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The transcription factor BMAL1 is a clock protein that generates daily or circadian rhythms
in physiological functions including the inflammatory response of macrophages.
Intracellular metabolic pathways direct the macrophage inflammatory response,
however whether the clock is impacting intracellular metabolism to direct this response
is unclear. Specific metabolic reprogramming of macrophages controls the production of
the potent pro-inflammatory cytokine IL-1b. We now describe that the macrophage
molecular clock, through Bmal1, regulates the uptake of glucose, its flux through
glycolysis and the Krebs cycle, including the production of the metabolite succinate to
drive Il-1b production. We further demonstrate that BMAL1 modulates the level and
localisation of the glycolytic enzyme PKM2, which in turn activates STAT3 to further drive
Il-1b mRNA expression. Overall, this work demonstrates that BMAL1 is a key metabolic
sensor in macrophages, and its deficiency leads to a metabolic shift of enhanced
glycolysis and mitochondrial respiration, leading to a heightened pro-inflammatory
state. These data provide insight into the control of macrophage driven inflammation by
the molecular clock, and the potential for time-based therapeutics against a range of
chronic inflammatory diseases.

Keywords: macrophage inflammation, metabolism, molecular clock, IL-1b, pSTAT3
INTRODUCTION

Life on Earth follows a predictable daily rhythm, dictated by the planet’s daily rotation on its axis.
This rotation necessitated the evolution of the circadian clock, which allows organisms to anticipate
and respond to these predictable environmental changes. Circadian rhythms are oscillations in
behaviour and physiology with a 24-hour periodicity and are directed by the central master clock
org November 2021 | Volume 12 | Article 7004311
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which is located in the suprachiasmatic nucleus (SCN) of the
hypothalamus (1). The SCN integrates light signals which
synchronize the central clock to the external environment. At
the molecular level, these rhythms are generated by a series of
interlocking transcription-translation feedback loops (TTFL)
centred around the core clock component BMAL1 (2). Bmal1
is known as the master clock gene as its deletion completely
ablates all rhythmic activity throughout the organism (3).
BMAL1 and its heterodimerization partner CLOCK bind E-
box sites in promoters of clock-controlled genes across the
genome. This heterodimer can also induce transcription of the
negative arms of the molecular clock which feedback and disrupt
the BMAL1-CLOCK heterodimer, thus driving precise 24 hour-
rhythms of clock-controlled genes. The SCN clock maintains the
synchrony of peripheral clocks, throughout the body via
rhythmic endocrine and autonomic signalling (4, 5). Peripheral
cells, including immune cells of the innate and immune system
also express the TTFL to drive circadian rhythms (6–9). Thus,
the immune system is highly rhythmic, via a network of SCN-
driven systemic signals which impact immune cells and
endogenous clocks within those immune cells.

Macrophages are central mediators of innate immunity. Many
of the key functions of macrophages such as phagocytosis (10–13),
cytokine and chemokine production (14–17), and migration (11,
18–20) are under clock control, and display striking differences
according to the time of day (21). These oscillations inmacrophage
function confer protection against a range of pathogens including
L. monocytogenes (20) and S. Typhimurium (22). We previously
demonstrated that myeloid BMAL1 protects against
lipopolysaccharide (LPS) induced lethality (23), and that BMAL1
maintains an anti-inflammatory environment during experimental
autoimmune encephalomyelitis (EAE), a mouse CNS autoimmune
disease model (24). BMAL1 also directly regulates the antioxidant
transcription factor NRF2 which attenuates inflammation by
binding to il-1b promoter regions and antioxidant response
elements (25). Furthermore, these antioxidant response pathways
suppress the hypoxia-inducible factor HIF-1a, a critical regulator
of glycolytic metabolism and inflammation, in a ROS-dependent
manner. Our lab showed deletion of Bmal1 led to increased
stabilization of HIF-1a and expression of pro-IL-1b, whose
promoter is bound by HIF-1a (25, 26). Additionally, BMAL1
has been linked to the regulation of atherosclerosis, although the
nature of this regulation is uncertain as data has shown BMAL1 to
both attenuate and worsen atherosclerotic pathogenesis (27, 28).
Collectively these data implicate macrophage Bmal1 as an
important modulator of innate immunity.

Immunometabolism is a burgeoning area of immunology
based on the premise that different intracellular metabolic
pathways in immune cells prescribe differential immune
phenotype and function (29). For instance, in the
mitochondria succinate is a crucial transducer of inflammatory
signalling and its partner succinate dehydrogenase (SDH), an
enzymatic complex of the electron transport complex (ETC),
generates ROS which induces IL-1b in a HIF-1a dependent
manner in macrophages (26, 30). Additionally, Krebs cycle
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metabolites such as citrate (31) and itaconate (32) have shown
to be critical immune signalling molecules. Furthermore, glucose
uptake and glycolysis have also been implicated to drive
macrophage function (33, 34). For instance, the enzyme
pyruvate kinase M2 (PKM2) is both a coactivator and target of
HIF-1a (35, 36). PKM2 also adopts a monomeric/dimeric
configuration upon inflammatory activation which translocates
to the nucleus and phosphorylates its targets to promote
expression of metabolic and inflammatory gene sets (37). For
instance, nuclear PKM2 promotes T cell activation and facilitates
M1-like activation of macrophages and expression of IL-1b (38,
39). These range of studies illustrate howmetabolic pathways can
directly impact upon immune function.

Notably, BMAL1 represses PKM2 transcription and
consequently, Bmal1-/- macrophages display an increased
glycolytic metabolism, mediated by increased PKM2 protein
expression (40). In the absence of Bmal1, the phosphorylation
of STAT1 by PKM2 is increased. This led to enhanced STAT1–
PD-L1 signalling in the absence of myeloid Bmal1 and an
enhanced sepsis phenotype in a cecal ligation puncture model.
BMAL1 overexpression also restrains glycolytic activity to
repress M1-like macrophage polarization and alleviate
alcoholic liver disease in mice (41). Metabolically influenced
STAT3 transcription appears to be clinically important,
illustrated by a range of studies showing that PKM2-STAT3
signalling directs Th17 inflammatory signalling to drive EAE and
arthritis (42, 43), and IL-1b expression in inflammatory
epithelial cells and coronary artery disease macrophages (44, 45).

IL-1b is central to the pathogenesis of many chronic
inflammatory diseases such as rheumatoid arthritis, type 2
diabetes, gout, and a vast range of autoimmune conditions
(46). The CANTOS trial, which was a randomized control trial
of canakinumab, a monoclonal antibody targeting IL-1b,
demonstrated that inhibition of IL-1b decreased the rate of
recurrent cardiovascular events and that blocking IL-1b could
decrease lung cancer incidence and mortality (47, 48). More
recently, IL-1b blockade has also revealed potential in terms of
ameliorating osteoarthritis whereby patients receiving
canakinumab had decreased incident of hip or knee
replacement (49). IL-1b is a pivotal cytokine to these and other
conditions, therefore, understanding how this cytokine is being
regulated is of therapeutic importance.

Overall, this study demonstrates that deletion of BMAL1
releases the brake on cellular metabolism in terms of glucose
uptake, glycolysis, and flux through the Krebs cycle, and that
these metabolic alterations drive inflammation through the
production of IL-1b. We demonstrate two pathways by which
BMAL1 represses pro IL-1b, firstly through suppression of SDH
enzyme activity and mitochondrial ROS and secondly by the
control of PKM2 expression and nuclear localisation, thus
preventing pSTAT3-dependent Il-1b transcription. This
provides a potential mechanism for the rhythmicity in
pathology observed in inflammatory conditions such as
cardiovascular disease (50), and inflammatory conditions
which are aggravated by circadian disruption (51).
November 2021 | Volume 12 | Article 700431
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MATERIALS AND METHODS

Animals and Reagents
Mice with LoxP sites flanking both sides of exon 4 of Bmal1
(Bmal1LoxP/LoxP, gifted from the lab of Dr. Christopher A.
Bradfield) were crossed with mice containing a lysozyme M
activated CRE recombinase (Lyz2Cre, Jackson Labs, #004781) to
generate mice with the Bmal1 gene excised specifically in the
myeloid lineage (Bmal1LoxP/LoxPLyz2Cre) i.e. Bmal1-/-. Mice
with a lysozyme M activated CRE recombinase (Lyz2Cre) were
used as controls i.e. Bmal1+/+. Mice used for experiments were both
male and female, aged between 8-12 weeks. These mice were bred
and maintained in specific pathogen free conditions in the
Comparative Medicine Unit (CMU), Trinity College Dublin. All
mice were maintained in line with European Union and Irish Health
Products Regulatory Authority (HPRA) regulations. Experiments
were carried out under HPRA license and with ethical approval from
Trinity College Dublin (TCD) bioethics committee and Royal
College of Surgeons in Ireland (RCSI) research ethics committee.
Lipopolysaccharides from Escherichia coli O55:B5 (L2880),
dimethyl malonate (136441), and 2-deoxyglucose (H0887) were
purchased from Sigma. Disuccinimidyl suberate (DSS) (21655)
was purchased from Thermo Scientific. Stattic (AB120952) was
purchased from Abcam. DASA-58 (HY-19330) was purchased
from MedChemExpress.

