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Common variable immunodeficiency disorders (CVID) are a group of rare diseases of the
immune system and the most common symptomatic primary antibody deficiency in adults.
The “variable” aspect of CVID refers to the approximately half of the patients who develop
non-infective complications, mainly autoimmune features, in particular organ specific
autoimmune diseases including thyroiditis, and cytopenias. Among these associated
conditions, the incidence of lymphoma, including mucosal associated lymphoid tissue
(MALT) type, is increased. Although these associated autoimmune disorders in CVID are
generally attributed to Systemic Lupus Erythematosus (SLE), we propose that Sjogren’s
syndrome (SS) is perhaps a better candidate for the associated disease. SS is an
autoimmune disorder characterized by the lymphocytic infiltrates of lacrimal and salivary
glands, leading to dryness of the eyes and mouth. Thus, it is a lymphocyte aggressive
disorder, in contrast to SLE where pathology is generally attributed to auto-antibody and
complement activation. Although systemic lupus erythematosus (SLE) shares these
features with SS, a much higher frequency of MALT lymphoma distinguishes SS from
SLE. Also, the higher frequency of germ line encoded paraproteins such as the monoclonal
rheumatoid factor found in SS patients would be more consistent with the failure of B-cell
VDJ switching found in CVID; and in contrast to the hypermutation that characterizes SLE
autoantibodies. Thus, we suggest that SSmay fit as a better “autoimmune” association with
CVID. Examining the common underlying biologic mechanisms that promote lymphoid
infiltration by dysregulated lymphocytes and lymphoma in CVID may provide new avenues
for treatment in both the diseases. Since the diagnosis of SLE or rheumatoid arthritis is
usually based on specific autoantibodies, the associated autoimmune features of CVID
patients may not be recognized in the absence of autoantibodies.
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INTRODUCTION

Common variable immunodeficiency disorders (CVID) are a group
of rare diseases of the immune system and the most common
symptomatic primary antibody deficiency in adults. They comprise
a group of disorders with similar antibody deficiency but a myriad
of different aetiologies, most of which remain poorly understood (1–
8). CVID are sometimes complicated with autoimmune features (9–
11). Several biological mechanisms have been recently implicated in
the development of these complications, including the decrease in
the number of circulating switched memory B cells, CD21low B cell
expansion, interferon (IFN) signature and B-Cell Activating Factor
(BAFF) hyper-expression, and they will be addressed in the
subsequent paragraphs of this review. All of these mechanisms
prevent the emergence of somatic mutation among the
autoantibodies in CVID patients. Thus, CVID provides an
opportunity to understand processes such as neutropenia,
thrombocytopenia, and lymphoproliferation in the absence of the
affinity selected autoantibodies that we normally invoke as
pathogenetic mechanisms.

It is worth recalling the original studies by Kunkel et al. (12)
pointed out that germ line genes (encoding both heavy and light
chains) were found as autoantibodies in patients with
Waldenstrom’s macroglobulinemia that had not undergone
significant affinity selected maturation and recombination. For
example, the germ line encoded antibodies with mixed
cryoglobulin or cold agglutinin activity were sequenced and found
to have a limited repertoire that was defined as conserved
“idiotypes” and later found to have sequence due to germ line
encoded heavy and light chains. Of interest, similar limited
expression of light chains was found in the rheumatoid factor
(RF) of Sjögren’s syndrome (SS) patients (i.e., the 17-109 idiotype)
but not in the highly variable light chains of RF in Systemic Lupus
Erythematosus (SLE) patients (13). Further, the B-cell lymphomas
of SS show a marked limitation of their surface immunoglobulin
heavy and light chains (14). In contrast, autoantibodies with
extensive somatic diversification mechanisms are the hallmark of
SLE and these patients do not have the elevated frequency of B-cell
Mucosa Associated Lymphoid Tissue (MALT) lymphomas (15).

In this review we look at the potential link between CVID and
SS based on the high frequency of lymphoma in both groups.
This contrasts with the most reviews that suggest SLE is the main
“associated” systemic autoimmune disorder. This change of view
is more than semantic and emphasizes that SS is a disorder of
“aggressive” hyperactivated lymphocytes that infiltrate tissues in
comparison to SLE that is characterized by its pathogenic
antibodies that play a role through immune complexes and
complement activation.
CLINICAL FEATURES, AUTOIMMUNE
ASPECTS AND HETEROGENEITY OF CVID

CVID represents the most frequent clinically expressed primary
immunodeficiency (PID) in adults, accounting for more than 50%
of cases of PIDs (1, 2). Worldwide geographic differences in
Frontiers in Immunology | www.frontiersin.org 2
prevalence are the consequence of discrepancies in diagnostic
methods, disease awareness and data registration (3).

