesis (157).
Among patients with systemic lupus erythematosus (SLE), a
prevalence of HPV infection has been reported. One interesting
hypothesis is that immune responses caused by HPV infection
may interact with proteins that associate with SLE (158).

In lymphoid tissues and peripheral blood of C4KO mice, it
was discovered with the decreased frequencies of CD4+CD25+

Tregs and reduced expression of Foxp3 and TGF-b, which are
crucial for the efficient development and function of Tregs cells.
Thus, the study suggested that the association of the deficiency of
complement C4 in the classical complement pathway with the
development of autoimmune disorder might be via the role of
Tregs deficiency (159). It remains to be elucidated how the
fragments generated from complement C4 activation, such as
C4a and C4d, are regulating Tregs cells functions.
CONCLUDING REMARKS

Complement system is essential for the maintenance of
homeostasis by elimination of immune complexes, supporting
self-tolerance and anti-inflammation, and promoting tissue
repair (160, 161). While the complement activation of the
downstream of complement C3 resulting in inflammatory
molecules, such as C3a, C5a, and the membrane attack
complex (MAC), plays a less important role, the early
components of the classical pathway, such as C1q, C4, and C2,
are more critical in maintaining homeostasis and lack of some of
early components of classical pathway will predispose an
individual to autoimmune disorders. Many studies have linked
the complement C4 deficiency/partial deficiency with
autoimmune disorders. In addition, C4 deficiency is clearly
Frontiers in Immunology | www.frontiersin.org 10
linked to the susceptibility of infections. Those observations
persuade us to speculate that infection-caused inflammation
needs the containment that requires the immune modulation
from the contribution of complement C4, otherwise it will be
aggravated under the deficiency of C4. Complement C4 is
reported to be chiefly expressed in hepatocytes, but the
upregulation of mRNA expression of complement C4 was
observed by LPS, IFNg, and interleukin-6 in other types of
cells, indicating that infection-induced cytokines could trigger
the upregulation of complement C4 expression as a feedback
regulatory response. Mounting evidence supports the
observation that infections may initiate and/or exacerbate
autoimmune reactions (162–165), which is in line with the
studies in mouse models that have established the role of
complement C4 as suppressing auto-antibody production (31–
33, 166). Nevertheless, the mechanisms of complement C4
involved in homeostasis still have been poorly addressed.
Recent studies demonstrated that complement C4 activation
fragments, like C4a and C4d, can modulate cytokines
generation from macrophages probably through their
respective receptors. One of possible mechanisms that
complement C4 mediated homeostatic process might be via its
activation fragments, which can modulate immune reactions to
restrain infection-induced hyper-inflammatory reactions
induced by cytokines and anaphylatoxin C3a and C5a (Figure 3).

Future studies are necessary to focus on the immune
regulatory functions of C4 activation fragments, which will be
explored as therapeutic targets for the treatment of infections, as
well as the autoimmune disorders.
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