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CD38 is the major NAD+-hydrolyzing ecto-enzyme in most mammals. As a type II
transmembrane protein, CD38 is also a promising target for the immunotherapy of
multiple myeloma (MM). Nanobodies are single immunoglobulin variable domains from
heavy chain antibodies that naturally occur in camelids. Using phage display technology,
we isolated 13 mouse CD38-specific nanobodies from immunized llamas and produced
these as recombinant chimeric mouse IgG2a heavy chain antibodies (hcAbs). Sequence
analysis assigned these hcAbs to five distinct families that bind to three non-overlapping
epitopes of CD38. Members of families 4 and 5 inhibit the GDPR-cyclase activity of CD38.
Members of families 2, 4 and 5 effectively induce complement-dependent cytotoxicity
against CD38-expressing tumor cell lines, while all families effectively induce antibody
dependent cellular cytotoxicity. Our hcAbs present unique tools to assess cytotoxicity
mechanisms of CD38-specific hcAbs in vivo against tumor cells and potential off-target
effects on normal cells expressing CD38 in syngeneic mouse tumor models, i.e. in a fully
immunocompetent background.

Keywords: CD38, NAD+, antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, multiple
myeloma, nanobody, heavy chain antibody, antibody engineering
Abbreviations: ADCC, antibody dependent cellular cytotoxicity; CDC, complement-dependent cytotoxicity; CDR,
complementarity determining region; Fc, crystallizing fragment; hcAb, heavy chain antibody, Ig immunoglobulin; kDa,
kilodalton; MM, multiple myeloma; NAD+, nicotinamide adenine dinucleotide; mAb, monoclonal antibody; Nb, nanobody;
VHH, variable domain of a camelid heavy chain antibody.

org September 2021 | Volume 12 | Article 7035741

https://www.frontiersin.org/articles/10.3389/fimmu.2021.703574/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.703574/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.703574/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.703574/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:nolte@uke.de
mailto:p.bannas@uke.de
https://doi.org/10.3389/fimmu.2021.703574
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.703574
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.703574&domain=pdf&date_stamp=2021-09-03


Baum et al. CD38-Specific Heavy Chain Antibodies
INTRODUCTION

NAD+ is released as an endogenous danger signal from cells during
inflammation (1, 2). CD38, a 43 kDa type II transmembrane protein
consisting of a short intracellular N-terminal domain, a
transmembrane helix and a long C-terminal extracellular catalytic
domain, is the major NAD+-hydrolyzing ecto-enzyme of mammals
(3–6). NAD+-hydrolysis by CD38 limits the availability of NAD+ for
extracellular-ADP-ribosyltransferases (7, 8), and generates the Ca2+

-mobilizing metabolites ADP-ribose and cyclic ADP-ribose (9)
that can be further hydrolyzed to immunosuppressive adenosine
by other ecto-enzymes (10). CD38 is highly expressed in
hematological malignancies including multiple myeloma (11, 12).
It has been proposed that the enzymatic activity of CD38
contributes to a microenvironment favourable for tumor survival
in the bone marrow niche (13, 14).

CD38 represents a promising target for monoclonal antibody
(mAb)-based immunotherapy of multiple myeloma (MM) (11,
15, 16). Several CD38-specific mAbs, including daratumumab
and isatuximab, have shown encouraging results in the clinic
(17–20). The anti-tumor effects of these mAbs presumably reflect
their ability to induce immune effector functions, such as
antibody-dependent cellular cytotoxicity (ADCC) and
complement-dependent cytotoxicity (CDC) (21). However,
these antibodies may also induce the depletion of CD38-
expressing NK cells and may have other off-target effects on
normal cells expressing CD38 (22, 23). Moreover, the use of
mAbs has disadvantages that include limited tissue penetration
due to their large size of approximately 150 kD (24, 25).

Nanobodies are recombinant, single antigen-binding
immunoglobulin variable domains (designated VHH) derived
from naturally occurring camelid heavy chain antibodies (hcAbs)
(26, 27). Nanobodies have several advantages over conventional
antibodies, including a 10-fold smaller size (15 kDa vs. 150 kDa) (28,
29). To endow immune-effector functions, nanobodies can be fused
to the hinge, CH2, and CH3 domains of a conventional mouse or
human IgG antibody to generate nanobody-based chimeric hcAbs
(30). These chimeric hcAbs lack the CH1 domain and the light
chain, resulting in approximately half the molecular size of a
conventional antibody (75 kDa vs. 150 kDa) (30).