The term CVID was firstly coined in 1971 by the World Health
Organization to express a diagnosis of exclusion from other
antibody deficiency syndromes with more specific clinical and
inheritance patterns (4). Since then, CVID diagnostic criteria have
been revised many times (1, 5–7), matching the evolution in the
clinical, immunological and genetic knowledge on the disease (7, 8).

In 2008, Chapel et al. firstly categorized CVID complications,
identifying five distinct phenotypes: no complications,
autoimmunity, polyclonal lymphocytic infiltration, enteropathy
and lymphoid malignancy (9). Subsequently, other studies
attested the classification of CVID based on the presence of
complications, and the concomitance of certain features, as
autoimmunity, lymphocytic interstitial lung disease and
lymphoid hyperplasia, was noted (10, 11).

More recently, the 2016 International Consensus document on
CVID supported further analysis on the associations between
genetics, clinical presentation, disease severity and immunotype,
allowing the distinction into “infection-predominant”,
“inflammatory predominant” and “autoimmunity predominant”
entities (1).

The latest European society of Immune Deficiency (ESID)
(2019) diagnostic criteria include autoimmune and inflammatory
conditions as primary clinical presentations, in addition to
laboratory abnormalities (8).

In fact, it has emerged that at least 30% of patients show
additional non-infectious conditions, as autoimmune,
autoinflammatory, granulomatous, lymphoproliferative and/or
malignant complications, especially in patients with low fraction
of isotype switched memory B cells (1, 6, 11, 16).

Autoimmune diseases can be observed before CVID diagnosis
in up to 17.4% of patients and as the only clinical manifestation
at the time of diagnosis of CVID in 2.3% of patients (17).

Autoimmune and autoinflammatory conditions reported in
CVID are summarized in Table 1.

Systemic autoimmune diseases, properly rheumatic diseases,
were found in 5.9% of all cases in a cohort of 870 CVID patients
analyzed from the USIDNET registry, accounting for almost 40% of
the detected global autoimmune manifestations. One third of
patients with CVID-associated rheumatologic disorders had an
additional inflammatory complication or malignancy (18).
Among CVID patients affected by rheumatologic conditions, a
female predominance has been noted, while inflammatory
arthritis has been reported as the most frequent rheumatological
manifestation (3%), followed by SS (11/870 in USIDNET registry),
SLE, vasculitis and Behçet’s disease and others (18–20).

Importantly, in CVID patients, the overall risk of lymphoid
malignancies [e.g. extra-nodal B cell non-Hodgkin lymphoma
(NHL)] ranges between 2 and 10% (11, 20), while the risk of
gastric cancer was reported as 10-fold increased (21).
CVID AND AUTOIMMUNITY

The pathogenesis of autoimmune complications in CVID is
poorly understood, as well, and is counterintuitive because
July 2021 | Volume 12 | Article 703780
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these patients are defined by their inability to make antibodies
yet still mount autoimmune reactions. Some general
assumptions may support this paradox:

a) the co-existence of hypo- and hyper-immune states in the
same individual at the same point in time is not implausible
given the complexity of the immune system;

b) both T and B cells abnormalities may contribute to the
development of autoimmunity in CVID patients;

c) increased autoreactive B cells and reduced T regulatory cells may
be involved in the pathogenesis of autoimmunity in CVID.

Studies on B and T cell immune dysregulation found many
possible responsible factors for autoimmunity appearance, such
as the expansion of CD21low/- B cells and related reduction of T
regulatory cells (22); the reduction of switched memory B cells
(23, 24); the low levels of naïve CD8+ (25) and CD4+ (22, 25, 26)
T cells and the elevated T helper 1 and IFN gamma signature
(27), related to the increase in T helper 1 and follicular T CD4+
cells (28, 29). Conflicting evidence emerged on the role of BAFF
and IL-7 (10, 30–32).

Challenge of Identifying SS in CVID
Even if autoimmune clinical manifestations reported in CVID
mostly resemble SLE (autoimmune cytopenias in particular), we
suggest that SS may fit as a better “autoimmune” association.

SS diagnosis is not as simple as you’d think. One recent
study from academic institutions with expertise in SS has
Frontiers in Immunology | www.frontiersin.org 3
shown that almost 50% of patients diagnosed as SLE with dry
eye symptoms actually had SS when the patients were re-
examined for the presence of anti-SSA antibody and other
clinical features of SS (33). Moreover, after the patient is
initially labelled as SLE, it is rare that the underlying diagnosis
is re-examined. As a result, SS patients with extraglandular
manifestations, that might benefit from new trials of therapy,
could be never considered.

Moreover, patients affected by CVID might show SS typical
manifestations even in the absence of SS related autoantibodies,
determining a condition resembling seronegative SS. These clinical
manifestations include both glandular (e.g. sicca symptoms) and
extraglandular manifestations (e.g. constitutional manifestations,
interstitial lung disease, tubular nephritis, haemolytic anemia,
thrombocytopenia) (34). Thus, patients with CVID should be
investigated more thoroughly for SS-related symptoms and studied
in depth with functional, instrumental and histopathological tests (e.g.
minor salivary gland biopsy) in addiction to laboratory parameters.

