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Single-cell RNA sequencing (scRNA-seq) technology can analyze the transcriptome
expression level of cells with high-throughput from the single cell level, fully show the
heterogeneity of cells, and provide a new way for the study of multicellular biological
heterogeneity. Synovitis is the pathological basis of rheumatoid arthritis (RA). Synovial
fibroblasts (SFs) and synovial macrophages are the core target cells of RA, which results in
the destruction of articular cartilage, as well as bone. Recent scRNA-seq technology has
made breakthroughs in the differentiation and development of two types of synovial cells,
identification of subsets, functional analysis, and new therapeutic targets, which will bring
remarkable changes in RA treatment.
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INTRODUCTION

Rheumatoid arthritis (RA) is a progressive aggressive immune disorder which can lead to increased
mobility and disability, the main features of this disease are persistent synovitis, pannus formation,
joint destruction, and adjacent bone erosions (1–3). At present, it is considered that environmental
and genetic factors are related to the pathogenesis of RA, its etiology and pathogenesis have not been
fully elucidated and remain to be clarified (4). The traditional therapeutic approaches of RA are
suppressing the excessive immunological response and inflammatory reaction, which can only help
to relieve RA symptoms and delay disease progression rather than cure (5). In addition, these
strategies lead to several systemic side effects (6). Therefore, to explore the effective molecular targets
for the treatment of RA is a focus of research (7).

ScRNA-seq is a technology for high-throughput sequencing and analysis of genome and
transcriptome at single-cell level. It finds rare new cell subpopulations and shows the changes in
each cell. It is a new technology to study the genetic heterogeneity of multicellular organisms which
plays increasingly remarkable role in cancer research, developmental biology and neuroscience
(8–10). With regards to rapid development of ScRNA-seq, the development lineage of immune cells
is revealed in the field of autoimmune diseases, and the gene modules and regulatory procedures
that determine the immune response are identified (11, 12). The latest research has reported the
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heterogeneity of synovial fibroblasts and macrophages in RA and
the differences of their origins and biological characteristics. The
purpose of this paper is to further clarify the pathogenesis of RA
from the single cell biological level and explore new
therapeutic breakthroughs.

Whether the tumor like abnormal proliferation and
erosiveness of RA synovial fibroblasts are related to their
heterogeneity has always been the focus of scholars’ research. it
is well known that the different functions occur of fibroblasts
in different anatomical site (13). However, there is no unified
and comprehensive classification of synovial fibroblasts, and
the specific markers of different subpopulations, and their
specific roles in the pathological process of RA have not
been fully elucidated. Single cell sequencing can maximize
the genetic information of a single cell and discover the
heterogeneity between cells. According to different algorithms,
cells with different commonness are divided into different
subpopulations, and compared with the known library to
identify specific cell markers of different communities, and
further discover and identify new cell surface markers.
Compared with synovial fibroblasts, the action of synovial
macrophages in the pathophysiology and pathological
processes of RA is poorly understood. Because the number of
synovial macrophages is limited and difficult to obtain, the
origination and exact function of synovial macrophages in
inflammatory diseases are not fully known (14).With the
development of ScRNA-seq in recent years, the research of
synovial fibroblasts has stepped to a new level. ScRNA-seq can
study the development spectrum of synovial fibroblasts and
macrophages on the basis of single cell, and dynamically
analyze cell heterogeneity. It plays an imperative role in
finding new targets for RA treatment, and has become a
significant research approach. The core steps of ScRNA-seq
technology and its application in the research of synovial
fibroblasts and macrophages in RA will be introduced in
this paper.
Frontiers in Immunology | www.frontiersin.org 2
SINGLE CELL SEQUENCING
TECHNOLOGY

The development and application of next-generation sequencing
technology have brought great changes to the development of
biological research. However, the results obtained by traditional
population sequencing are the average value of the whole sample,
or reflect the data of the dominant number of cells. In 2009, Tang
et al. (15) achieved the first single cell transcriptome sequencing
by improving the previously used single cell transcriptome
amplification method for microarray analysis. With the
development of sequencing, cell separation and genome-wide
amplification, single cell sequencing technology has been
improved and is becoming the focus of life science research.