Both, nanobodies and hcAbs are emerging as promising
theranostic molecules (31–34). For example, we have recently
shown that human CD38-specific hcAbs can be used to
effectively target human MM cells in xenograft mouse models
of systemic human lymphoma (35). Lack of reactivity with
mouse CD38, however, makes it difficult to understand and
assess potential off-target effects of such therapeutic antibodies
on immune cells that endogenously express CD38. Substituting
three amino acid residues in the CH2 domain of mouse IgG2a or
human IgG1 (L234A, L235A, P329G) eliminates complement
dependent cytotoxicity (CDC) as well as CD16-mediated
antibody dependent cellular toxicity (ADCC) (36). These so-
called LALA-PG mutants retain the thermostability and
pharmacokinetics of the parental IgG (36).

We aimed to develop mouse CD38-specific nanobodies and
hcAbs, to assess their binding epitopes, and to evaluate their
capacity to induce cytotoxicity against tumor cells expressing
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CD38 in vitro as a basis for future in vivo studies of syngeneic
MM models in immunocompetent mice.
METHODS

Mice and Cells
BALB/c and C57BL/6 mice were obtained from The Jackson
Laboratory or Charles River. Cd38-/- mice (3) were back-crossed
onto the BALB/c and C57BL/6 backgrounds for 8 –12
generations. The mouse EL4 (C57BL76N lymphoma, ATCC
TIB-39) and MOPC 315 (BALB/C myeloma, ATCC TIB-23)
cell lines were obtained from the American Type Culture
Collection. EL4 and MOPC 315 cells were cultured in
RPMI-1640 medium (Gibco, Life Technologies, Paisley, UK)
supplemented with 2 mM sodium pyruvate (Gibco), 2 mM
L-glutamine (Gibco) and 10% (v/v) fetal calf serum (Gibco).
Human HEK cells (ATCC CRL-1573) were transiently co-
transfected with expression vectors for nuclear GFP and mouse
CD38 (gene ID: 12494) or human CD38 (gene ID: 952) (37). The
human NK-92 cell line (ACC 488) was obtained from the DSMZ
German Collection of Microorganisms and Cell Cultures. NK-92
cells were stably transduced with mouse CD16 by retroviral
transduction using the pSF91 retroviral vector (35). The
sequence for CD16, i.e. the ectodomain of FcgRIII fused to the
transmembrane and cytosolic domains of FcϵRI, was kindly
provided by B. Clémenceau (Nantes, France). NK-92 cells were
cultured in alpha MEM culture medium (Gibco) supplemented
with 10% FCS (Gibco), 10% horse serum (Gibco), 100 IU/mL IL2
(Proleukin, Novartis) and 2 mM L-glutamine (Gibco). Primary
spleen cells were obtained from wild type and Cd38-/- mice by
passing spleen cell suspensions through a 70 µm cell strainer.

Selection and Sequencing of Mouse
CD38-Specific Nanobodies
Two llamas were immunized subcutaneously by ballistic cDNA
immunization with an expression vector encoding the full-length
open reading frame of mouse CD38. The VHH repertoire was
PCR-amplified from peripheral blood lymphocytes and cloned
into the pHEN2 phagemid vector as described previously (37).
Selection of specific phages was performed by sequential panning
of the phage library on primary splenocytes obtained from
Cd38-/- and WT mice. Following extensive washing, bound
phages were eluted by trypsinization. Plasmid DNA was
isolated from single colonies and subjected to sequence
analyses using pHEN2-specific forward and reverse primers (37).