SS-Like Features in CVID Patients Who
Lack Autoantibody to SS-A
The characteristic pathologic picture in both glandular and
extraglandular manifestations of SS is the “aggressive” lymphocyte
that infiltrates tissues. This may be reflected in the “focus score” that
counts clusters of lymphocytes in a minor salivary gland biopsy, the
analogous infiltrates of the lacrimal glands, the lymphocytic clusters
in the lung in lymphocytic interstitial pneumonitis (LIP) or the
markedly increased frequency of lymphoma.

Although elegant models have shown that SS-A is a chaperone
molecule to both single and double stranded viral nucleotides, it is
the resistance of SS-A to breakdown in the apoptotic bleb that
makes it an attractive candidate for perpetuating the autoimmune
cycle. The binding to antibody to SS-A (whose production is closely
linked to HLA-DR3) provides a mechanism for Fc internalization of
the SS-A/hYRNA complex with subsequent internalization and
translocation to the toll-like receptor (TLR) (35). Yet, the finding
of lymphoid infiltrates and lymphoma and CVID indicate that there
is more to the story.

In fact, since CVID patients lack detectable circulating
autoantibodies including anti-SS-A estimation of the role of SS
pathogenetic factors in CVID is likely to be grossly underestimated.
For example, it has been shown that activation of TLR receptors by
viral and bacterial nucleic acids plays a role in CVID by promoting
IFN alpha pathway rather than TNF alpha upon stimulation (36).
Also, non-coding small RNAs are important (37). Other common
factors such as T-follicular type and T-helper type phenotype and B-
cells expressing low levels of cellular surface CD as well as reciprocal
decrease in regulatory T-cells and isotype switched memory B cells
will be reviewed below.

Thus, the lesson for rheumatologists from CVID is that we
have considered the cardinal feature of SS as SS-A antigen and
antibody that targets. However, also in the absence of antibody to
SS-A we see the lymphocyte aggressive features that characterize
its dysautonomic features (dry eyes, dry mouth, dry skin,
interstitial pneumonitis, interstitial nephritis, and increased
frequency of lymphoma).
TABLE 1 | Autoimmune and autoinflammatory conditions reported in CVID.

Classification Specific disorder

Autoimmune cytopenias Immune
Thrombocytopenic

Purpura
Autoimmune Haemolytic

Anemia
Autoimmune
Neutropenia

Organ-specific disorders
Lung Lymphoid Interstitial

Lung Disease
Granulomatous

Lymphocytic Interstitial
Lung Disease

Gastrointestinal tract Autoimmune
Enteropathy

Inflammatory Bowel
Disease

Celiac Disease
Pernicious Anemia

Endocrine system Thyroiditis
Type 1 Diabetes

Skin Psoriasis
Vitiligo

Rheumatic diseases Inflammatory Arthritis
Sjögren’s Syndrome
Systemic Lupus
Erythematosus

Vasculitis
Behçet’s Disease
July 2021 | Volume 12 | Article 703780
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RELEVANT CLUES FROM THE GENETICS
OF CVID

While CVID is mainly a polygenic and multifactorial disease,
recent technical advances in next generation sequencing (NSG)
allowed to discover a monogenic cause in up to 15-30% of cases
(38, 39). Thirteen monogenic mutations associated with CVID
are listed on the Online Mendelian Inheritance in Man (OMIM)
database. Among them, some are specifically associated with
autoimmunity, and are listed in Table 2.

TACI may be involved in the central B cell tolerance and that
reduced function results in the loss of tolerance and resultant
autoimmunity (40).

ICOS and NF-kB deficiencies lead to CVID-like
immunodeficiency syndromes and autoimmunity (37–39).
Interestingly, dysregulation of NF-kB in glandular epithelial cells
results in SS-like features (41), as well as expression of NF-kB at
both the mRNA and protein level was up-regulated in SS-
lymphoma-BAFF-RHis159Tyr-derived B cells, linking the innate
to the adaptive immunity upregulation and lymphoma in SS (42).

STAT3 is thought to lead to autoimmunity by promoting the
activation and expansion of autoimmunity-associated TH17
cells, a subtype of T cell deeply involved in the early
mechanisms of autoimmunity (43–45).

LRBA and CTLA-4 are inhibitors of T cell, and their
deficiencies cause excessive T cell activation and breakdown of
immune tolerance, resulting in autoimmunity, as emerged even
under checkpoint inhibitor therapy, namely ipilimumab (46–48).