Culture of Mouse Bone Marrow
Derived Macrophages
Mice were euthanized by carbon dioxide inhalation and death was
confirmed by cervical dislocation. Hair and tissue was removed
from the femurs and tibia and both ends were cut with scissors. A
20G syringe was used to flush bone marrow cells from the bones
with cDMEM. The cell suspension was centrifuged at 1500 rpm,
the cell pellet was resuspended in red blood cell lysis buffer, warm
cDMEMwas added after 3 minutes, the cell suspension was passed
through a 40mm mesh filter, and the cell suspension was
centrifuged at 1500 rpm. The cell pellet was resuspended in
cDMEM (supplemented with 10% fetal bovine serum (FBS), 1%
penicillin/streptomycin, and 10% L929 cell supernatant which
contains macrophage colony stimulating factor), divided
between 3 10cm non-treated culture dishes, and differentiated
for 6 days in an incubator at 5% CO2 and 37°C. Following
macrophage differentiation cells were counted and seeded in 6/
12/24-well culture dishes. Pretreatments with inhibiting
compounds and LPS stimulations are as described by individual
figures. Cells were maintained in 25mM glucose as standard,
unless otherwise described.

Seahorse Extracellular Flux Analysis
0.5x105 BMDMs were seeded in a 96-well Seahorse plate.
Following treatments cells were washed and incubated with
Seahorse XF DMEM Medium pH 7.4 media supplemented
with 10 mM glucose, 1 mM sodium pyruvate, and 2 mM
glutamine. Seahorse extracellular flux analysis measured
oxygen consumption rate (OCR) (pmol/min) and extracellular
acidification rate (ECAR) (mpH/min). ECAR was converted into
Frontiers in Immunology | www.frontiersin.org 3
proton efflux rate (PER) (pmolH+/min), a more accurate
measure of extracellular acidification, by Seahorse software.
Addition of mitochondrial stress test compounds (5 µM
oligomycin, 10 µM FCCP, 5 µM rotenone/antimycin) and
glycolytic rate assay compounds (5 µM rotenone/antimycin a,
5 mM 2-DG) were made to derive different measures
of metabolism.

Stable Isotope Tracer Analysis
BMDMs were incubated in custom DMEM containing 10 mM
U-13C6 heavy labelled glucose (CLM-1396, Cambridge Isotope
Laboratories) and 2 mM unlabelled glutamine and activated with
100 ng/ml LPS for 8 hours. Cells were washed three times with ice-
cold saline and lysed in 80%methanol. Cell lysates were dried down
using a speed-vacuum concentrator and stored at -80°C. Cellular
metabolites were extracted and analysed by gas chromatography-
mass spectrometry (GC-MS) using protocols described previously
(52, 53). Briefly, metabolite extracts were derived using N-(tert-
butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). D-
myristic acid (750 ng/sample) was added as an internal standard
to metabolite extracts, and metabolite abundance was expressed
relative to the internal standard. GC/MS analysis was performed
using an Agilent 5975C GC/MS equipped with a DB-5MS + DG
(30m× 250 µm× 0.25 µm) capillary column (Agilent J&W, Santa
Clara, CA, USA). Metabolite measurements were performed at the
Rosalind and Morris Goodman Cancer Research Centre
Metabolomics Core Facility supported by the Canada Foundation
for Innovation, The Dr. John R. and Clara M. Fraser Memorial
Trust, the Terry Fox Foundation (TFF Oncometabolism Team
Grand 116128) and McGill University. Mass isotopomer
distribution was determined using a custom algorithm developed
at McGill University (52).

Western Immunoblotting
Cells were lysed in Lamelli buffer and samples were separated by
SDS polyacrylamide gel electrophoresis. Nitrocellulose or PVDF
membranes were probed with antibodies for BMAL1 (14020S,
CST), TOM20 (sc-11415, Santa Cruz), b-Actin (4967S, CST)
Pro-IL1b (AF-401-NA, CST), Complex II WB Antibody Cocktail
(ab110410, Abcam) HIF-1a (14179, CST), GLUT1 (12939, CST),
PDHa (3205S, CST), PKM2 (4053, CST), a-Tubulin (3873,
CST), Histone H3 (4499, CST), and pSTAT3-Tyr705 (9145,
CST). Bands were visualized using an Amersham 680 Imager
(GE Healthcare). Densitometry quantification was performed
according to the following protocol: http://www.yorku.ca/
yisheng/Internal/Protocols/ImageJ.pdf.

Succinate Injection Assay
0.5x105 BMDMs were seeded in a 96-well Seahorse plate.
Following adherence, cells were washed and incubated in a
mitochondrial assay solution (MAS) comprised of 220 mM
mannitol, 70 mM sucrose, 5 mM MgCl2, 10 mM KH2PO4, 2
mM HEPES, 1 mM EGTA, and 0.2% (w/v) fatty acid free BSA
at pH 7.4. Immediately prior to the start of the assay, cells
were incubated with MAS supplemented with 4 mM ADP
(A2754, Sigma) and 10 µg/ml digitonin (D141, Sigma). OCR
November 2021 | Volume 12 | Article 700431
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measurements of digitonin-permeabilized cells were made before
and after the addition of 1.25 mM succinic acid to cells and
relative metabolic response to succinate was derived from
these measures.

Flow Cytometry
BMDMs or cells from peritoneal exudate were seeded,
stimulated, and detached in PBS. Viability staining was
performed using a LIVE/DEAD Near-IR Dead Stain (L10119,
Invitrogen). Cells undergoing extracellular staining were
incubated with anti-mouse CD16/CD32 (14-0161-85,
eBioscience) to block Fc receptors. CD11b (101211, Biolegend)
staining was used to gate on macrophage populations from
peritoneal exudate. Cells were incubated with MitoTracker
Green (M7514, Invitrogen) to measure mitochondrial mass
and co-stained with MitoTracker Red (M7512, Invitrogen) to
analyse membrane potential. CellROX Deep Red (C10422,
Invitrogen) was used to analyse cellular reactive oxygen
species. Cells were incubated with the fluorescent glucose
analogue 2-NBDG (72987, Sigma) to measure glucose uptake.
Cells were analysed using an Attune NxT Flow Cytometer
(Thermofisher) and a minimum of 5,000 events were recorded
for all samples of a given experiment.

RT-qPCR
Cells were lysed, RNA was extracted using a PureLink Mini RNA
Kit (Invitrogen), and converted to cDNA using a High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems)
according to manufacturer instructions. cDNA served as a
template for amplification of target genes using SYBR Green
mastermix and custom primers. Rps18, F: ACTTTTGGGGC
CTTCGTGTC, R: GCAAAGGCCCAGAGACTCAT. Pdha1 F:
AAGATGCTTGCCGCTGTATC, R: ATTTGCAAAAT
TACGGGAAGC. Pdha2, F: GTTGTGCCTCGCGTTTCTC, R:
CCTCTGAGAGCTGGCTTTTG. Pdhb , F : GGAGGG
AATTGAATGTGAGG, R: CCACAGTCACGAGATGATTTG.
Sdha, F: TCGACAGGGGAATGGTTTGG, R: GGACTCCT
TCCGAGCTTCTG. Sdhb, F: GAGTCGGCCTGCAGTTTCA,
R: GGTCCCATCGGTAAATGGCA. Il-1b, F: GGAAGCA
GCCCTTCATCTTT, R: TGGCAACTGTTCCTGAACTC.
Slc2a1, F: TATGTGGAGCAACTGTGCGG R: AAGGTTCGG
CCTTTGGTCTC. Pfkfb3, F: TGGGGCCTTTCAATGTGTGAC,
R: ACACTTGTTCTCCGCAAAAACC. Pgk1, F: GCTATCTTG
GGAGGCGCTAA, R: AAAGGCCATTCCACCACCAA. Pgm1,
F: GTTGCGAGATGCTGGCTATG, R: CCTGTCAGACCG
CCATAGTG. Eno1, F: TGCTCTGGTTAGCAAGAAAGTG, R:
GTGCCGTCCATCTCGATCAT. PCR reactions were ran on
Applied Biosystems 7500 and 7900HT machines. Relative gene
expression was determined using a DCt calculation using Rps18
as an internal control.