The coding region of selected nanobodies was subcloned
using NcoI/PciI and NotI into the pCSE2.5 vector (38) (kindly
provided by Thomas Schirrmann, Braunschweig, Germany)
upstream of either a chimeric His6x-Myc epitope tag, the
coding region for the hinge and Fc domains of mouse IgG2a,
or the corresponding coding region for the LALA-PG mutant
(36) of mouse IgG2a (gene ID: 404711). Recombinant myc-his
tagged nanobodies and chimeric nanobody-mouse IgG2c heavy
chain antibodies were produced in transiently transfected
HEK-6E cells (39) (kindly provided by Ives Durocher, Ottowa,
September 2021 | Volume 12 | Article 703574
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Canada) cultivated in serum-free medium. Six days post
transfection, supernatants were harvested and cleared by
centrifugation at 4000 rpm for 10 min. Nanobodies in cell
supernatants were quantified by SDS-PAGE and Coomassie
staining relative to marker proteins of known quantity as
described previously (37). Yields typically ranged from 0.5–3
mg Nb or hcAb per 10 µl of HEK-6E cell supernatant. Myc-His
tagged nanobodies were purified by immobilized metal affinity
chromatography using Ni-NTA agarose (Sigma, St Louis, MO),
hcAbs by affinity chromatography on protein A immobilized on
sepharose beads (GE Healthcare) (37).

Biolayer Interferometry
The extracellular domain of mouse CD38 (aa 45–304) with intact
glycosylation sites was produced as a secretory protein with a
chimeric His6x-Myc epitope tag in the pCSE2.5 vector. The
tagged protein was purified using immobilized metal affinity
chromatography (IMAC). Affinity of hcAbs to recombinant
mouse CD38 was determined by BLI-technology using a
fortéBIO BLItz instrument. Assays were performed at 20°C
with running buffer (PBS, 0.01% (m/v) BSA, 0.002% (v/v)
Tween-20). Protein A sensors were hydrated in running buffer
and loaded until saturation with hcAbs at 10 µg/ml. After
washing, purified mouse CD38 (1.8 µM) was allowed to
associate for 120 seconds on immobilized hcAbs, followed by
dissociation for 120 seconds. Respective binding curves were
referenced against antibody-loaded sensors receiving only buffer
for association and dissociation steps. Curve fitting and affinity
calculations were performed using Graph Pad Prism (version 7)
using non-linear regression and the build-in “association then
dissociation” method.

Flow Cytometry
Purified hcAbs were conjugated via amino groups to Alexa
Fluor647-fluorochrome according to the manufacturer’s
instructions (Molecular Probes, Thermo Fisher Scientific). For
epitope mapping analyses, EL4 cells were pre-incubated with a
saturating concentration (100 nM) of unconjugated hcAbs for 30
min at 4°C, followed by addition of Alexa Fluor647-conjugated
hcAbs (10 nM) and further incubation for 20 min at 4°C. Cells
were washed and analyzed by flow cytometry on a BD-FACS
Canto. Data was analyzed using the FlowJo software (Treestar).
The percentage of cross-blockade was calculated from mean
fluorescence intensities (MFI) as follows: (MFI in the absence of
competing Abs – MFI in the presence of competing Abs): (MFI
in the presence of competing Abs) x 100. Spleen cells were pre-
incubated with Fc-block (BioXcell, clone 2.4G2) to minimize
unspecific binding to Fc-receptors. Cells were then incubated
with Alexa Fluor647-conjugated hcAbs, FITC-conjugated anti-
B220 (BD biosciences, clone RA3-6B2), and Alexa Fluor 750 as a
viability dye (ThermoFischer). Gating was performed on Alexa
Fluor 750-low cells (live cells).

Fluorometric Enzyme Assays
EL4 cells (3 x 105 cells/well) were incubated at 37°C in the dark
for 20 min with hcAbs (10 or 100 µg/ml) or araF-NAD (10 µM)
before fluorescence measurements. After recording for 20 cycles,
Frontiers in Immunology | www.frontiersin.org 3
NGD+ (80 µM, Sigma, St Louis, MO) was added, followed by
further incubation in the dark at 37°C. Production of cGDPR was
monitored continuously for 50 min at 410 nm (emission
wavelength) with the excitation wavelength set to 300 nm,
using a Tecan Infinite M 200 microplate fluorimeter (37).
Readings (EX300/EM410) from wells without cells were
subtracted from all sample readings and values were plotted as
Relative Fluorescence Units (RFU) vs. time. The rate of cGDPR
production was calculated as the slope of the curves (RFU/s)
during the linear phase of the reaction, i.e. t = 500-1200 s.

CDC and ADCC Assays
To analyze the complement-dependent cytotoxicity (CDC)
mediated by hcAbs, EL4 or MOPC 315 cells were incubated
for 10 min at 4°C with hcAbs before addition of guinea pig serum
(25% v/v) as a source of complement. Cells were incubated for
120 minutes at 37°C, washed and resuspended in PBS/0.2% BSA/
propidium iodide before analysis by flow cytometry (35).