Activated PI3Kd syndrome (APDS) is characterized by
impaired T- and B-cell development and (APDS) function,
autoimmunity, and lymphoproliferation (49).
COMMON FEATURES BETWEEN CVID
AND SJÖGREN’S SYNDROME

Lymphoproliferation
Both CVID and primary SS are strongly related to
lymphoproliferation and lymphoma, in particular B cell NHL
and MALT-type lymphoma.
Frontiers in Immunology | www.frontiersin.org 4
CVID and Lymphoproliferation
Data collected from 1091 CVID patients, showed that CVID
patients with a lymphoproliferative pattern have a 2.5-fold
increased risk of developing lymphoma. The most common
forms of benign lymphoid hyperplasia in CVID are
splenomegaly and lymphadenopathy, but lymphoid hyperplasia
and polyclonal lymphoproliferative infiltrations frequently
affect other organs and tissues such as lungs and gastro
intestinal. The lung represents the prevalent extranodal site
for lymphoproliferative disorders, which include follicular
bronchiolitis, lymphoid interstitial pneumonia, and pulmonary
nodular lymphoid hyperplasia (50). Chapel et al. confirmed
polyclonal lymphoid infiltrate as a predictor of lymphoma in
CVID, which increased by 5 times the risk of developing
lymphoma (9). The main histotypes of lymphoma in CVID are
represented by mature B-cell malignancies followed by
Hodgkin’s lymphoma and rarely by MALT-type lymphomas
(51–53).

The presence of a 2-step transformation mechanism is
hypothesized, as in non-Hodgkin’s lymphoma (9). A benign
lymphoproliferation is deeply linked to the immune
dysregulation intrinsic to CVID patients, as observed in other
primitive immunodeficiencies such as CTLA-4 haploinsufficiency
and STAT 3 gain of function mutations and as do autoimmune
diseases such as primary SS (43, 46, 54). In CVID, mutation of
TACI, reduction of isotype-switched memory B cells, expansion
of CD21low/- B cells, expression of an IFN signature, expansion of
inflammatory innate lymphoid cells and retained B cell function
are all linked with development of autoimmunity and
lymphoproliferation (19).

SS and Lymphoproliferation
B-cell clonal expansion is a key feature of SS and progression to
B-cell lymphoma occurs in about 5% of patients. The progression
from polyclonal, to benign clonal lymphoproliferation, to overt
lymphoma in SS is one of the few human models in which one
can study B-cell lymphomagenesis and its link to immune
dysregulation (55).

The pathological hallmark of SS is MALT arising in
chronically inflamed tissues, mainly in salivary glands, where
inflammation, autoimmunity and lymphoproliferation coexist,
creating a complex biological and immunological substratum
that fuels autoreactive B lymphocytes persistence and promotes
their proliferation, towards a clonal selection and a possible
lymphoma development (54, 56).

In SS the prevalent histological type of lymphoma is marginal
zone and particularly MALT lymphoma of the salivary glands
but other histotypes are described and lung is one of the
prevalent organ targets of lymphoproliferation besides exocrine
glands (57).

In primary SS, splenomegaly and lymphadenopathy also
represent well established lymphoma risk factors, in addition
to salivary gland swelling (58, 59). Moreover, in primary SS
patients the typical histopathological feature of ILD is LIP (60,
61). Both lung and stomach are other sites of lymphoma
development in primary SS, other than salivary and lacrimal
glands (58, 59).
TABLE 2 | Mutations associated with CVID and autoimmunity.

Gene Effect Result on immune system

TNFRSF13B Loss of function in TACI Breakdown of B cell tolerance
ICOS NF-kB deficiency Breakdown of B cell tolerance
NFKB1/NFKB2 NF-kB deficiency Breakdown of B cell tolerance
STAT3 Gain of function Th17 cell expansion
LRBA Loss of function T cell activation
CTLA4 Loss of function T cell activation
PIK3CD Gain of function Impaired T-cell and B-cell

development and function
TNFRSF13B, TNF Receptor Superfamily Member 13B; TACI, Transmembrane activator
and CAML interactor; ICOS, Inducible T Cell Costimulator; nuclear factor of kappa light
polypeptide gene enhancer in B-cells 1; nuclear factor of kappa light polypeptide gene
enhancer in B-cells 2; STAT3, Signal Transducer and Activator of Transcription 3; LRBA,
LPS responsive beige-like anchor protein; CTLA4, Cytotoxic T-Lymphocyte Antigen 4;
PIK3CD, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta.
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BAFF Hyperexpression
CVID and BAFF Hyperexpression
Knight et al. demonstrated high serum levels of BAFF, APRIL
and TACI in CVID patients, however, they didn’t find a
correlation with immunological or clinical phenotypes (30).

Similarly, Kreuzaler et al. showed increased BAFF serum
concentration in CVID patients, without a clear correlation
with cl inical parameters , immunodeficiency-related
inflammatory disease and B cell subsets (62).

On the contrary, Maglione et al. showed that ILD progression
in CVID correlates with increased levels of IgM, particularly with
the production of IgM within B cell follicles in lung parenchyma;
the main stimulator of pulmonary B cell hyperplasia seems to be
BAFF, which was increased both in the blood and in the lung of
CVID-ILD patients (63).