Glucose Uptake Assay
Glucose uptake was measured by a 2DG6P-coupled luminescent
assay (J1341, Promega). Cells were seeded in a 96-well plate at a
density of 0.5x105/well and glucose uptake was assayed according
to manufacturer’s instructions.
Frontiers in Immunology | www.frontiersin.org 4
Protein Crosslinking
Following LPS stimulation, cells were gently washed and scraped
with Dulbecco’s PBS at pH 8. DSS was prepared fresh in DMSO
and cells were resuspended in DSS with a final concentration of
500 µM. Crosslinking was performed as cells were incubated for
30 minutes at 37°C. After 30 minutes, the reaction was quenched
by adding TRIS HCl pH 7.5 to a final concentration of 25 mM
before the cells were lysed in Lamelli buffer under non-reducing
conditions and protein was analysed by Western Immunoblot.

Statistical Analysis
Statistical analysis was performed using Graphpad Prism. All
data are representative of at least n=3 independent experiments.
Data are presented +/- SEM. Student’s t-tests, multiple student’s
t-tests with Holm-Sidak correction, one-way ANOVA with
Sidak’s multiple comparisons test, or two-way ANOVA with
Tukey’s multiple comparisons test were performed. Significance
is reported as *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. N=
numbers refers to the number of animals used to repeat an
individual experiment.
RESULTS

Mitochondrial Metabolism Is Altered in
Macrophages With Deletion of Bmal1
Our previous work described increased ROS in Bmal1-/- bone
marrow derived macrophages (BMDMs) along with localisation
of the ROS with mitochondria (25). Therefore, we sought to
examine mitochondrial metabolism of BMDMs with deletion of
Bmal1. BMDMs were prepared from Bmal1wt/wtLys-MCre (i.e.
Bmal1+/+) and Bmal1LoxP/LoxPLyz-MCre (i.e. Bmal1-/-) mice that
have Bmal1 specifically excised in myeloid lineage cells. BMDMs
were stimulated with lipopolysaccharide (LPS, 100 ng/ml) and
subjected to a mitochondrial stress test. Bmal1-/- BMDMs
demonstrated higher oxygen consumption rate (OCR) basally and
following 4 hours of LPS stimulation but no differences were evident
after 24 hours of LPS, in line with the typical kinetics of Warburg
metabolism in macrophages (26, 54) (Figure 1A). Overall, Bmal1-/-

BMDMs displayed higher mitochondrial metabolism versus
Bmal1+/+ in terms of basal respiration, ATP production, maximal
respiration, and proton leak basally and following 4 hours of LPS
stimulation (Figure 1B). However, no effects on mitochondrial
mass in terms of protein expression of the mitochondrial marker
TOM20 (Figure S1A) or fluorescent expression of Mitotracker
Green (Figure S1B) were observed with Bmal1 deletion.
Mitochondrial membrane potential (Figure S1C) was largely
unchanged between genotypes apart from a slight but non-
significant increase in Bmal1-/- cells after 1 hour of LPS stimulation.

Given the observed alterations in oxidative metabolism in
Bmal1-/- BMDMs, we next sought to probe the effect of this
deletion on Krebs cycle metabolites. The Krebs cycle is a critical
pathway generating biosynthetic intermediates and reduced NAD,
essential in contributing towards cellular biomass and energetic
functions of the mitochondria. We incubated BMDMs with
November 2021 | Volume 12 | Article 700431
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FIGURE 1 | Mitochondrial respiration and Krebs cycle glucose flux is altered in Bmal1-/- macrophages. Bmal1+/+ and Bmal1-/- BMDMs were stimulated with LPS
(100 ng/ml), subjected to a Seahorse XF mitochondrial stress test. (A) OCR of BMDMs was measured, and the metabolic trace illustrates changes in OCR following
injection of the mitochondrial stress test compounds oligomycin, FCCP, and rotenone/antimycin a. (B) Measures of basal respiration, ATP production, maximal
respiration, and proton leak were derived from (A). Assay results are presented +/- SEM and are representative of n=3 independent experiments. BMDMs were
isolated, seeded in 10 mM U-13C6 glucose, and stimulated with LPS for 8 hours. BMDMs were lysed and metabolites were quenched and measured via GC-MS to
trace Krebs cycle flux of labelled glucose. (C) A schematic of U-13C6 glucose-derived carbon Krebs cycle flux and incorporation into metabolic intermediates.
Relative abundance of U-13C6-labelled (D) pyruvate, (F) citrate, (J) itaconate, (K) a-Ketoglutarate, and (M) succinate, and mass isotopologue distribution (MID) of (E)
pyruvate, (G) citrate, and (L) a-Ketoglutarate, and (N) succinate were measured. MID values of low abundance isotopologues are excluded for clarity. (I) Ratio of
m+2 citrate/m+3 pyruvate representative of U-13C6 glucose-derived carbon flux through pyruvate dehydrogenase. Data presented is n=4 +/- SEM. (H) BMDMs were
stimulated with LPS and protein expression of PDH was analysed by Western blot using b-Actin as a loading control. Densitometry is relative to the Bmal1+/+ control
band. This band is indicated by a * symbol. Data presented is representative of n=3 independent experiments. Statistical analysis was performed for Seahorse XF
data and U-13C6 relative abundance values by one-way ANOVA with Sidak’s multiple comparisons test and for MID values by multiple student’s t-tests with
Holm-Sidak correction for multiple comparisons (*p < 0.05, **p < 0.01 ***p < 0.001, ****p < 0.0001).
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uniformly labelled (U-13C6) glucose in the presence or absence of
LPS for 8 hours, allowing us to detect the fate of glucose-derived
carbons through central metabolic pathways (Figure 1C).

Initially, we found no significant difference in the levels of 13C
incorporation into pyruvate between Bmal1+/+ and Bmal1-/-

macrophages (Figures 1D, E). However, when we analysed the
Krebs cycle metabolite citrate, we discovered elevated levels of
13C incorporation in Bmal1-/- macrophages (Figure 1F). Here,
the proportion of the m+2 isotopologue of citrate was higher in
Bmal1-/- in comparison to Bmal1+/+, indicating increased cycling
into Krebs cycle intermediates (Figure 1G). Given the increased
contribution of 13C to the citrate pool of Bmal1-/- macrophages
despite no difference in the relative contribution of 13C to their
pyruvate pool, we next examined the expression of the pyruvate
dehydrogenase complex (PDH). RNA expression of individual
PDH subunits did not differ between genotypes (Figures S1D–F),
however protein levels of PDH were increased in Bmal1-/-

macrophages during basal conditions and after a short LPS
stimulation (Figure 1H and Figures S1G, H). In order to
investigate the flux of pyruvate-derived carbons through PDH
(55), we analysed the ratio of total m+2 citrate (i.e. citrate
originating via PDH metabolism) to total m+3 pyruvate (i.e.
total pyruvate generated through glycolysis). Here, relative flux of
pyruvate through PDH was higher in Bmal1-/-cells (Figure 1I).

Furthermore, analysis of the downstream Krebs cycle
intermediates itaconate, alpha-ketoglutarate and succinate
Frontiers in Immunology | www.frontiersin.org 6
demonstrated significantly increased 13C incorporation in LPS
activated Bmal1-/- macrophages versus Bmal1+/+ (Figures 1J–N).
Downstream of the Krebs cycle break at succinate, the Krebs
metabolites fumarate and malate showed an increased trend of
13C incorporation however this did not reach significance
(Figures S1I, J). Overall, these data demonstrate that in the
absence of macrophage Bmal1 an increased flux of glucose-
derived carbons into Krebs cycle metabolites is observed, both
basally and under LPS activating conditions.

Mitochondrial Dysfunction Is Driving
Heightened Pro IL-1b Expression in
Macrophages With Deletion Of Bmal1
We next sought to investigate whether the increased succinate
observed with Bmal1 deletion and its oxidation may explain the
increased pro IL-1b production as we had previously observed
(25). In order to investigate SDH enzymatic activity, we
permeabilized BMDMs with digitonin. BMDMs received a
single injection of succinate (1.25mM) to fuel SDH and elicit
an increase in oxygen consumption rate, providing a direct
measure of SDH enzymatic activity (Figure 2A). Bmal1-/-

BMDMs demonstrated an increased OCR response versus
Bmal1+/+ BMDMs following succinate injection (Figure 2B),
indicating increased SDH activity. RNA and protein expression
of SDHa and SDHb subunits were similar between Bmal1+/+ and
Bmal1-/- cells (Figures S2A–C) signifying that Bmal1 deletion in
A B C

D E F

FIGURE 2 | SDH-derived ROS are driving increased inflammation in macrophages with deletion of Bmal1. Bmal1+/+ and Bmal1-/- BMDMs were incubated in an
isosmotic, ADP-supplemented mitochondrial assay solution and permeabilized with digitonin. (A) Seahorse XF analysis was used to analyse the change in OCR in
response to injection of succinate (1.25 mM). (B) Response to succinate was measured in terms of %change in OCR directly following injection of succinate. Assay
results are presented +/- SEM and are representative of n=3 independent experiments. BMDMs were stimulated with LPS (100 ng/ml) and (C) stained with CellROX
to measure levels of reactive oxygen species by flow cytometry or (D) lysed for analysis of pro IL-1b protein expression by Western blot using b-Actin as a loading
control. (E) Reactive oxygen species and (F) pro IL-1b protein expression were measured following pretreatment with DMM before stimulation with LPS. Western
immunoblot data presented is representative of n=3 independent experiments. Pro IL-1b time course densitometry is relative to the Bmal1+/+ control band.
Densitometry for Bmal1+/+ and Bmal1-/DMM/LPS bands is relative to their LPS bands. These bands are indicated by * symbols. Flow cytometry data presented is at
least n=3 independent experiments +/- SEM with each data point representative of at least 5,000 events from one sample. Statistical analysis was performed for
Seahorse XF data by unpaired student’s t test and for flow cytometry data by two-way ANOVA with Tukey’s multiple comparisons test (*p < 0.05, ****p < 0.0001).
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macrophages led to higher enzymatic activity of the complex and
not protein abundance.