Single-cell sequencing (SCS) has mushroomed as a powerful
novel set of technologies in NGS, consisting of single-cell DNA
sequencing, scRNA-seq, along with single-cell epigenomic
sequencing (16). Among them, scRNA-seq, which is the most
widely used, can reveal the subtle changes of transcriptome of
each cell, clarify the heterogeneity of mRNA expression among
individual cells, and obtain more sample information by highly
efficient amplification and high-throughput sequencing. At the
same time, scRNA-seq technology can solve the problem of low
sample acquisition. Hundreds to thousands of cells can meet the
needs of sequencing. The sample size is flexible. It plays an
indispensable role in revealing the source and function of cells,
finding new functional cell subsets and therapeutic targets.

ScRNA-seq is used to amplify and sequence mRNA at a single
cell level through high-throughput detection. Generally, it
includes the following steps: (1) isolation and cleavage of
single cell or single cell nucleus; (2) reverse transcription; (3)
cDNA amplification; (4) construction of sequencing library (17)
(Figure 1). The separation and capture of single cell and reverse
transcription and amplification of cDNA with minimally mRNA
are the two key points in the whole technical process. The
development of ScRNA-seq technology largely depends on the
FIGURE 1 | ScRNA-seq workflow. The ScRNA-seq process includes isolation and cleavage of single cell or single cell nucleus, reverse transcription, cDNA
amplification, construction of sequencing library.
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continuous optimization of the solutions to these two problems.
The frequently utilized single cell separation approaches include
continuous dilution, magnetic activated cell sorting,
micromanipulation, fluorescence activated cell sorting,
microfluidic platform, and laser capture microdissection (18).
Because of the small sample size of ScRNA-seq technology, the
optimization of experimental process and the accuracy of steps
are of great significance. Different cell capture methods, cDNA
amplification and library construction methods are being
reported and used. New ScRNA-seq platform is also constantly
improving. ScRNA-seq technology is developing towards the
direction of gradually reducing the cost and increasing
the throughput.
SCRNA-SEQ OF SYNOVIAL FIBROBLASTS

Function of Synovial Fibroblasts
In health the joint synovium is a delicate and thin structure,
which encapsulates articular joints and functions as a
homeostatic balance of the synovial fluid for efficient and
smooth movement. The structure of synovium can be divided
into two layers: the sublining, as well as lining layer of which in a
healthy joint constitutes of one to two cell layers thick. There is
no obvious boundary between the two layers. The synovial
intimal lining directly interfaces with the synovial fluid and is
composed of spindle-shaped fibroblasts aligned in a cohesive
Frontiers in Immunology | www.frontiersin.org 3
layer. Macrophages are distributed in the fibroblast layer. This
layer enhances the barrier role, as well as secretes hyaluronic acid
and lubricin. Less densely packed fibroblasts along with
macrophages in a loose tissue matrix coupled with a network
of blood vessels make up the sublining layer (19).

The synovial lining layer goes through remarkable hyperplasia,
occasionally reaching a depth of 10–15 cells in RA. The
compartment of synovial fibroblast expands in extensive
numbers, resulting in remodeling of tissues with formation of
papilla. At the same time, synovial fibroblast experiences
epigenetic alterations, assuming a stable and activated
phenotype, with the ability of infiltrating damaged articular
cartilage, as well as the bone (20, 21). The sublining layer
likewise expands, with inflammatory cell infiltrates, consisting of
macrophages, plasma cells, T cells along with B cells (22). Synovial
fibroblasts and macrophages play an indispensable role in joint
destruction and disease persistence (23–25). Synovial fibroblasts
contribute to disease progression by producing disease-linked
cytokines, chemokines, as well as extracellular matrix remodeling
components (26, 27) (Figure 2).