SS and BAFF Hyperexpression
Among the systemic autoimmune diseases, SS showed the
highest serum levels of BAFF (64–69). In mice model, the
overexpression of BAFF in mice leads to hyperplasia,
autoimmunity, hyperglobulinemia and splenomegaly, while the
normal expression of BAFF allows B cell survival and maturation
(70). In BAFF transgenic mice there’s an excessive survival signal
to autoreactive B lymphocytes, probably linked to a
dysregulation of tolerance at the splenic level, where they
observed an enlargement of marginal zone B-cell subset. B cells
with an Marginal Zone (MZ)-like phenotype infiltrate the
salivary glands of BAFF transgenic mice. Parallelly, unbalanced
BAFF production in the lymphoid infiltrates of the salivary
glands of primary SS patients promote recruitment of a specific
and potentially pathogenic subpopulation of B cells (71).
Epithelial cells also produce BAFF, thus supporting the
hypothesis of the crucial role of BAFF in the pathogenesis of
primary SS, by an immune dysregulation through an autocrine
pattern of self-stimulation (72). High levels of BAFF were
correlated with the specific autoantibodies of SS, anti-SSA/SSB,
and BAFF was also found mainly in local lymphoid and
inflammatory microenvironments (73). In addition, BAFF
upregulation correlates both with primary SS disease activity
and B cell prelymphomatous and malignant lymphoproliferative
disorders (74). Genetic mutations in BAFF-mediated pathway
may significantly contribute to this risk of malignant evolution
(42). The efficacy of belimumab, a human monoclonal antibody
targeting soluble BAFF, approved for the treatment of SLE, in a
phase II clinical trial of primary SS strongly supported the
pathogenic role of BAFF in this autoimmune disease (75, 76),
and a phase III trials of belimumab in co-administration with
rituximab in primary SS is ongoing (NCT02631538).

B Cell Abnormalities
Two B cell subpopulations have been shown to play a central role
in both these entities: switched memory B cells and CD21low/- B
cells. The formers are CD19+CD27+IgM-IgD- memory B cells
which have undergone the isotypic switch; the latter are a
peculiar B cell subset that under expresses CD21, a coreceptor
of BCR, and at the same time expresses higher levels of IgM,
Frontiers in Immunology | www.frontiersin.org 5
CD11c, CD19 and CD95. CD21low/- B cells belong to a unique
anergic B cell population which is polyclonal, pre-activated,
enriched in autoreactive clones and can express highly
autoreactive antibodies, including antinuclear antibody and RF
(77, 78). The nature of this cell population was extensively
studied also in the context of HCV related cryoglobulinemia;
in both HCV related cryoglobulinemia and CVID, an anergic
subset of CD21low/- B cells appears expanded and characterized
by high constitutive expression of extracellular signal regulated
kinase (pERK) (79–81). Moreover a BAFF hyperexpression and
aberrant type I and II IFN response are thought to support
CD21low/- B cell population, suggesting a profound
interconnection between dysregulated innate and adaptative
immunity (77, 82).

CVID and B-Cell Abnormalities
Since the early 2000s the role of switched memory B cells and
CD21low/- B cells in CVID has been investigated. Warnatz et al.
observed a significant decrease in class-switched B memory cells
in CVID patients compared to healthy controls and identified a
CVID subgroup, clinically characterized by splenomegaly and
autoimmune disorders, with a high proportion of CD21low/- B
cells. These findings suggested a correlation between low
switched memory B cells, increased CD21low/- B cells and
autoimmune and lymphoproliferative disorders in CVID (23,
83). In particular, the reduction of IgM-, IgD- CD27+ switched
memory B cells represents the most common aberration in
CVID, and it correlates with decrease in serum IgA and IgG
levels. Sanchez Ramon et al. found that levels of switched
memory B cells <0.55% had 3.3-fold higher risk to correlate
with autoimmune disease (84). Many other studies confirmed
these results (19, 77, 78, 85). Of note, in the large cohort of
USIDNET register lower levels of switched B memory cells were
observed in CVID-Rheum group (18).

SS and B-Cell Abnormalities
On the other hand, there is strong evidence of unbalance of B cell
subpopulations also in SS. Many authors found that memory and
switched memory B cells are reduced in primary SS compared to
controls (86–88), and this unbalance appears to be related to
disease duration and activity (88). Saadoun et al. found an
increase of CD21low/- B cells in primary SS and in particular in
primary SS with lymphoproliferative disorders, suggesting a key
role of this B cell population in SS related lymphomagenesis (89,
90). As in CVID, they found that CD21low/- B cells are enriched
in autoreactive clones and express highly autoreactive antibodies,
such as RF, as a consequence of a chronic antigenic stimulation;
this mechanism was preliminary linked to lymphoproliferation
in primary SS and in HCV infection (91). The persistence of
these cells can represent the initial reservoir for monoclonal
expansion of a transformed clone and drive to B cell
lymphoproliferation (90). Other papers support the correlation
between the presence of B cell NHL in primary SS patients and
the proportion of circulating CD21low/- B cells (92, 93).