To analyze antibody dependent cellular cytotoxicity (ADCC)
mediated by NK-92 cells, EL4 or MOPC 315 cells were incubated
for 10 min at 4°C with hcAbs before addition of NK92 cells. In
order to distinguish NK92 effector cells from target cells, NK92
cells were prelabelled with eFluor 450 (ThermoFisher) for 20 min
at 4°C and washed three times before addition of hcAb-treated
target cells at an effector to target ratio [E:T] of 3:1. Cells were co-
incubated for 3 hours at 37°C, washed, and resuspended in PBS/
0.2% BSA/propidium iodide before flow cytometry (35). In order
to quantify cytotoxicity against target cells, gating was performed
on eFluor 450-negative cells. Dead target cells were quantified
using uptake of propidium iodide (PI) and decrease in forward
scatter (FCS) as indicators of cell lysis. As negative controls,
hcAbs carrying the ADCC and CDC abrogating LALA-PG
mutations (36) were used.

Statistical Analysis
Data were analyzed using GraphPad Prism version 7.00
(GraphPad Software). For enzyme inhibition assays, statistical
significance was calculated using one-way ANOVA followed by a
Bonferroni post hoc test for multiple comparisons. with P< 0.05
(*), P < 0.01 (**), P < 0.001 (***), P < 0.0001 (****). Data for CDC
and ADCC assays in bar diagrams represent the mean ± SD from
three independent experiments.
RESULTS

Phage Display Selection Yields Five
Families of Mouse CD38-Specific
Nanobodies
We cloned the VHH-repertoire from blood lymphocytes of two
llamas immunized (40) with a mouse CD38-encoding cDNA
expression vector into M13 phage display libraries. Selection of
CD38-specific phages was achieved by first panning the libraries
on cells lacking CD38, i.e. splenocytes from CD38-deficient mice
and YAC-1 lymphoma cells to remove unspecific binders.
Libraries were then panned on cells expressing high levels of
September 2021 | Volume 12 | Article 703574
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CD38, i.e. splenocytes from WT mice and EL4 thymoma cells.
Sequencing of selected clones revealed 13 distinct clones (JK3,
JK5, JK13, JK16, NB3, NB7, NB11, NB22, NB24, NB28, NB32,
NB38, NB40 and NB42) that can be subgrouped into five distinct
nanobody families based on sequence similarities in the
framework and complementarity determining regions, with
CDR3 lengths ranging from three to 13 amino acid
residues (Table 1).

In order to generate nanobody-based mouse heavy chain
antibodies (hcAbs), the VHH-coding region was fused to the
hinge, CH2 and CH3 domains of mouse IgG2a. These hcAbs
were produced as secreted recombinant proteins in transiently
transfected HEK cells grown in serum-free medium. Affinities of
the hcAbs were determined by biolayer interferometry using the
recombinant ecto-domain of mouse CD38 (Table 1). The results
reveal moderate affinities in the two and three digit nanomolar
range; family 1 nanobodies had the lowest affinities (> 400 nM),
family 5 nanobodies the highest affinities (19-33 nM). In order to
verify the specificity of the selected antibodies, we performed
flow cytometry analyses of HEK cells co-transfected with GFP
and either mouse CD38 or human CD38 (Figure 1A). The
results show specific binding of the selected hcAbs to mouse
CD38 but not to human CD38. Flow cytometry analyses of
splenocytes obtained from wild type and from CD38-deficient
mice confirmed the specific binding of all hcAbs to native mouse
CD38 (Figure 1B).