In RA, synovial fibroblasts can promote inflammation and
cartilage destruction, while the interaction between T cells and
synovial fibroblasts promotes T cell recruitment and synovial
fibroblasts activation (28). The inflammatory cells produced
TNF-a to induces vascular endothelial cells and synovial cells
to produce CXCL13, which recruits circulating B cells and T cells
to the inflammatory site and forms ectopic germinal center.
FIGURE 2 | Synovial fibroblasts interact with various types of immune cells to maintain synovitis and continued bone destruction. The interaction of fibroblasts with T
cells along with B cells includes the secretion of cytokines consisting of CXCL8, CCL2, CCL5, to promote the mobilization and retention of T cells and B cells. At the
same time, fibroblasts cytokines consisting of IL-6 and IL-15 are specifically remarkable for the differentiation of Th17 cell subsets; Fibroblasts promote angiogenesis
by secreting VEGF, PDGF. Fibroblasts secrete RANK Ligand, that enhances osteoclast differentiation along with activation resulting in bone erosion, and DKK-1 that
represses anabolic osteoblast function, averting repair of bone erosions.
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When joint derived helper T cell 17 (Th17) is activated and
recruited into the joint to induce inflammatory response,
synovial fibroblasts can secrete CCL20 in response to IL-17
and other pro-inflammatory cytokines, and accelerate Th17
cell recruitment to induce and enhance arthritis (29). Studies
have shown that there were specific staining of CD4, CXCR5 and
ICOS in RA synovial tissue, suggesting that follicular helper T
cell (Tfh) cells may exist in synovial tissue. Studies on co-culture
of synovial fibroblasts and Tfh cells show that RA synovial
fibroblasts can promote the proliferation of peripheral blood
Tfh cells by secreting IL-6 (28). IL-21 is mainly secreted by Th17,
Tfh and natural killer T cell (NKT). The proliferation of RA-FLS
was up-regulated in the presence of IL-21. Tfh cells may promote
the proliferation of synovial fibroblasts by secreting IL-21.

Fibroblasts recruit and retain B cells by secreting chemokines
(such as CXCL12, CXCL13, VCAM1) and interacting with cell
surface adhesion (30). Meanwhile, they secrete BAFF and April to
maintain the survival and differentiation of B cells (31). The signal
between FLS and B cells is bidirectional. RA-FLS also contributes
to the differentiation and activation of B cells, and then B cells can
produce a variety of autoantibodies. At the same time, B cells can
stimulate RA-FLS to produce more IL-6. Recently, it was show
that, the expression of RASF proliferation inducing ligand and B
cell activating factor mediated by TLR mediate the survival and
function of B cells in RA synovium (32).

It is generally believed that the activation of RA-FLS
stimulates peripheral blood monocytes to enter the articular
cavity and differentiate into macrophages through paracrine
effect (33). In rheumatoid arthritis synovial fluid, macrophages
form the largest population of immune cells in rheumatoid
arthritis and play a role in synovitis by producing cytokines
such as TNF, IL-1 and IL-6 and chemokines such as CCL2 and
CXCL8 (34). Alivernini et al (35). shows MerTKposCD206pos

STMs cluster can induce the inflammatory response of
synovial fibroblasts and promote synovial inflammation by
producing pro-inflammatory cytokines and alarm proteins.
MerTKnegCD206neg STM cluster can produce lipid mediators,
induce FLS repair response and alleviate synovial inflammation.
FLS can promote the production of RANKL by macrophages and
promote osteoclast. The invasion of rheumatoid arthritis
synovial fibroblasts is related to the stimulation of IL-1b and
the inflammatory response of macrophages. Hypoxia makes RA-
FLS secrete more TGF-b and promote macrophages to polarize
to M2 and anti-inflammatory factor to play a down-regulation
role (36).