Rituximab can efficiently target those subtype of B cells in
CVID with autoimmune or nonmalignant lymphoproliferative
July 2021 | Volume 12 | Article 703780
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manifestations, as well as other therapeutic approach aiming to
specifically deplete CD21low/- B cells through an anti FcRL5
recombinant immunotoxin, original ly employed in
cryoglobulinemic vasculitis (94).

Interferon Signature
Type I and II IFNs are cytokines which play a central role in
regulation of immunity and inflammation. Since their
contribution in loss of immunotolerance, they were considered
as potential therapeutic targets of drugs such as anifrolumab, an
anti-type I IFN receptor monoclonal antibody [NCT 02446899],
in SLE. Type II IFN (IFN gamma), instead, appears more
significant in diseases characterized by a prominent
lymphoproliferative component, such as primary SS (95).

This increased expression of canonical IFN stimulated genes
in tissues and in circulating blood cells is defined IFN signature,
which is one of the possible key items shared among primary SS
and CVID with autoimmunity. In particular, an upregulated IFN
signature expression distinguishes CVID patients with
inflammatory complication, including autoimmunity and, at
the same time, it is a hallmark of various systemic
autoimmune diseases such as SLE, systemic sclerosis, myositis
and primary SS (19, 96).

CVID and Interferon Signature
Regarding CVID, few papers have been published on the role of
IFN signature (27, 97).

Subjects with CVID and inflammatory/autoimmune
conditions displayed significantly over-expressed IFN-related
transcriptional modules and pronounced downregulation of
transcript related to the B cell, plasma cell and T cell modules
as compared to CVID without these conditions or controls (27).
Also, a significant expansion of circulating IFN gamma
producing innate lymphoid cells (typically ILC3) in CVID
patients with noninfectious complications compared to those
without and identified these cells in the affected mucosal tissues
of lung and gastrointestinal tract (97). Notably, these cells, that
also correlate with inflammation and produce IL17, were
detected in salivary glands of primary SS patients, although
their role in this autoimmune disease is not known (98).
Unger et al. demonstrated a Th1 skewed CD4 T-cell
population that highly express IFN-gamma both in peripheral
blood and in lymph-nodes. Notably, in the same study, IFN
gamma immune environment is thought to participate in
expansion of circulating CD21low/- B cells (29).

SS and Interferon Signature
On the contrary, the role of IFN signature in SS has been
highlighted by many studies (99, 100). The presence of IFN-
induced gene expression was demonstrated in salivary glands,
peripheral blood mononuclear cells, isolated monocytes and B
cells of primary SS patients and type I IFN signature was
associated with higher disease activity and higher levels of
autoantibodies (101–106). Type II IFN signature was also
detected in salivary glands of primary SS patients (107). Two
studies by Bodewes et al. confirmed the central role of
Frontiers in Immunology | www.frontiersin.org 6
overactivated innate immunity and IFN system in primary SS,
particularly type II IFN (108, 109).

An aberrant activation of type I IFN response could drive
autoantibody production, partly by direct activation of
autoreactive B cells and partly by cytotoxic effect, accumulation
of cellular debris and expression of autoantigen Ro52 (110, 111).
Additionally, type I IFNs induce the expression of BAFF (109).

Interestingly, a prominent type I IFN signature was also
associated with markers of B cell overactivity, such as anti-SSA
antibodies, that can be attributed to type I IFN induced BAFF
overproduction (106, 112). In the setting of lymphomagenesis
both type I and II IFN transcript levels were considerably
increased in minor salivary gland tissues from primary SS
derived lymphoma, implying a direct role of these cytokines,
and in particular IFN gamma, in this process (95).

Even if the main site of B cell hyperplasia and lymphoma
development in CVID is the lung, also salivary glands can be
involved in some cases (50–53, 113). Data suggest that IFN
gamma could upregulate BAFF both in peripheral blood and in
lung tissue, and locally BAFF could promote B cell survival and
proliferation (63, 114).
USE OF “ANTI-RHEUMATIC THERAPIES”
IN CVID AND SS

Whereas immunoglobulin replacement therapy and improved
anti-microbial drugs have significantly ameliorated CVID
patients survival by reducing infectious complications (16),
patients with CVID affected by at least one non-infectious
complication still have significant higher risk of mortality
compared to the other CVID patients, since these clinical
manifestations do not respond to the antibiotic and
immunoglobulin replacement therapy alone (11, 20). Thus, it
appears that noninfectious complications, especially
gastrointestinal and pulmonary involvement, constitute the
most difficult aspects of the CVID patient management (1, 20,
115–117).