We next characterised pro-IL-1b production in the absence of
macrophage Bmal1. As we have previously reported (25), we
observed higher levels of pro-IL-1b protein in response to short
LPS stimulations in Bmal1-/- macrophages (Figure 2C and
Figures S2E, F). Il1b mRNA expression was higher in Bmal1-/-

macrophages at 4 hours post LPS stimulation (Figure S2D). In
agreement with our previous findings, we also observed higher
basal and LPS-induced ROS in the absence of Bmal1 in BMDMs
as measured by CellROX (Figure 2D). Basal ROS levels in
peritoneal macrophages were also higher in those cells with
deletion of Bmal1 (Figure S2G). Importantly, using dimethyl
malonate (DMM) to directly inhibit SDH, we attenuated the
increased basal ROS levels (Figure 2E) and increased LPS-
induced pro-IL-1b protein expression (Figure 2F and Figures
S2H, I) of Bmal1-/- cells towards Bmal1+/+ levels. Therefore, in
macrophages lacking Bmal1, greater SDH enzymatic activity,
coupled with higher succinate, causes increased ROS leading to
enhanced pro IL-1b protein expression.

HIF-1a Regulated Glucose Metabolism
Fuels Increased IL-1b Expression in
Macrophages With Deletion Of Bmal1
As succinate and SDH drive Il1b mRNA expression in a HIF-1a
dependent manner (26, 39) and HIF-1a controls glucose
metabolism (56) and myeloid cell inflammation (57), we next
characterized the expression of HIF-1a in response to LPS.
Bmal1-/- macrophages demonstrated greater HIF-1a protein
expression versus Bmal1+/+ after 8 hours of LPS stimulation
(Figure 3A and Figures S3A, B). We also analysed the
differential expression of HIF-1a targets between genotypes.
GLUT1 protein expression was increased in Bmal1-/-

macrophages following short LPS stimulations (Figure 3B and
Figure S3C). An increase in Slc2a1 mRNA, the gene which
encodes GLUT1, was also observed 8 hours after LPS stimulation
(Figure S3D) Higher glucose uptake in Bmal1-/- BMDMs was
observed by a 2-DG uptake assay (Figure 3C). 2-NBDG uptake
was not different between genotypes (Figure S3E). This
observation is in line with previous findings which reports a
disconnect between cellular glucose uptake capacity and 2-
NBDG labelling (58). We also found mRNA expression of
HIF-1a regulated glycolytic pathway enzymes, including
Pfkfb3, Pgk1, Pgm1, and Eno1 to be increased in Bmal1-/- cells
versus Bmal1+/+ after LPS stimulation (Figures S3F-I). Bmal1-/-

BMDMs demonstrated a higher rate of glycolysis basally and
after LPS stimulation (Figure 3D). Measures of basal (Figure 3E)
and compensatory (Figure 3F) glycolysis derived from the
Seahorse XF trace in Figure 3D illustrate this higher glycolytic
activity pre and post LPS stimulation. Similarly, higher levels of
lactate, the end product of anaerobic glycolysis, after 24 hours of
LPS stimulation in Bmal1-/- BMDMs was determined by a
colorimetric lactate assay (Figure S3J).

Next, we utilized the glucose analogue 2DG which inhibits
glycolysis. Bmal1+/+ and Bmal1-/- BMDMs were incubated with
2DG prior to LPS stimulation and 2DG was able to attenuate the
Frontiers in Immunology | www.frontiersin.org 7
higher expression of IL-1b back to control levels with Bmal1
deletion (Figure 3G and Figures S3K, L). We also observed that
increased glucose supplementation of the media led to increased
expression of pro-IL-1b (Figure 3H and Figures S3M, N), which
was higher with Bmal1 deletion. Therefore, upon deletion of
Bmal1 in BMDMs, HIF-1a regulated glucose metabolism is
upregulated which is known to facilitate increased glucose
uptake, glycolysis, Krebs cycle metabolism, succinate, and SDH
activity. Collectively, these metabolic activities typically lead to
increased ROS and HIF-1a stabilization and further the
production of pro-IL-1b. Overall, our results indicate that
BMAL1 is a metabolic sensor governing inflammation by way
of HIF-1a regulated glucose metabolism.

Nuclear PKM2 and STAT3 Phosphorylation
Drive Increased Expression of IL-1b in
Bmal1-/- Macrophages
Out of all the HIF-1a dependent glycolytic enzymes analysed,
PKM2 displayed the most significant differences in mRNA
expression with LPS induction between genotypes (Figure 4A).
Therefore, we sought to further analyse PKM2 expression in
Bmal1-/- BMDMs and determine if it was contributing to the
observed heightened expression of IL-1b. PKM2 protein levels
were increased in Bmal1-/- BMDMs both under basal and LPS
stimulated conditions (Figure 4B and Figures S4A, B). During
inflammation, PKM2 is phosphorylated at Tyr-105 which inhibits
the formation of its enzymatically active tetrameric form and
promotes the formation of monomeric/dimeric PKM2 which
localize to the nucleus. Therefore, to investigate the
consequences of increased PKM2 phosphorylation in Bmal1-/-

BMDMs, we performed protein crosslinking using DSS and
analysed protein expression of PKM2 under non-reducing
conditions. Collectively, these experiments demonstrated that
expression of nuclear PKM2 monomers and dimers are highly
upregulated in response to LPS stimulation (Figure 4C, Figures
S4C, D). Subsequently, we also investigated the effect of
pharmacological manipulation of PKM2 configuration using the
PKM2 activator DASA-58 which promotes formation of PKM2
tetramers. Pre-treatment of BMDMs with DASA-58 abrogated the
heightened pro-IL-1b levels observed in Bmal1-/- cells (Figure 4D,
Figures S4E, F). Overall, these results indicate increased
abundance of nuclear PKM2 in macrophages with Bmal1
deletion and illustrate that its increased expression is driving the
production of the pro-inflammatory cytokine IL-1b.

Notably, the nuclear kinase activity of PKM2 has emerged as
an important regulator of immune cell inflammatory activity
through phosphorylation of STAT3. Therefore, we next sought
to investigate whether the heightened expression of nuclear
PKM2 in Bmal1-/- led to increased STAT3 phosphorylation
and increased levels of pro-IL-1b. Nuclear PKM2 can
phosphorylate STAT3 at Tyr-705, promoting its activation and
downstream inflammatory signalling. Thus, we characterized the
expression of pSTAT3 (Tyr-705) in WT and Bmal1-/- BMDMs
in response to LPS (Figure 4E and Figures S5A, B). pSTAT3
was induced by LPS and its heightened expression in Bmal1-/-

cells peaked after 8 hours of LPS stimulation. Additionally, 2DG
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pre-treatment attenuated the increased LPS-induced pSTAT3
expression in both genotypes (Figures S5C, D). This indicated
that glucose metabolism was mediating the LPS-induced
pSTAT3 response. Next, to directly investigate whether the
enhanced STAT3 Tyr705 phosphorylation in Bmal1-/- BMDMs
leads to increased pro-IL-1b, we utilized the STAT3 inhibitor
STATTIC, which prevents the phosphorylation and activation of
STAT3 at Tyr-705 and Ser-727 (59). Pre-treatment of BMDMs
with STATTIC had no effect on production of IL-6 (Figure S5E)
Frontiers in Immunology | www.frontiersin.org 8
or TNFa (Figure S5F). However, STATTIC effectively abrogated
the increased pSTAT3 (Tyr-705) and IL-1b expression of
Bmal1-/- BMDMs in terms of both RNA (Figure 4F) and
protein (Figure 4G and Figures S5G, H) expression. By
demonstrating the profound ability of STATTIC to inhibit the
heightened expression of IL-1b in Bmal1-/- cells, in addition to
illustrating BMAL1 control of the localization of nuclear PKM2
with STAT3, we therefore identify a novel role for the circadian
clock in controlling macrophage immunometabolism.
A B