Identified New Synovial Fibroblasts
Subsets and Surface Markers
Synovial fibroblasts are the core target cells of a remarkable
immune effect in synovial tissue. They interact with lymphocytes,
macrophages, as well as other immune cells in the synovium by
generating pro-inflammatory cytokines, chemokines along with
tissue-destructive factors consisting of IL-6, IL-8 and MMPs (27,
37–39) and play an imperative role in the continuous
inflammation and bone destruction of RA synovium (40, 41).
Traditional research methods have shown that synovial
Frontiers in Immunology | www.frontiersin.org 4
fibroblasts have certain heterogeneity. Synovial fibroblasts
isolated from diverse joints and the same joint lining layer and
sublining layer show distinct phenotypes and they are different in
their gene expression trends, epigenetic marks and function
(42–44). Synovial fibroblasts with different phenotypes have
distinct characteristics of adhesion, proliferation, chemotaxis
and matrix degradation, as well as different responses to TNF,
thus forming a unique microenvironment in each joint (44, 45).
At present, a variety of fibroblast surface markers are known, the
lining layer fibroblasts are identified via the expression of a cell
surface biomarker termed as cadherin-11, which allows
homotypic adhesion of the lining layer fibroblasts to one
another to facilitate the generation of a functional lining
layer in the absence of a basal lamina (46, 47). Other
biomarkers have also been linked to the lining layer fibroblasts,
for instance adhesion molecule VCAM-1, CD55, FAP (fibroblast
activation protein), and podoplanin (GP38) (48–50). Sublining
fibroblasts are identified with alternative biomarkers, for instance
CD90 (THY1) or CD248 (endosialin) and seem to have diverse
roles to lining layer fibroblasts (49, 51, 52). With the continuous
development of experimental technology, new subsets of
synovial fibroblasts are being discovered, and the functions of
different subsets are also constantly defined.

Recently, the independent subsets of RA synovial fibroblasts
were identified by scRNA-seq technology. There are significant
differences in the anatomical position, transcriptome differences
and functions of these subpopulations in synovial tissue.

Stephenson et al (53). sequenced 20387 single cells from
synovial tissue of 5 patients with rheumatoid arthritis, and
found three different subpopulations of RA synovial fibroblasts,
which can be divided into two groups according to different
surface markers, one is CD55+ synovial fibroblast, the other is
CD90+ subset. CD55 is a glycosylphosphatidylinositol-anchored
complement-modulating protein (decay-accelerating factor),
expressed by synovial fibroblasts with high local abundance in
the intimal lining layer, which can protect synovium from
immune complex mediated arthritis (48). CD55+ fibroblasts
locate to the intimal lining and are responsible for synovial
fluid formation and turnover. Of note, hyaluronan synthase 1
(HAS1) (53, 54), lubricant PRG4 (55) and DNASE1L3 were
highly expressed. Previous studies have shown that lubricin/
proteomeglycan-4 (PRG4) is a mucus glycoprotein secreted by
synovial fibroblasts and superficial chondrocytes, which has a
variety of homeostasis effects in the joint and play an anti-
inflammatory role by combining with TLR2 and TLR4 (56). HAS
is mainly divided into three subtypes: HAS1, HAS2 and HAS3,
and the three subtypes are independent and differentially
regulated, play a different role in arthritis. Among them,
TGF-b upregulates HAS1 mRNA (57, 58). Furthermore, Go
enrichment analysis indicated that CD55+ fibroblasts expressed
functional modules linked to endothelial cell proliferation and
modulation of reactive oxygen species responses (53). CD90+
fibroblasts are mainly located in the lower layer of synovial
sublining layer, which are enriched for modules linked to
metallopeptidase activity, as well as the organization of the
extracellular matrix (53).
July 2021 | Volume 12 | Article 709178