Over the last 5-10 years, rituximab has been used in various
non-infectious CVID complications, such as autoimmune
cytopenias, granulomatous lymphocytic interstitial lung disease
(GLILD) and non-malignant lymphoproliferative syndromes
(118). Of note, rituximab and, more recently, belimumab, as B-
cell targeted therapies, have been applied in primary SS, and they
resulted effective in particular in patients with systemic features
(75, 76, 119). Combination strategies with both drugs are
currently under evaluation in primary SS and also in other
autoimmune diseases (69).

Also, abatacept, a CTLA-4 immunoglobulin fusion protein,
showed good results as a replacement therapy in patients affected
by CTLA-4 and LRBA deficiency (47, 120). In addition,
tocilizumab and inhibitors of Janus Kinases (JAKs) were
successfully trialed in patients with STAT3 gain of function
mutations, as its activation occurs downstream of both IL-6
and JAKs (43, 121).
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Yet, both tocilizumab and abatacept were employed as
possible new treatments of primary SS, and even JAKs
inhibitors are under evaluation in primary SS (NCT04496960).

The multicenter double-blind randomized placebo-controlled
trial with tocilizumab in primary SS did not improve systemic
features over 24 weeks of treatment compared with placebo
(122); however, tocilizumab might be effective in contrasting SS-
related articular and pulmonary involvement, such as refractory
organizing pneumonia (123); moreover, tocilizumab has been
recently approved by FDA for pulmonary fibrosis in systemic
sclerosis (124).

Two open studies have assessed abatacept in primary SS; the
first demonstrated the reduction in glandular inflammation and
an increase in saliva production (125), while the second one
showed the decrease of ESSDAI, ESSPRI, RF, and IgG levels but
salivary and glandular functions did not improved (126). Finally,
the phase III trial failed to demonstrate any clinical benefit of
abatacept in primary SS (127).

On the other hand, leniolisib (CDZ173), a potent
and selective oral inhibitor of PI3Kdelta (128), has been
successfully used in a series of patients with APDS, in
which PI3Kdelta gain-of-function mutation results in
lymphoproliferation of the MALT, T-cell senescence and
immunodeficiency. Leniolisib normalized B cells in APDS, and
improved lymphoproliferation (129). A phase II clinical trial
[NCT02775916] assessing the safety, pharmacokinetics, and
preliminary efficacy of leniolisib in SS has been completed in
January 2021, and preliminary data were presented in
2018 (130).
LESSONS FROM PID: AUTOIMMUNITY IS
NOT JUST AN AUTOANTIBODY!

First, SS may be probably underestimated in CVID, due to the
absence of specific autoantibody, while specific symptoms may
be unnoticed by specialists other than rheumatologists. On the
other hand, patients with autoimmune diseases undergoing
recurrent infections, or with peculiar features such as early
onset or overlap syndrome should be evaluated for PID.

Second, the link between impaired B cell development,
autoimmunity and lymphoma should be better elucidated
based on the new growing knowledge in CVID.

Some CVID show B cell survival defects blocking the
progression from transitional to naïve mature B cells, other
CVID are characterized by class-switch recombination defects,
impairing the evolution from follicular B cell to switched
memory B cells, finally still other CVID display maturation
defects into plasma cells (131). Nevertheless, the B cells in
CVID are still able to produce autoantibodies, but they cannot
isotype switch or affinity mature in response to new
antigen challenge.

In X-linked agammaglobulinemia (XLA), BCR transcripts
from peripheral blood CD19+ CD10+ IgM+ CD27−, emigrant
mature naive B‐cells, represent the majority of peripheral blood
B‐cells in XLA patients, and a higher proportion of which are
Frontiers in Immunology | www.frontiersin.org 7
self‐reactive and polyreactive antibodies and preferentially used
VH1‐3 and VH4‐34 genes (132). Usually, the IgMkappa type
encoded by the V(H)4-34 gene segment is the monoclonal
immunoglobulin detected in primary chronic cold agglutinin
disease (CAD), that is an autoimmune haemolytic anaemia
induced by cold reactive autoantibodies (cold agglutinins)
against erythrocyte surface antigens (133). Of note, unmutated
VH4‐34+ B‐cells can be detected in patients with SLE memory
compartment and VH4‐34‐expressing plasma cells appear to be
clonally expanded during flares (134).

Interestingly, in ocular adnexal marginal zone B-cell
lymphomas, which are observed also in SS, a strongly biased
usage of V(H)4-34 in chlamydia negative patients was
documented, suggesting the involvement of a particular
stimulatory (auto-) antigen in their development (135).
Similarly, the VH4 family usage of immunoglobulin gene
rearrangement characterized also the MALT lymphomas of
thyroid (136).