C D

G H

E F

FIGURE 3 | Bmal1-/- macrophages display heightened glucose metabolism which is driving increased pro IL-1b expression. Bmal1+/+ and Bmal1-/- BMDMs were
stimulated with LPS (100 ng/ml) and lysed for analysis of (A) HIF-1a and (B) GLUT1 protein expression by Western blot using b-Actin as a loading control. (G) Pro
IL-1b protein expression was measured following pretreatment with 2DG (1 mM) before stimulation with LPS. Expression of (H) pro IL-1b was measured following
incubation of BMDMs with different concentrations of glucose before LPS stimulation. HIF-1a time course and glucose/2DG IL-1b Western immunoblot data
presented is representative of n=3 independent experiments. GLUT1 time course Western immunoblot data presented is representative of n=2 independent
experiments. Time course densitometry is relative to the Bmal1+/+ control band. Densitometry for Bmal1+/+ and Bmal1-/2DG/LPS bands is relative to their LPS
bands. Glucose/LPS IL-1b densitometry is relative to the 0 mM glucose/LPS Bmal1+/+ band. These bands are indicated by * symbols. (C) BMDMs were stimulated
with LPS and glucose uptake was analysed via luminescent 2-DG uptake assay. Data presented is n=3 +/- SEM. Following LPS stimulation, BMDMs were subjected
to a Seahorse XF glycolytic rate assay. ECAR of BMDMs was measured and converted into PER. (D) Metabolic trace illustrating changes in PER following injection of
the glycolytic rate assay compounds rotenone/antimycin a and 2-DG. Measures of (E) basal glycolysis and (F) compensatory glycolysis were derived from (D). Assay
results are presented +/- SEM and are representative of n=3 independent experiments. Statistical analysis was performed for glucose uptake and Seahorse XF data
by one-way ANOVA with Sidak’s multiple comparisons test (*p < 0.05, ***p < 0.001, ****p < 0.0001).
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DISCUSSION

In this paper, we demonstrate that the molecular circadian clock
component BMAL1 impacts on macrophage metabolism to
control the expression of the archetypal pro-inflammatory
cytokine IL-1b. Our lab has previously shown that BMAL1
Frontiers in Immunology | www.frontiersin.org 9
controls IL-1b transcription in macrophages (25) whereas
others have identified a BMAL1 effect on metabolic pathways
impacting immune function (40, 60). Our data further advances
the concept that the core circadian clock protein BMAL1 is a key
controller of macrophage immunometabolism. Specifically, we
uncover two distinct metabolic pathways affecting IL-1b
A B

C D

G

E

F

FIGURE 4 | Phosphorylation of PKM2 and STAT3 promote heightened IL-1b expression in macrophages with deletion of Bmal1. WT and Bmal1-/- BMDMs were
stimulated with LPS (100 ng/ml), RNA was isolated, and gene expression of (A) PKM2 and (F) IL-1b were analysed by RT-qPCR. Samples were normalized to their
expression of the housekeeping gene 18S. Data presented is n=3 +/- SEM. Statistical analysis was performed by one-way ANOVA with Sidak’s multiple
comparisons test (*p < 0.05, ****p < 0.0001). Protein expression of (B) PKM2 and (E) pSTAT3 was analysed by Western blot using b-Actin as a loading control.
(C) PKM2 tetramers, dimers, and monomers were resolved by crosslinking samples after LPS stimulation before Western blot analysis. Pro IL-1b protein expression
was measured following pretreatment with (D) DASA-58 (25 µM) or (G) STATTIC (2.5 µM) before stimulation with LPS for 8 hours. Western immunoblot data
presented is representative of n=3 independent experiments. PKM2 and pSTAT3 time course densitometry is relative to the Bmal1+/+ control band. Densitometry for
Bmal1+/+ and Bmal1-/- DASA/LPS bands is relative to their LPS bands. These bands are indicated by * symbols. *p < 0.05, **p < 0.01 ***p < 0.001, ****p < 0.0001.
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production under the control of BMAL1. We demonstrate that in
the absence of Bmal1, increased succinate metabolism and
elevated PKM2-pSTAT3 pathway activity drive increased pro-
IL-1b expression. These mechanisms reveal how Bmal1 acts as a
metabolic sensor in immune cells linking circadian controlled
metabolism to the inflammatory response.

BMAL1 has previously been shown to control mitochondrial
respiration in muscle (61, 62) and liver (63, 64), where the
PERIOD molecular clock proteins have been specifically
implicated to regulate the differential usage of pyruvate and
fatty acids by the mitochondria throughout the day by driving
rhythmic expression of electron transport chain complexes and
mitochondrial enzymes (65). Our observation of heightened
oxygen consumption in macrophages lacking Bmal1 is
particularly relevant given that mitochondria are now
considered as essential nodes in the immune response. The
Krebs cycle is of particular importance to macrophage
immunometabolism (66). We show that Bmal1 governs
macrophage inflammation by regulating Krebs cycle glucose
flux. Flux of glucose-derived carbons through PDH is
increased upon deletion of Bmal1, providing a potential route
for their increased abundance of Krebs cycle intermediates.
Dynamic remodelling of the Krebs cycle occurs in
macrophages during an inflammatory response and PDH has
been implicated as a crucial node linking metabolic changes to
inflammatory output (55). HIF-1a stabilization can
downregulate PDH expression and result in decreased Krebs
cycle flux and oxygen consumption in hypoxic and cancer cells.
However, in the context of an LPS stimulated macrophage, flux
of glucose derived carbons through PDH is sustained which
facilitates the increased synthesis of Krebs cycle intermediates
which have important inflammatory functions (55). In line with
this data, our results show increased glucose-derived carbon
incorporation into metabolites throughout the Krebs cycle of
macrophages upon deletion of Bmal1. For instance, citrate
abundance is significantly greater in Bmal1-/- macrophages,
which corresponds to the increased flux of glucose derived
carbons through PDH under basal conditions. Following LPS
stimulation we observe a decrease in citrate abundance which
may result from citrate being used as a carbon source for
lipogenesis, reactive species production, and histone
modifications upon inflammatory activation (31). Downstream
of citrate, abundance of itaconate, a-ketoglutarate, and succinate
are increased following LPS stimulation and higher in Bmal1-/-

macrophages, therefore breakdown of citrate is increased upon
macrophage activation and modulated by Bmal1. The
immunomodulatory metabolite itaconate has recently emerged
as a critical determinant of macrophage inflammation, its activity
resolving inflammation through regulation of Nrf2 (67) and
SDH (68). The increased itaconate abundance evident in
Bmal1-/- macrophages may be reflective of an attempt to
quench the higher pro-inflammatory signature in these cells.
Collectively, these data suggest that BMAL1 fine tunes Krebs
cycle glucose flux in macrophages to impact on the
inflammatory response.
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Intriguingly, we observed increased glucose-derived succinate
levels in macrophages lacking Bmal1. Succinate is actively involved
in the transduction of inflammation through 1) its action at
succinate receptors, 2) its post-translational succinylating
activity, and 3) by its accumulation facilitating increased SDH-
derived ROS production which inhibit HIF-1a prolyl
hydroxylases allowing for HIF-1a stabilization (69). We build
on previous work by our lab of heightened HIF-1a stabilisation
and increased ROS levels in Bmal1-/- macrophages (25). We show
that higher SDH activity is the specific source of ROS which is
mitochondrial in origin and leads to increased IL-1b. The pathway
connecting succinate metabolism to the expression of IL-1b is well
characterized (26, 30), with our data showing the regulatory
influence of the molecular clock on this crucial inflammatory
pathway. Recent findings by Alexander et al. (60) support this
pathway. BMAL1 acts as an environmental sensor to fine-tune
HIF-1a activity and bioenergetics in terms of fuel utilization in
muscle and liver (61, 62, 64). Our data now extends this role of
BMAL1 into an immunometabolic setting in its control of IL-1b
production. The relationship of succinate metabolism and HIF-1a
is a key link between oxidative metabolism and glycolysis,
oxidation of succinate facilitating HIF-1a stabilization and a
switch to a glycolytic profile (30). We show that BMAL1 can
both impact upon the production of IL-1b and glycolytic
phenotype through SDH.