Cross Blockade Analyses Reveal Binding
of Nanobody-Based hcAbs to Three Non-
Overlapping Epitopes of Mouse CD38
Next, we aimed to assess whether the identified anti-mouse
CD38-specific hcAbs recognize overlapping or distinct epitopes
on mouse CD38. To this end, we performed cross blockade flow
cytometry analyses. We monitored the binding of Alexa
Fluor647-conjugated hcAbs (JK3-hcAb, JK5-hcAb, JK13-hcAb,
JK16-hcAb) to EL4 thymoma cells in the presence of excess
unlabelled hcAbs (Table 2). The results show that the selected
hcAbs fall into three distinct binding groups. Group 1 hcAbs
Frontiers in Immunology | www.frontiersin.org 4
block binding of hcAbs derived from nanobodies JK3 and NB11
(both family 1). These nanobodies recognize an overlapping
epitope designated epitope 1. Group 2 hcAbs block binding of
hcAbs derived from nanobodies JK5 (family 2) and NB32
(family 3). These nanobodies recognize an overlapping epitope
designated epitope 2. Group 3 hcAbs block binding of hcAbs
derived from nanobodies JK13, JK16, NB3, NB7, NB22, NB24
(family 4) and NB38, NB40, and NB42 (family 5). These
nanobodies recognize an overlapping epitope designated
epitope 3. Remarkably NB32-hcAb (epitope 2), which has the
shortest CDR3, seemed to enhance binding of hcAbs that bind to
the epitope 1 (JK3-hcAb) and epitope 3 (JK13-hcAb, JK16-
hcAb). Note that JK13-hcAb and JK16-hcAb (both epitope 3)
blocked binding of JK3-hcAb (epitope 1), suggesting that these
hcAbs either sterically interfere with binding of JK3-hcAb or
alter the conformation of mouse CD38 so as to inhibit binding of
JK3-hcAb.

Nanobody-Based hcAbs of Families 4 and
5 Inhibit the GDPR Cyclase Activity of
Mouse CD38
To analyze the potential functional effects of the selected hcAbs
on the enzyme activity of mouse CD38 on cells, we employed a
fluorometric GDPR cyclase assay (37, 41–43). This assay uses
NGD+ (which carries a guanine nucleobase instead of adenine)
instead of NAD+ as substrate. We incubated CD38-positive EL4
cells with either CD38-specific hcAbs for 15 min before addition
of NGD+ and monitored the increased fluorescence of the
product cGDPR by fluorimetry (44) (Figure 2). The results
showed a continuous increase of cGDPR during incubation of
EL4 cells with NGD+ in the absence of antibodies. As a control,
we used the NAD+-analogue nicotinamide 2-deoxy-2-
fluoroarabinoside adenine dinucleotide (araF-NAD+), a highly
specific inhibitor of mouse CD38 (7, 45). Addition of araF-NAD+

effectively abrogated the increase of cGDPR, indicating that the
increased fluorescence is largely due to CD38 on the surface of
EL4 cells. Addition of hcAb from family 1 (JK3-hcAb), family 2
(JK5-hcAb), and family 3 (NB32-hcAb) had little if any effect on
the enzyme activity of EL4 cells (Figures 2A–C). Addition of
family 4 hcAbs (hcAbs NB3, NB7, NB22, NB24) showed
significant, but varying levels of enzyme inhibition
(Figure 2D). The most potent inhibitory effect of the GDPR
cyclase activity was observed for all tested hcAbs from family 5
(hcAbs NB38, NB40, NB42) (Figure 2E). Figure 2F allows for
direct visual comparison of the inhibitory effects of all tested
hcAbs and demonstrates the dose dependency of the hcAbs used.

All CD38-Specific hcAbs Mediate Effective
ADCC
To analyze the capacity of mouse CD38-specific hcAbs to induce
ADCC, EL4 thymoma cells or MOPC 315 myeloma cells were
used as target cells and NK-92 cells stably transfected with mouse
Fc-receptor III (CD16) were used as effector cells. Flow
cytometry analyses confirmed high expression of CD38 by EL4
andMOPC 315 cells (Figures 3 A, B, panel 1), while human NK-
92 cells were negative for mouse CD38 (not shown). To monitor
TABLE 1 | Characteristics of mouse CD38-specific nanobodies.