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cheng et al. Single-Cell Sequencing of RA
Mizoguchi et al. (59) identify seven different fibroblast surface
protein phenotypes and classified them into three subsets
according to the expression of podoplanin (PDPN) (60, 61),
cadherin-11 (CDH11) (46, 62), THY1 (also known as CD90)
(63) and CD34 (64) by integrating transcriptomic data. they
found that different subsets of fibroblasts play different roles in
joint inflammation and bone destruction. CD34, a remarkable
marker of stem/progenitor cells, is an intercellular adhesion
molecule. It is expressed in some synovial fibroblasts (65), and
also in endothelial cells and nerve tissues (66). CD34+ fibroblasts
were reported in superficial lining, as well as deeper sublining
synovium areas. They proliferated actively in the synovium of
RA. At the same time, they promoted the progress of joint
inflammation by secreting a large number of inflammatory
factors and mediating the enrichment of leukocytes, which was
related to the migration of fibroblasts (59). CD34–THY1–
fibroblasts were remarkably reported in lining area and express
BMP-6, thought to enhance formation of osteoblastic bone (59,
67). in RA patients the count of CD34–THY1+ fibroblasts is
threefold than that in OA, they generate a discrete perivascular
zone, which surrounds the capillary structures in the synovium
deep sublining layer, especially near aggregations of
Frontiers in Immunology | www.frontiersin.org 5
lymphocytes, and play an indispensable role in matrix
infiltration, immune cell mobilization and osteoclast formation.
At the same time, through its overexpression of TNFSF11 [also
referred to as receptor activator of nuclear factor-kB ligand
(RANKL)] (68, 69), CD34–THY1+ fibroblasts participate in
the transport of T cells in autoimmune inflammation.
Therefore, this subgroup may also be responsible for RA
lymphocyte accumulation in synovium (59). Transcriptome
sequencing and scRNA-seq have the same conclusion, which
indicates that gene differences reflect biological differences rather
than technical or random differences (59) (Figure 3).

In the larger study, the synovial tissues of 51 RA or OA
patients were used for single-cell sequencing and transcriptomics
to analyze the cell subsets associated with arthritis (55). Among
1844 synovial fibroblasts, four presumed subpopulations were
identified: CD34+ fibroblasts, HLA-DRAhi fibroblasts, and
Dkk3+ fibroblasts were located in the sublining layer, while
CD55+ fibroblasts were located in the lining layer (55). HLA-
DRAhi fibroblasts highly express CXCL12 and HLA-DRA, and
is the main source of IL-6. IL-6 is mainly secreted from pro-
inflammatory M1 macrophages along with RA synovial tissue
fibroblasts (70, 71). Along with IL-1b, IL-6 has an imperative
FIGURE 3 | ScRNA-seq showed that three different fibroblasts were distributed in different parts of synovial tissue and play different roles in RA. CD34+ fibroblasts
were reported in superficial lining, as well as deeper sublining areas of the synovium. They promoted the progress of joint inflammation by secreting a large number
of inflammatory factors. CD34–THY1– fibroblasts were remarkably reported in lining area and express BMP-6, recognized to enhance osteoblastic bone formation.
CD34–THY1+ fibroblasts in RA produce a discrete perivascular zone that surrounds capillary structures in the deep sublining layer of the synovium, it participate in
the transport of T cells by overexpression of TNFSF11.
July 2021 | Volume 12 | Article 709178
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role for Th17 cell differentiation, which is remarkable in RA
angiogenesis (72–75). At the same time, IL-6 can activate Tfh by
up regulating signal transducer and activator of transcription
(STAT-1 or STAT-3), depending on the expression of bcl-6 (76).
The antagonists of TNF-a and IL-1B can down regulate the
number of Tfh cells by reducing the level of IL-6 (28). The RA
fibroblasts stimulated by adiponectin can promote the
production of TFH cells by producing IL-6. Intra articular
injection of ad aggravates synovial inflammation and increases
the frequency of Tfh cells in CIA mice (77). HLA-DR is a class of
MHC-II, which is considered to present exogenous antigen.
HLA-DR and CD68 are co-expressed in Macrophage-like
synoviocytes (78). DKK3+ fibroblasts was a novel subtype of
sublining fibroblast, characterized by elevated expression of
DKK3, CADM1, and COL8A2, and can prevent cartilage
degradation in vitro (55, 79). These subsets may be the key
inflammatory subsets of RA.