Similarly to Alexander et al. (60) we found glucose uptake,
glycolytic pathway activity, and lactate levels to be increased with
deletion of Bmal1 all of which are dependent on HIF-1a. GLUT1-
mediated glucose uptake in macrophages is upregulated upon LPS
stimulation (33) and is required for M1-like polarization (70).
Expression of the GLUT1 glucose transporter is increased in
Bmal1-/- macrophages which facilitates their heightened glucose
uptake. The increased expression of GLUT1 in Bmal1-/-

macrophages basally is likely due to higher basal ROS (71)
whereas upon LPS stimulation the increase is likely due to the
increased stabilization of HIF-1a (72). The heightened expression
of GLUT1 in Bmal1-/- macrophages may be fuelling their
increased glycolysis and Krebs cycle glucose flux. Glucose can
drive IL-1b expression in macrophages through NFkB activation
(73) and glucose-driven IL-1b can positively feedback to further
enhance glucose metabolism and inflammation (74). We
demonstrate an increased responsiveness of IL-1b expression to
alterations in glucose metabolism and concentration in Bmal1-/-

macrophages. Given the role IL-1b plays in perpetuating chronic
inflammation in metabolic disorders and that circadian disruption
further enhances susceptibility to these disorders (75), our
findings may identify BMAL1 as a critical regulator of this
glucose metabolism-inflammation feedback loop. Under steady
state deletion of Bmal1 causes circadian disruption and a low level
of basal inflammation and metabolism dysfunction. Upon
inflammatory stimulation, Bmal1-/- macrophages are primed to
further increase their metabolism, promoting additional
inflammation, and propagation of this feedback loop. Therefore,
we propose that BMAL1 acts as a critical node in the regulation of
glucose driven inflammation.
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While the differential expression of glycolytic genes was not
largely affected with Bmal1 deletion, those which showed higher
induction with Bmal1 deletion are targets of HIF-1a. Pkm2 was
one of these genes which had enhanced mRNA and protein
expression in Bmal1-/- macrophages in line with previous
findings by Deng. et al. (40). PKM2 is an intensely studied
glycolytic enzyme in the field of immunometabolism due to its
ability to also moonlight in the nucleus where it acts as a
transcriptional regulator. For instance, nuclear PKM2 forms a
complex with HIF-1a in macrophages to promote expression of
IL-1b (39). Additionally, neutrophils isolated from patients with
severe COVID-19 were shown to have increased expression of
nuclear PKM2 (76), further implicating PKM2 in the
transduction of pathogenic inflammatory signalling. We
identified enhanced formation of PKM2 monomers and dimers
with Bmal1 deletion which can readily enter the nucleus. Nuclear
translocation of PKM2 mediates the induction of glycolysis after
LPS stimulation through its promotion of HIF-1a transcription
(39, 40), a mechanism which may therefore be driving the
heightened glycolysis we observe in Bmal1-/- macrophages.
Finally, we found that activation of PKM2 using DASA-58,
which forces cytosolic localization, abrogated the higher
expression of pro-IL-1b in Bmal1-/- macrophages.

We next sought to understand how the increased nuclear
PKM2 observed with Bmal1 deletion was impacting on IL-1b
production. Here, we looked to the STAT transcription factor
family as it is heavily involved in inflammatory signalling and is a
target of PKM2 kinase activity. Previous evidence had shown
that mice lacking myeloid Bmal1 displayed heightened PKM2
mediated STAT1 phosphorylation in macrophages, which led to
T cell exhaustion and an increase in sepsis (40) and that PKM2
phosphorylates STAT1 to activate macrophages in a model of
arthritis (77). In terms of STAT3, its phosphorylation by nuclear
PKM2 has recently been implicated to mediate the pathogenic
phenotype of coronary artery disease macrophages (45),
inflammatory lung epithelial cells (44), EAE Th17 cells (43),
and CD4+ T cells in a model of arthritis (42). Therefore, the
PKM2-STAT3 pathway is emerging as a common pathway
across a range of chronic inflammatory conditions.

We observed increased STAT3 phosphorylation at Tyr-705 in
Bmal1-/- macrophages. Importantly, using the pSTAT3 inhibitor
STATTIC we could bring the increased IL-1b expression of
Bmal1-/- macrophages down to WT levels, confirming the
contribution of PKM2/STAT3 axis on BMAL1 controlled IL-1b.
These data are particularly relevant given the involvement of the
macrophage molecular clock in diseases which also involve the
PKM2-STAT3 pathway. For instance, myeloid Bmal1 deletion in
mice has been purported to worsen atherosclerosis driven by
ApoE knockout by enhancing vascular inflammation (27).
However, it is important to note that myeloid Bmal1 deletion
has been demonstrated as protective against atherogenesis in
LDLR-knockout driven hyperlipidemic mice (28). Loss of
myeloid Bmal1 also exacerbates EAE and worsens the pro-
inflammatory features of lung inflammation, both of which are
also settings that involve PKM2 or STAT3 activity (38, 44).
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Our findings demonstrate a dual effect of Bmal1 deletion on
succinate metabolism and PKM2-STAT3 pathway activity to
promote increased expression of pro-IL1b, which also appear to
be physiologically linked. Succinate can promote HIF-1a
stabilization whose target PKM2 can enter the nucleus to
phosphorylate STAT3 (26, 36, 45). Additionally, increased
levels of succinate are known to generate mitochondrial ROS
in inflammatory macrophages and mitochondrial ROS promote
phosphorylation of STAT3 via localization of PKM2 dimers to
the nucleus (30, 45). This suggests mitochondrial ROS as the
mechanism by which BMAL1 links these metabolic pathways to
synergistically promote inflammation. In a general manner, we
also illustrate the regulatory impact of the clock across the
immunometabolic landscape to provide rationale for future
studies in the area of circadian immunometabolism.

However, it is necessary to note the use of only one model of
genetic clock disruption as a limitation to our study. Future studies
should assess the effect of disruption to other clock components on
the specific pathways investigated here, given the well
characterized effects of the clock on immunometabolism
(78, 79). The molecular clock is comprised of many linked
components, therefore the effects we see due to deletion of
Bmal1 may in fact occur as a result of downstream effects on
other clock proteins. It is also important that our specific findings
are translated into ex-vivo and in-vivomodels given that the effect
of Bmal1 deletion on immunometabolism has been previously
demonstrated in such models by Deng et al. and Alexander et al.,
for example (40, 60). The use of environmental models of clock
disruption (jet-lag, constant light dark models etc.) to further
investigate our findings would also help to frame our results in
terms of wider circadian rhythmicity. Nonetheless, our findings
clearly illustrate the impact of Bmal1 on immunometabolism at
the molecular and cellular level. Additionally, while these results
have been generated in an unsynchronized in-vitro system, Collins
et al. have recently demonstrated that the metabolic pathways we
see disrupted by Bmal1 deletion robustly cycle in synchronized
macrophages (12). Overall, we are confident in the importance
and relevance of our findings, and look forward to
contextualization of our findings in wider physiological models.

In addition to immunity, metabolism is also extensively
regulated by the molecular clock (80). The past decade of
research has firmly placed immune cell metabolism as the
critical regulator of immune cell fate and effector function (29).
In parallel, studies have determined the key role of the molecular
clock on immunity (8, 9). We are just beginning to integrate the
three areas of the clock, immunity, and metabolism under the
new area of circadian immunometabolism (40, 60, 78, 79). IL-1b
is an archetypal pro-inflammatory cytokine and its expression is
affected by metabolic alterations (26, 30, 39). Additionally, IL-1b
is ubiquitous in the molecular pathogenesis of a chronic
inflammatory diseases such as arthritis, cardiovascular disease,
and autoimmune conditions (46), and clinical trials have
demonstrated the potency of blocking IL-1b to ameliorate the
molecular and systemic manifestations of these diseases (47–49).
Our findings outline distinct metabolic pathways regulated by
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BMAL1 and link these changes to altered expression of IL-1b
(Figure 5). Furthermore, these findings have clinical relevance.
The expression of many existing drug targets is now known to be
rhythmic (81) meaning that administrations of medicines can be
timed to maximise efficacy and decrease side effects (82). This
has been clearly demonstrated, for instance, by the use of timed
glucocorticoid administration in early morning before the onset
Frontiers in Immunology | www.frontiersin.org 12
of peak symptoms in rheumatoid arthritis (83, 84). Therefore,
targeting PKM2 or STAT3 at a discrete time of day may enhance
efficacy, but this requires further investigation. In conclusion,
our data illustrates a novel role of the circadian clock protein
BMAL1 in macrophages as a metabolic sensor, which modulates
levels of IL-1b through mitochondrial metabolism and
immunometabolic control of the STAT3-PKM2 axis.
FIGURE 5 | Schematic of immunometabolic changes in macrophages with deletion of Bmal1. Glucose metabolism is increased in macrophages with deletion of
Bmal1 which potentiates expression of the pro-inflammatory cytokine IL-1b. In the absence of Bmal1 in macrophages, increased expression of the glucose
transporter GLUT1 leads to increased glucose uptake and higher glycolytic pathway activity. Increased dimerization of the glycolytic enzyme PKM2 facilitates its
translocation to the nucleus where it phosphorylates STAT3 to drive IL-1b expression. In the mitochondria, flux of pyruvate through pyruvate dehydrogenase (PDH)
and oxygen consumption is increased alongside increased Krebs cycle flux which fuels accumulation of the intermediate succinate. Activity of the electron transport
chain complex succinate dehydrogenase (SDH) is also increased in Bmal1-/- macrophages which produces heightened levels of ROS which stabilizes HIF-1a to also
promote IL-1b expression. Therefore, BMAL1 is regulating glucose metabolism in macrophages to impact upon the expression of IL-1b.
November 2021 | Volume 12 | Article 700431