Clone Family FR2 CDR3 length KD (nM)

JK3 1 QREL YIVPYGTGSAYTV 13 > 500
NB11 1 QREL YIVPYGTGSAYTS 13 423
JK5 2 EREF DLFDRLVIPREST 13 102
NB32 3 QREV LNY 3 147
NB7 4 EREF WPPRSASWDDYDY 13 93
NB22 4 EREF WPPRSASWDDYDY 13 59
JK16 4 EREF WPQRSASWDDFDY 13 60
JK13 4 EREF WPPRAASWDDYDY 13 113
NB3 4 EREF WPPRAASWDEYDY 13 251
NB24 4 EREF WPPRAANWDEYDY 13 75
NB40 5 QREL DVVDDRGLGFDDY 13 19
NB42 5 QREL DVVDDRGLGFDDY 13 32
NB38 5 QREL DVVDSRGLGFDDY 13 33
Families were designated according to highly similar CDR3 and shared framework
sequences. Variant amino acid positions in the CDR3 within a family are highlighted in
grey. Affinities (KD) of nanobodies for the recombinant ecto-domain of CD38 were
determined by biolayer interferometry.
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ADCC, EL4 and MOPC 315 cells were incubated with eFluor
450-labelled NK92 cells in the absence or presence of Nb-based
mouse IgG2a hcAbs. To evaluate cell death, we monitored
uptake of propidium iodide and decrease in forward scatter by
flow cytometry (Figures 3 A, B, panels 2–4). The results show
that all analyzed hcAbs mediated effective killing of EL4 and
MOPC 315 target cells. In contrast, only background levels of cell
death were observed in the presence of mouse IgG2a hcAbs
carrying the three LALA-PG mutations that abrogate binding to
Fc-receptors (36).

CD38-Specific hcAbs of Families 2, 4, and
5 Mediate CDC
To analyze the potential of hcAbs to induce CDC, we incubated
EL4 and MOPC 315 cells with saturating amounts of mouse
IgG2a hcAbs and guinea pig serum as a source of complement.
Frontiers in Immunology | www.frontiersin.org 5
As indicators of cell lysis, we monitored permeabilization of cells
to the DNA-staining dye propidium iodide and decrease in
forward scatter using flow cytometry (Figure 4). The results
show that hcAbs JK5, JK13, and NB38 from families 2, 4 and 5
mediate effective CDC of EL4 and MOPC 315 target cells. In
contrast, only background levels of cell death were observed
when incubations were performed in the presence of the LALA-
PG mutants of the corresponding hcAbs that abrogate binding of
complement factor C1q (36).
DISCUSSION

From immunized llamas, we selected 13 mouse CD38-specific
hcAbs that derive from five nanobody families, each of which
carries a common framework region and a highly similar CDR3.
A

B

FIGURE 1 | Selected heavy chain antibodies specifically recognize mouse CD38. (A) HEK cells were transiently co-transfected with expression constructs for GFP
and either mouse CD38 (top rows) or human CD38 (bottom rows). Twenty-four hours after transfection, cells were incubated sequentially with selected nanobody-
rabbit IgG hcAbs and APC-conjugated anti-rabbit IgG. Control stainings were performed with an isotype control hcAb and with human CD38-specific JK36-hcAb.
Numbers indicate the percentage of cells in the respective quadrants. Data are representative of two independent experiments. (B) Splenocytes from wildtype (WT)
and Cd38-/- mice were incubated with Alexa Fluor 647-conjugated hcAbs, a FITC-conjugated B220-specific mAb, and Alexa Fluor 750 as vitality dye. Control
stainings were performed with an isotype control hcAb and a conventional mouse CD38-specific mAb (clone 90). Gating was performed on live (Alexa Fluor 750-low)
cells. Data are representative of two independent experiments.
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These hcAbs bind specifically to three distinct epitopes of
murine CD38.

All epitope 3-directed hcAbs (i.e., families 4 and 5) inhibited
the GDPR-cyclase activity in a dose dependent fashion. In
contrast, hcAbs of families 1, 2 and 3 had little if any effect on
the GDPR-cyclase activity. This NGD+-based assay is commonly
used to assess the effect of antibodies on CD38 enzyme activity
(37, 43, 46). A limitation of this assay is that it only allows an
estimate of the allosteric inhibitory effect of antibodies on the
GDPR-cyclase, but not necessarily on the ADPR-cyclase or
NAD-glycohydrolase activities of CD38. It is possible that
nanobodies might affect cyclase and NADase activities
differentially. Indeed, in a recent study we found that both,
daratumumab and human CD38-specific hcAb 1067, inhibited
the GDPR-cyclase and ADPR-cyclase activities of human CD38
(47), while neither daratumumab nor hcAb 1067 had any
detectable effect on the NADase activity of CD38. It has been
proposed that CD38 contributes to shaping an immunosuppressive
tumor microenvironment (TME) by fuelling the conversion of
NAD+ to immunosuppressive adenosine (14, 48–50). Since
inhibition of the NADase activity of CD38 is more relevant in
this context than inhibition of its cyclase activities, there remains a
need for better CD38-inhibitory antibodies.
September 2021 | Volume 12 | Article 703574
A