To reveal the New Function of Different
Subsets of Synovial Fibroblasts
Chronically activated fibroblasts account for the degradation of
excessive matrix, destroying cartilage, resulting in permanent
joint damage in RA by activates osteoclasts (80). Targeted
treatment of synovial fibroblasts may become an effective
strategy for the treatment of RA. Recent studies have
shown that Notch signaling plays a role in THY1 expressing
perivascular and subcutaneous fibroblasts, and blocking Notch3
signaling can alleviate joint inflammation in mice (81). Another
study showed, specific small molecule agonist can activate
melanocortin type 1 receptor (MC11), make synovial
fibroblasts activate GPCR and aging, so as to promote the
regression of arthritis (82).

Mizoguchi et al. (59) found that different fibroblast
subpopulations play different roles in joint inflammation and
bone destruction.CD34–THY1+ fibroblasts are abundant around
blood vessels in RA synovium, with their expression profile
revealing prospective pathogenic functions in matrix infiltration,
immune cell mobilization, and osteoclastogenesis. CD34–THY1+
fibroblasts are located around the vessels under the synovial lining,
which are related to the activity of disease, the infiltration of
immune cells and the increase of bone destruction. In RA, a
remarkable pathogenic effector role of synovial fibroblasts is
modulation of osteoclastogenesis, a process dominantly carried
out by TNFSF11 and opposed by TNFRSF11B [also referred to as
osteoprotegerin (OPG)], which is a decoy receptor for TNFSF11.
An exploration of the genes linked to osteoclastogenesis exhibited
high expression of TNFSF11, but low TNFRSF11B expression in
CD34–THY1+ fibroblasts.

FAPa, a cell-membrane dipeptidyl peptidase (83), was
remarkably higher in synovial tissue along with cultured
synovial fibroblasts isolated from individuals who fulfilled
classification criteria for RA in contrast with patients in whom
joint inflammation resolved, implying that FAPa expression
might be linked to a pathogenic fibroblast phenotype (84, 85).
A new study in 2019 (2) showed that FAP a was expressed
in the sub-lining and lining layer fibroblasts. According
Frontiers in Immunology | www.frontiersin.org 6
to the expression of THY1, synovium can be divided into
FAPa+THY1+ lining layer fibroblast and FAPa+THY1-
sublining fibroblast. Five subtypes of fibroblasts were identified
by single cell sequencing of inflammatory joints in RA mice, and
similar results were obtained in synovium of RA patients.
Further research shows that, FAPa+THY1+ fibroblasts
mediate synovial inflammation by secreting cytokines and
chemokines, while FAPa+THY1− plays a role in bone
destruction by expressing osteoclast activity inducers consisting
of matrix metalloproteinases, suggesting that synovial fibroblasts
at different anatomical positions play different roles in the
pathogenesis of RA.

Dynamic Changes of Synovial Fibroblast
Subsets in Inflammatory State
The degree of synovial cells and immune cells infiltrate is a highly
variable phenomenon in different disease stages and drug
exposure in RA (86–88), the degree of synovitis is related to
the clinical phenotype of RA and as such has been explored as a
prospective source of predictive, as well as prognostic biomarkers
in RA (88). Recent research shows that different subsets of
synovial fibroblasts play an independent role in the process
of disease. Therefore, scholars speculate that the proportion of
fibroblast subpopulations related to disease may be different in
different diseases and different stages of RA. ScRNA-seq also
showed the dynamic changes of synovial fibroblast subsets in
inflammatory state.