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Timmons et al. BMAL1 Controls Pro-IL-1b via Metabolism
DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.
ETHICS STATEMENT

The animal study was reviewed and approved by TCD Animal
Research Ethics Committee (AREC) and RCSI Research Ethics
Committee (REC).
AUTHOR CONTRIBUTIONS

GT and AC conceived project. GT, RC, EP-M, DF, EV, NJ, and
AC designed research and critically evaluated results. GT, RC,
JO’S, LF, SC, and MC-S performed experiments. GT, RC, MPC-
S, EV, and NJ analysed data. GT and AC wrote the manuscript.
RGC, EP-M, DF, EV, and NJ critically appraised the manuscript.
All authors contributed to the article and approved the
submitted version.
Frontiers in Immunology | www.frontiersin.org 13
FUNDING

This work was funded by an RCSI Strategic Academic
Recruitment Program (StAR) award, a Science Foundation
Ireland Career Development Award (17/CDA/4688) and an
Irish Research Council Laureate Award (IRCLA/2017/110) all
provided to AC.
ACKNOWLEDGMENTS

We wish to acknowledge the Laboratory Operations Staff within
the RCSI School of Pharmacy and Biomolecular Sciences for
their technical assistance throughout the project.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2021.
700431/full#supplementary-material
REFERENCES
1. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic Nucleus: Cell Autonomy

and Network Properties. Annu Rev Physiol (2009) 72(1):551–77. doi: 10.1146/
annurev-physiol-021909-135919

2. Takahashi JS. Transcriptional Architecture of the Mammalian Circadian
Clock. Nat Rev Genet (2017) 18(3):164–79. doi: 10.1038/nrg.2016.150

3. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA,
Hogenesch JB, et al. Mop3 Is an Essential Component of the Master
Circadian Pacemaker in Mammals. Cell (2000) 103(7):1009–17. doi:
10.1016/S0092-8674(00)00205-1

4. Harfmann BD, Schroder EA, Esser KA. Circadian Rhythms, the Molecular
Clock, and Skeletal Muscle. J Biol Rhythms (2015) 30(2):84–94. doi: 10.1177/
0748730414561638

5. Reinke H, Asher G. Circadian Clock Control of Liver Metabolic Functions.
Gastroenterology (2016) 150(3):574–80. doi: 10.1053/j.gastro.2015.11.043

6. Buhr ED, Takahashi JS. Molecular Components of the Mammalian Circadian
Clock. Handb Exp Pharmacol (2013) 217):3–27. doi: 10.1007/978-3-642-
25950-0_1

7. Labrecque N, Cermakian N. Circadian Clocks in the Immune System. J Biol
Rhythms (2015) 30(4):277–90. doi: 10.1177/0748730415577723

8. Palomino-Segura M, Hidalgo A. Circadian Immune Circuits. J Exp Med
(2020) 218(2):e20200798. doi: 10.1084/jem.20200798

9. Scheiermann C, Gibbs J, Ince L, Loudon A. Clocking in to Immunity. Nat Rev
Immunol (2018) 18(7):423–37. doi: 10.1038/s41577-018-0008-4

10. Geiger SS, Curtis AM, O’Neill LA, Siegel RM. Daily Variation in Macrophage
Phagocytosis Is Clock-Independent and Dispensable for Cytokine Production.
Immunology (2019) 157(2):122–36. doi: 10.1111/imm.13053

11. Kitchen GB, Cunningham PS, Poolman TM, Iqbal M, Maidstone R, Baxter M,
et al. The Clock Gene Bmal1 Inhibits Macrophage Motility, Phagocytosis, and
Impairs Defense Against Pneumonia. Proc Natl Acad Sci (2020) 117(3):1543–
51. doi: 10.1073/pnas.1915932117

12. Collins EJ, Cervantes-Silva MP, Timmons GA, O’Siorain JR, Curtis AM,
Hurley JM. Post-Transcriptional Circadian Regulation in Macrophages
Organizes Temporally Distinct Immunometabolic States. Genome Res
(2021) 31(2):171–8. doi: 10.1101/2020.02.28.970715

13. Oliva-Ramirez J, Moreno-Altamirano MM, Pineda-Olvera B, Cauich-Sanchez
P, Sanchez-Garcia FJ. Crosstalk Between Circadian Rhythmicity,
Mitochondrial Dynamics and Macrophage Bactericidal Activity.
Immunology (2014) 143(3):490–7. doi: 10.1111/imm.12329

14. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, et al. A
Circadian Clock in Macrophages Controls Inflammatory Immune Responses.
Proc Natl Acad Sci USA (2009) 106(50):21407–12. doi: 10.1073/
pnas.0906361106

15. Kiessling S, Dubeau-Laramée G, Ohm H, Labrecque N, Olivier M, Cermakian
N. The Circadian Clock in Immune Cells Controls the Magnitude of
Leishmania Parasite Infection. Sci Rep (2017) 7(1):10892. doi: 10.1038/
s41598-017-11297-8

16. Gibbs JE, Blaikley J, Beesley S, Matthews L, Simpson KD, Boyce SH, et al. The
Nuclear Receptor REV-Erbalpha Mediates Circadian Regulation of Innate
Immunity Through Selective Regulation of Inflammatory Cytokines. Proc
Natl Acad Sci USA (2012) 109(2):582–7. doi: 10.1073/pnas.1106750109

17. Sato S, Sakurai T, Ogasawara J, Takahashi M, Izawa T, Imaizumi K, et al. A
Circadian Clock Gene, Rev-Erbalpha, Modulates the Inflammatory Function
of Macrophages Through the Negative Regulation of Ccl2 Expression.
J Immunol (Baltimore Md: 1950) (2014) 192(1):407–17. doi: 10.4049/
jimmunol.1301982

18. Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, et al.
Adrenergic Nerves Govern Circadian Leukocyte Recruitment to Tissues.
Immunity (2012) 37(2):290–301. doi: 10.1016/j.immuni.2012.05.021

19. He W, Holtkamp S, Hergenhan SM, Kraus K, de Juan A, Weber J, et al.
Circadian Expression of Migratory Factors Establishes Lineage-Specific
Signatures That Guide the Homing of Leukocyte Subsets to Tissues.
Immunity (2018) 49(6):1175–90.e7. doi: 10.1016/j.immuni.2018.10.007

20. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. Circadian Gene
Bmal1 Regulates Diurnal Oscillations of Ly6C(Hi) Inflammatory
Monocytes. Sci (New York NY) (2013) 341(6153):1483–8. doi: 10.1126/
science.1240636

21. Timmons GA, O’Siorain JR, Kennedy OD, Curtis AM, Early JO. Innate
Rhythms: Clocks at the Center of Monocyte and Macrophage Function. Front
Immunol (2020) 11(1743). doi: 10.3389/fimmu.2020.01743

22. Bellet MM, Deriu E, Liu JZ, Grimaldi B, Blaschitz C, Zeller M, et al. Circadian
Clock Regulates the Host Response to Salmonella. Proc Natl Acad Sci (2013)
110(24):9897–902. doi: 10.1073/pnas.1120636110

23. Curtis AM, Fagundes CT, Yang G, Palsson-McDermott EM, Wochal P,
McGettrick AF, et al. Circadian Control of Innate Immunity in
November 2021 | Volume 12 | Article 700431

https://www.frontiersin.org/articles/10.3389/fimmu.2021.700431/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.700431/full#supplementary-material
https://doi.org/10.1146/annurev-physiol-021909-135919
https://doi.org/10.1146/annurev-physiol-021909-135919
https://doi.org/10.1038/nrg.2016.150
https://doi.org/10.1016/S0092-8674(00)00205-1
https://doi.org/10.1177/0748730414561638
https://doi.org/10.1177/0748730414561638
https://doi.org/10.1053/j.gastro.2015.11.043
https://doi.org/10.1007/978-3-642-25950-0_1
https://doi.org/10.1007/978-3-642-25950-0_1
https://doi.org/10.1177/0748730415577723
https://doi.org/10.1084/jem.20200798
https://doi.org/10.1038/s41577-018-0008-4
https://doi.org/10.1111/imm.13053
https://doi.org/10.1073/pnas.1915932117
https://doi.org/10.1101/2020.02.28.970715
https://doi.org/10.1111/imm.12329
https://doi.org/10.1073/pnas.0906361106
https://doi.org/10.1073/pnas.0906361106
https://doi.org/10.1038/s41598-017-11297-8
https://doi.org/10.1038/s41598-017-11297-8
https://doi.org/10.1073/pnas.1106750109
https://doi.org/10.4049/jimmunol.1301982
https://doi.org/10.4049/jimmunol.1301982
https://doi.org/10.1016/j.immuni.2012.05.021
https://doi.org/10.1016/j.immuni.2018.10.007
https://doi.org/10.1126/science.1240636
https://doi.org/10.1126/science.1240636
https://doi.org/10.3389/fimmu.2020.01743
https://doi.org/10.1073/pnas.1120636110
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Timmons et al. BMAL1 Controls Pro-IL-1b via Metabolism
Macrophages by Mir-155 Targeting Bmal1. Proc Natl Acad Sci (2015) 112
(23):7231–6. doi: 10.1073/pnas.1501327112