B

FIGURE 2 | hcAbs of families 4 and 5 inhibit the GDPR-cyclase activity of mouse CD38. EL4 thymoma cells were incubated with the indicated hcAbs or 10 mM
araF-NAD+ for 15 min at 37°C before fluorescence measurements with a microplate reader. After the first 20 cycles, 50 mM NGD+ was added and kinetic
fluorescence reading (ex/em: 300/410 nm) was continued for 60 min. (A) Representative fluorimetry plots for cells incubated with the indicated hcAbs. Controls
included cells incubated with (green) or without (black) NGD+, and cells incubated with NGD+ and araF-NAD+ (red). Vertical dotted lines at 8 and 20 min depict the
time points used for calculation of slopes depicted in (B). (B) Each dot indicates the slope of the curve during the linear phase (t = 8-20 min), relative to the slope of
the curve obtained from control cells incubated with NGD+ alone (n = 3). Statistical significance was calculated using one-way ANOVA followed by a Bonferroni post
hoc test for multiple comparisons. ****p < 0.0001. Data are representative of three independent experiments.
TABLE 2 | Epitope mapping of nanobody-based mouse CD38-specific hcAbs.

ep Fam Nb JK3647 JK5647 JK13647 JK16647

1 1 JK3 98 17 27 18

1 1 NB11 74 5 17 29

2 2 JK5 29 97 33 5
2 3 NB32 -58 82 -22 -8

3 4 JK13 55 -5 99 100
3 4 JK16 79 25 95 98

3 4 NB3 -19 4 72 78

3 4 NB7 -22 0 71 82

3 4 NB22 -5 3 66 65
3 4 NB24 -27 0 75 79

3 5 NB38 6 15 79 83

3 5 NB40 0 14 75 77
3 5 NB42 12 13 76 75
EL4 thymoma cells were incubated for 30 min at 4 °C with unconjugated hcAbs (indicated
on the left) before addition of Alexa Fluor647-conjugated hcAbs (indicated on top). Cells
were further incubated for 30min at 4 °C, washed twice and analyzed by flow cytometry.
Numbers indicate the percentage maximal blockade of the mean fluorescence intensity of
cells labelled in the presence of competing hcAbs. Negative numbers indicate enhanced
labelling of cells in the presence of the competing hcAbs. Efficiency of inhibition is indicated
by different shades of grey (dark grey: > 80% inhibition, light grey: 50–80% inhibition). Self-
blockade by the nanobody used for labelling is indicated by highlighted boxes in the
diagonal. HcAbs that blocked binding of each other were assigned to the same epitope.
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The CD38-specific hcAbs from all five families, irrespective of
their binding epitopes induced potent ADCC of murine cell
lines. This in line with the results of our previous studies showing
that human CD38-specific nanobody-based hcAbs potently
induced ADCC of several human lymphoma and myeloma cell
lines, including LP-1 myeloma, CA-46 and Daudi Burkitt
lymphoma (35, 51).

Members of hcAbs families 2, 4 and 5, but not of families 1
and 3 also mediated CDC. These findings differ from those of our
previous studies with hcAbs directed against human CD38, in
which we found that the 22 nanobody-based hcAbs directed
against 3 different epitopes of human CD38 showed little if any
capacity to induce CDC against different human CD38
expressing lymphoma cell lines (35, 51). Similar findings were
Frontiers in Immunology | www.frontiersin.org 7
reported for a panel of 42 human mAbs, of which only a single
Ab, daratumumab, was able to induce CDC (35, 52).

The ability of daratumumab to induce CDC was strongly
potentiated by point mutations of residue E345 or E430 that
facilitate oligomerization of CD38-bound antibodies into
ordered hexamers on the cell surface (53, 54). Similarly
introduction of the E345R mutation also markedly enhanced
the CDC potency of human CD38-specific hcAbs (51).