Mizoguchi et al. (59) showed that there was a significant
difference in the proportion of the three synovial fibroblast
subsets between OA and RA synovium, CD34–THY1+
fibroblasts accounted for 22% of the total fibroblasts in RA and
8% in OA. There were less CD34-THY1-, more CD34-THY1+
and more CD34+ fibroblasts in swollen joints. In addition, the
proportion of CD34-THY1+ fibroblasts was correlated with the
proportion of leukocyte infiltration, synovitis and synovial
hypertrophy, which indicated that the altered proportion of
fibroblast subsets in RA reflected the molecular level and
clinical level of tissue inflammation. Huang et al. (89) showed
that some common fibroblast markers, consisting of procollagen
I (COL1A1), Prolyl-4-hydroxylase (P-4-H), Vimentin, along
with procollagen III (COL3A1), are different in OA FLS and
RA FLS. Besides, RA FLS exhibits more severe cellular behavior
in contrast with OA FLS, entailing a more rapid rate of
proliferation, stronger invasive potential, and elevated
expression as well as secretion of inflammatory cytokines.
Additionally, elevated expression of inflammatory markers,
consisting of CCL2, IL-6, IL-1b and TNF-a, were also reported
in RA FLS in contrast with FLS isolated from the less inflamed
OA synovium. This suggests that different subsets of fibroblasts
may play a role in the pathogenesis of OA and RA.

The continuous progress of ScRNA-seq technology has
opened the era of exploring new targeted drugs for synovial
fibroblasts. At present, there are no specific drugs targeting
synovial fibroblasts. Therefore, identifying the heterogeneity of
fibroblasts and pathogenic fibroblast subsets to determine the
disease-related fibroblast subsets that can be used as specific
July 2021 | Volume 12 | Article 709178
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targets for disease treatment may provide new effective strategies
for treating RA (90, 91). Single cell sequencing of synovial
fibroblasts (55) will also serve as a research template to identify
pathogenic interstitial fibroblast subsets in other autoimmune
diseases, for instance connective tissue disease related pulmonary
interstitial disease.
SINGLE-CELL RNA-SEQUENCING OF
SYNOVIAL MACROPHAGE

Previous studies have shown that the aggregation of monocyte
macrophages can promote the occurrence and development of
arthritis, and the infiltration of synovial macrophages is
positively correlated with the progress of joint destruction (25,
92). With the development of research technology, the research
on the heterogeneity of synovial macrophages is also in-depth.
ScRNA-seq leads to different understanding of synovial
macrophages, which have heterogeneous subpopulations with
different sources and biological characteristics.

Origin and Biological Heterogeneity of
Synovial Macrophage Subsets
For numerous years, it was speculated that macrophages
pr imar i l y or ig ina ted f rom c i rcu la t ing monocy te s
differentiation, however recently morphological along with
functional differences between these cells dispute this
speculation (93, 94). Nonetheless, a series of recent reports
have documented that the origins of macrophages in different
tissues/organs are not exclusively originated from circulating
monocytes. Tissue-resident macrophages derive mainly from
embryonic progenitors and to less degree from intermediates
of circulating monocytes, additionally many of them are capable
of self-renewal (95–98). The mobilized population of monocyte
originated macrophages significantly increase during
inflammatory conditions. It is generally believed that RA-FLS
can stimulate peripheral blood monocytes to enter articular
cavity and differentiate into macrophages through paracrine
effect after activation (33). By the different transcriptional and
epigenetic characteristics showed in macrophages different
subsets, the unique functional patterns of variant tissue were
indicated. It was illustrated that embryonic macrophages
participate in tissue remodeling, while adult-originated
macrophages mainly assist in host defense.