Yet, in Wiskott–Aldrich syndrome (WAS), a rare X‐linked
PID with the classical clinical features of susceptibility to
infections and autoimmune thrombocytopenia, memory B‐cells
showed a low frequency of somatic hypermutation, while an
increased usage of uncommon VH genes in transitional, naive
and CD19highCD21low B‐cells if compared with healthy controls,
some of which are enriched in autoantibodies (VH4‐34 and
VH4‐61) (137). Therefore, autoimmunity in the absence of B-cell
switching is possible; when B-cells are frustrated in their normal
path, they can proliferate in other pathways and use germ line
genes that promote autoreactivity.

Importantly, in SLE undergoing rituximab, it was reported
that B-cell abnormalities resolved after effective B cell depletion
and immune reconstitution, including the frequency of
autoreactive VH4.34 memory B cells (138), thus, possibly
explaining the efficacy of rituximab in some autoimmune
manifestations of PID.

In the same way, also anti-neutrophil cytoplasmic antibodies,
that may play a pathogenic role in vasculitis, showed the use of
germ-line VH4 family genes (139), as well as IgG anti-platelet
autoantibodies in chronic immune thrombocytopenic
purpura (140).

In CVID, the available BCR repertoire data are in line with the
heterogeneity of the disease and generally show lower levels of
somatic hypermutation, decreased repertoire diversity and
longer CDR3 segments (141). The genetic heterogeneity of
CVID made it difficult to better study the sequence encoded in
their B cells.

Third, lymphoproliferation over autoimmunity is the hallmark
of SS rather than SLE or other systemic autoimmune diseases.
Indeed, SS more than SLE shows a high frequency of monoclonal
gammopathy, with germ-line gene sequences recorded in
lymphomas and Waldenström’s macroglobulinemia (i.e., 17-109
crossreactive idiotype) (142). Moreover, CAD represents a
spectrum of clonal lymphoproliferative disorders overlapping
with Waldenström’s macroglobulinemia itself (143).

In SS, a germline and coding polymorphism of TNFAIP3
(A20), a central gatekeeper of NF-kB activation, was found
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associated with lymphoma, linking the impaired control of NF-
kB activation in B cells to autoimmunity and to the risk of
lymphoma (144).

This concept has been recently reinforced particularly in
mixed cryoglobulinemia secondary to SS, where the original
Waldenström RF idiotypes were shown to be used in the
monoclonal RF of mixed cryoglobulinemia in SS. Interestingly,
in SS, at the beginning of the cascade of the events that lead to
lymphoma and cryoglobulinemia, the unmutated V(D)J germ-
line combinations with the characteristics of RF antibodies of Wa
and Po public idiotypes, have very weak binding to self-IgG and
this low affinity for IgG autoantigen would enable these newly
formed B cells to evade central and peripheral B cell tolerance
checkpoints and be activated transiently by IgG forming
complexes with foreign antigens. The subsequent events are
affinity maturation, somatic mutation acquisition and finally
soluble accumulation of particular V(D)J mutations that
compromise solubility of autoantibody-antigen complexes
(145). It can be argued that in CVID, the first step described
above is dramatically increased by mutations that promote
breakdown tolerance and infections that facilitate proliferation
of the expansion of autoreactive clones, leading to
autoimmunity. In this regard, in SS, circulating IgG complexed
with Ro and La ribonucleoproteins represents the driving force
that induces low-affinity RF B cells to proliferate. Rare
immunoglobulin mutations that improve affinity for self-IgG
selectively allow some clones to emerge as dominant. In CVID,
the levels of autoantibodies may be rarely found in circulation
because their serum levels are extremely low, as also regularly
occurred in idiopathic thrombocytopenic purpura or in chronic
Frontiers in Immunology | www.frontiersin.org 8
autoimmune neutropenia, since the neutropenia and
thrombocytopenia may be due either to IgG Fc-mediated
clearance in the spleen or due to destruction in periphery by
routine clearance. Similarly, the very low amount of IgG anti-SS-
A or SS-B, as well RF, may be cleared from the circulation or the
low production may be confined in the target tissue (146).
Deeper molecular and tissue studies in CVID with associated
SS could support this hypothesis.
CONCLUSIONS

It is paradoxical that patients with CVID have a high frequency
of associated autoimmune features. Increasing pathogenetic
insights allowed to reconcile the lack of B-cell maturation and
autoimmunity in the wider concept of dysregulated immune
system, both diseases being influenced by genetic and epigenetic
factors which can lead to different clinical phenotypes (Figure 1).

The association of hypogammaglobulinemia and autoreactive
B cells in CVID patients has been commonly listed as “SLE-like”.
However , we propose that the autoimmunity and
lymphoproliferation associated with CVID is more closely
associated with a SS-like picture of immune dysregulation. In
this context, CVID and SS, two conditions which can occur
simultaneously and share several pathogenetic aspects, as well as
targeted therapy (i.e., rituximab, abatacept), could represent a
model of this immunological view. Therefore, better
understanding of the underlying immunological mechanisms
and specific genetic mutations that result in the immune
dysregulation may lead to the development of new therapeutic
targets for both the diseases.
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