New structural insights regarding the CDC-inducing potency
have recently been obtained for antibodies directed against the
B-cell membrane protein CD20 (54). These Abs have been
subdivided into two groups, which either recruit complement
effectively (type I) or not (type II). A cryo-electron microscopy
analysis of the Fab fragments of such antibodies in complex
A

B

FIGURE 3 | hcAbs of all five families effectively induce antibody-dependent cellular cytotoxicity against CD38-expressing thymoma and myeloma cell lines. Cell surface
expression of CD38 by EL4 thymoma (A) and MOPC 315 myeloma (B) cells was assessed by flow cytometry using a fluorochrome-conjugated mouse CD38-specific
mAb and an isotype control (open histogram) (panel 1). To assess the capacity of hcAbs to induce ADCC, EL4 cells (A) or MOPC 315 cells (B) were co-cultured with
eFluor 450-labelled NK-92 cells for 3h at 37°C at an effector to target ratio of 3:1 in the presence of CD38-specific mouse IgG2a hcAbs from all five nanobody families.
As controls, we used the same mouse IgG2a hcAbs carrying the LALA-PG mutation that abrogate FcR-binding and a non-binding control hcAb. Cells were then
incubated with propidium iodide (PI) and analyzed by flow cytometry. Representative dot plots illustrate the clear separation of eFluor 450-postive effector cells and eFluor
450-negative target cells (panel 2). To assess cytotoxicity against target cells, gating was performed on eFluor 450-negative cells (panels 3, 4). Representative dot plots in
panels 3 and 4 illustrate the clear distinction of dead target cells (PI-positive, low forward scatter/FSC-A) from live target cells (PI-negative, FSChigh). Panel 3 shows the
results of cells incubated with JK5 hcAb, panel 4 shows the results of cells incubated with the isotype control hcAb. Numbers in panels 2-4 indicate the percentage of
cells in the indicated gated populations. Epitopes and nanobody families are indicated in parentheses behind the nanobody names. Data in bar diagrams represent
mean ± SD from three independent experiments.
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with full length dimeric CD20 found that the CD20 dimer
bound only one Fab arm of the type II mAb obinutuzumab,
but two Fab fragments of the type I mAbs rituximab and
ofatumumab (55). These findings indicate that type I
antibodies act as molecular seeds that allow formation of
oligomeric complexes, while type II antibodies preclude
recruitment of additional complexes. Since CD38 can also
form dimers and oligomers (6, 56), it is tempting to speculate
that mouse CD38-specific hcAbs of families 2, 4, and 5 can
similarly act as molecular seeds that facilitate formation of
oligomeric complexes of CD38 on the cell surface and thereby
enhance CDC.

In vivo studies are ultimately needed to assess the potential
therapeutic efficacy of the hcAbs reported here in mouse
myeloma models. Of note, we have previously shown that
nanobody-based hcAbs can achieve therapeutic efficacy in vivo
in xenograft mouse models using our previously generated
Frontiers in Immunology | www.frontiersin.org 8
hcAbs directed against human CD38 (35). These human
CD38-specific hcAbs reduced the growth of a systemic
lymphoma and prolonged the survival of tumor bearing SCID
mice. The specificity for murine CD38 makes our hcAbs unique
tools to simultaneously assess the cytotoxicity mechanisms
of CD38-specific hcAbs in vivo against tumor cells and
their potential off-target effects on normal cells expressing
CD38 in syngeneic mouse tumor models, i.e. in a fully
immunocompetent background.
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FIGURE 4 | hcAbs of families 2, 4, and 5 mediate complement-dependent cytotoxicity of cells against CD38-expressing thymoma and myeloma cell lines. EL4
thymoma (A) and MOPC 315 myeloma (B) cells were incubated for 120 min at 37°C with the indicated CD38-specific mouse IgG2a hcAbs in the presence of 25%
guinea pig serum as a source of complement. The same serum was pretreated for 10 min at 70°C to inactivate complement components and used as a control
(heat-inactivated serum). As additional controls, we used LALA-PG mutant hcAbs (with abrogated C1q-binding) and a non-binding control hcAb. Cells were stained
with propidium iodide and analyzed by flow cytometry to quantify the percentage of dead (PI-positive, FSClow) cells. Gating was performed to exclude cellular debris
with very low FSC and low SSC. Numbers in panels 1-4 indicate the percentage of cells in the indicated gated populations. Data in the bar diagrams represent mean
± SD from three independent experiments.
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