24. Sutton CE, Finlay CM, Raverdeau M, Early JO, DeCourcey J, Zaslona Z, et al.
Loss of the Molecular Clock in Myeloid Cells Exacerbates T Cell-Mediated
CNS Autoimmune Disease. Nat Commun (2017) 8(1):1923. doi: 10.1038/
s41467-017-02111-0

25. Early JO, Menon D, Wyse CA, Cervantes-Silva MP, Zaslona Z, Carroll RG,
et al. Circadian Clock Protein BMAL1 Regulates IL-1beta in Macrophages via
NRF2. Proc Natl Acad Sci USA (2018) 115(36):E8460–e8. doi: 10.1073/
pnas.1800431115

26. Tannahill GM, Curtis AM, Adamik J, Palsson-McDermott EM, McGettrick
AF, Goel G, et al. Succinate Is an Inflammatory Signal That Induces IL-1b
Through HIF-1a. Nature (2013) 496(7444):238–42. doi: 10.1038/nature11986

27. Huo M, Huang Y, Qu D, Zhang H, Wong WT, Chawla A, et al. Myeloid
Bmal1 Deletion Increases Monocyte Recruitment and Worsens
Atherosclerosis. FASEB J: Off Publ Fed Am Soc Exp Biol (2017) 31(3):1097–
106. doi: 10.1096/fj.201601030R

28. Yang G, Zhang J, Jiang T, Monslow J, Tang SY, Todd L, et al. Bmal1 Deletion
in Myeloid Cells Attenuates Atherosclerotic Lesion Development and
Restrains Abdominal Aortic Aneurysm Formation in Hyperlipidemic Mice.
Arteriosclerosis Thrombosis Vasc Biol (2020) 40(6):1523–32. doi: 10.1161/
ATVBAHA.120.314318

29. O’Neill LA, Kishton RJ, Rathmell J. A Guide to Immunometabolism for
Immunologists. Nat Rev Immunol (2016) 16(9):553–65. doi: 10.1038/
nri.2016.70

30. Mills EL, Kelly B, Logan A, Costa ASH, Varma M, Bryant CE, et al. Succinate
Dehydrogenase Supports Metabolic Repurposing of Mitochondria to Drive
Inflammatory Macrophages. Cell (2016) 167(2):457–70.e13. doi: 10.1016/
j.cell.2016.08.064

31. Williams NC, O’Neill LAJ. A Role for the Krebs Cycle Intermediate Citrate in
Metabolic Reprogramming in Innate Immunity and Inflammation. Front
Immunol (2018) 9(141). doi: 10.3389/fimmu.2018.00141

32. O’Neill LAJ, Artyomov MN. Itaconate: The Poster Child of Metabolic
Reprogramming in Macrophage Function. Nat Rev Immunol (2019) 19
(5):273–81. doi: 10.1038/s41577-019-0128-5

33. Fukuzumi M, Shinomiya H, Shimizu Y, Ohishi K, Utsumi S. Endotoxin-
Induced Enhancement of Glucose Influx IntoMurine Peritoneal Macrophages
via GLUT1. Infection Immun (1996) 64(1):108–12. doi: 10.1128/iai.64.1.108-
112.1996

34. Van den Bossche J, O’Neill LA, Menon D. Macrophage Immunometabolism:
Where Are We (Going)? Trends Immunol (2017) 38(6):395–406. doi: 10.1016/
j.it.2017.03.001

35. Dengler VL, Galbraith M, Espinosa JM. Transcriptional Regulation by
Hypoxia Inducible Factors. Crit Rev Biochem Mol Biol (2014) 49(1):1–15.
doi: 10.3109/10409238.2013.838205

36. Luo W, Hu H, Chang R, Zhong J, Knabel M, O’Meally R, et al. Pyruvate
Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1.
Cell (2011) 145(5):732–44. doi: 10.1016/j.cell.2011.03.054

37. Alves-Filho JC, Pålsson-McDermott EM. Pyruvate Kinase M2: A Potential
Target for Regulating Inflammation. Front Immunol (2016) 7(145). doi:
10.3389/fimmu.2016.00145

38. Angiari S, Runtsch MC, Sutton CE, Palsson-McDermott EM, Kelly B, Rana N,
et al. Pharmacological Activation of Pyruvate Kinase M2 Inhibits CD4+ T Cell
Pathogenicity and Suppresses Autoimmunity. Cell Metab (2020) 31(2):391–
405.e8. doi: 10.1016/j.cmet.2019.10.015

39. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MAR, Sheedy FJ,
Gleeson LE, et al. Pyruvate Kinase M2 Regulates Hif-1a Activity and IL-1b
Induction, and Is a Critical Determinant of the Warburg Effect in LPS-
Activated Macrophages. Cell Metab (2015) 21(1):65–80. doi: 10.1016/
j.cmet.2014.12.005

40. Deng W, Zhu S, Zeng L, Liu J, Kang R, Yang M, et al. The Circadian Clock
Controls Immune Checkpoint Pathway in Sepsis. Cell Rep (2018) 24(2):366–
78. doi: 10.1016/j.celrep.2018.06.026

41. Zhou Y, Wu M, Xu L, Cheng J, Shen J, Yang T, et al. Bmal1 Regulates
Macrophage Polarize Through Glycolytic Pathway in Alcoholic Liver Disease.
Front Pharmacol (2021) 12:640521. doi: 10.3389/fphar.2021.640521

42. Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, et al.
Lactate Buildup at the Site of Chronic Inflammation Promotes Disease by
Frontiers in Immunology | www.frontiersin.org 14
Inducing CD4+ T Cell Metabolic Rewiring. Cell Metab (2019) 30(6):1055–
74.e8. doi: 10.1016/j.cmet.2019.10.004

43. Damasceno LEA, Prado DS, Veras FP, Fonseca MM, Toller-Kawahisa JE, Rosa
MH, et al. PKM2 Promotes Th17 Cell Differentiation and Autoimmune
Inflammation by Fine-Tuning STAT3 Activation. J Exp Med (2020) 217
(10):e20190613. doi: 10.1084/jem.20190613

44. van de Wetering C, Aboushousha R, Manuel AM, Chia SB, Erickson C,
MacPherson MB, et al. Pyruvate Kinase M2 Promotes Expression of
Proinflammatory Mediators in House Dust Mite–Induced Allergic Airways
Disease. J Immunol (2020) 204(4):763–74. doi: 10.4049/jimmunol.1901086

45. Shirai T, Nazarewicz RR, Wallis BB, Yanes RE, Watanabe R, Hilhorst M, et al.
The Glycolytic Enzyme PKM2 Bridges Metabolic and Inflammatory
Dysfunction in Coronary Artery Disease. J Exp Med (2016) 213(3):337–54.
doi: 10.1084/jem.20150900

46. Dinarello CA. Interleukin-1 in the Pathogenesis and Treatment of
Inflammatory Diseases. Blood (2011) 117(14):3720–32. doi: 10.1182/blood-
2010-07-273417

47. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C,
et al. Antiinflammatory Therapy With Canakinumab for Atherosclerotic
Disease.New Engl J Med (2017) 377(12):1119–31. doi: 10.1056/NEJMoa1707914

48. Ridker PM, MacFadyen JG, Thuren T, Everett BM, Libby P, Glynn RJ. Effect
of Interleukin-1b Inhibition With Canakinumab on Incident Lung Cancer in
Patients With Atherosclerosis: Exploratory Results From a Randomised,
Double-Blind, Placebo-Controlled Trial. Lancet (London England) (2017)
390(10105):1833–42. doi: 10.1016/S0140-6736(17)32247-X

49. Schieker M, Conaghan PG, Mindeholm L, Praestgaard J, Solomon DH, Scotti
C, et al. Effects of Interleukin-1b Inhibition on Incident Hip and Knee
Replacement. Ann Internal Med (2020) 173(7):509–15. doi: 10.7326/M20-
0527

50. Takeda N, Maemura K. Circadian Clock and Cardiovascular Disease. J Cardiol
(2011) 57(3):249–56. doi: 10.1016/j.jjcc.2011.02.006

51. Sookoian S, Gemma C, Fernández Gianotti T, Burgueño A, Alvarez A,
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