Macrophages constitute remarkable plastic cells, with the
ability switch from one phenotype to another (99). Synovial
macrophages can be divided into different specific subsets
according to their origins and functions. Two primary
macrophage subpopulations with different roles consist of
classically activated or inflammatory (M1) and alternatively
activated or anti- inflammatory (M2) macrophages have been
recognized (100). M1 macrophages that mediate resistance to
pathogens and tissue destruction by produce pro- inflammatory
cytokines like TNF, IL-6 and IL-1b,CCL2, IL-8, IL-12 and IL-23
(101, 102); M2 macrophages can remove debris and promote
Frontiers in Immunology | www.frontiersin.org 7
tissue repair by produce anti-inflammatory cytokines consisting
of TGF-b, IL-10, IL-4, IL-13 (103). In RA, there is a positive
correlation between the infiltration of synovial macrophages and
the progress of joint destruction (92). The imbalance of M1/M2
in synovium is one of the remarkable reasons for chronic
synovitis. Misharin et al. (104) showed that macrophages can
be transformed from M1 to M2 in the progression of RA to
promote damage repair. After co-culture of RA-FLS and
macrophages in normoxia, the cytokines secreted by RA-FLS
can strongly inhibit the pro-inflammatory activity of M1 and
enhance the expression of genes promoting M2 polarization
(105). Deciphering the process of macrophage polarization,
mobilization, and functions may provide insights for the
development of new therapies for RA. At the same time,
Zhang et al. (106) showed that Macrophages with M1
polarization gather in synovium of OA patients and OA model
mice. M1 polarization of macrophages promotes synovium
hyperplasia, synovitis and progression of OA. Controlling the
polarization of synovium macrophages to M2 may be a new
strategy for prevention and treatment of OA.

In the latest study (107), Two types of SM were found SM
after tracking macrophages in mice: embryonic SMs (ESMs), and
bone marrow-derived SMs (BMSMs). ESM expressed anti-
inflammatory cytokines, consisting of IL-4 and IL-10, while
BMSM expressed pro-inflammatory cytokines, consisting of
IL-1b and TNF. In arthritic mice, the number of ESMS
reduced during disease development and then increased during
regression, whereas BMSM was the opposite. This study first
confirmed that synovial macrophages have at least two origins,
ESM and BMSM, and their effects are different. Secondly, this
study also showed that two types of SM also exist in the
synovium of RA patients and have similar anti-inflammatory
and anti-inflammatory phenotypes of ESM and ESM. Through
the different cell characteristics and dynamic expression patterns
in RA patients/CIA mice, it was revealed that two subpopulations
of different origins, embryonic ESM (anti-inflammatory) and
bone marrow derived BMSM (pro-inflammatory), play different
roles in arthritis.

In Monocyte of human RA synovium, IL1B+ pro-
inflammatory monocytes (SC-M1), NUPR1+ monocytes
(SC-M2), C1QA+ monocytes (SC-M3), and interferon (IFN)
activated monocytes (SC-M4) were identified by Single cell
sequencing. Among them, SC-M3 and SC-M4 matched with
those of mouse resident synovial macrophages, while SC-M1 and
SC-M4 were similar to those of mouse monocyte derived
synovial macrophages (55).

To elucidate the immunomodulatory mechanism of drug-free
remission in RA, Alivernini et al. (35) analyzed 32000 STMs of
patients with early/active RA, refractory/active RA, and RA in
persistent remission using single-cell transcriptional analysis to
identify the phenotypic changes. MerTKposCD206pos and
MerTKnegCD206neg STM contain nine different clusters, which
can be divided into four subgroups with different functions of
homeostasis, regulation and inflammation. Compared with the
healthy control group, the number of MerTKposCD206pos

increased in remission stage and MerTKposCD206pos cluster
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increased in active stage. Therefore, the tissue residence of
MerTKpos CD206pos STM seems to play an important role in
maintaining the sustained remission of inflammation. The
decrease of MerTKpos STM proportion in remission stage is
related to the increased risk of disease after drug withdrawal.
Therefore, the regulation of mertkpos STM may be a potential
treatment for RA. Other studies have shown that the subsets
of HBEGF+ inflammatory macrophages were enriched in RA
tissue and formed by resident fibroblasts and cytokine tumor
necrosis factor (TNF). Other studies have shown that the
subsets of HBEGF+ inflammatory macrophages are enriched
in RA tissue and contribute to fibroblast mediated joint
destruction (108).

Synovial Macrophages Created a
Protective Barrier for the Joint
ScRNA-seq can map a single cell of a given lineage to a unified
orbit, so as to clarify the time sequence of cell development and
differentiation and infer the development trajectory of cells from
a new perspective by using this cross-time continuum. Known as
“pseudotime” (109).

In 2019, Gerhard et al. (110) first discovered a new
subpopulation of synovial macrophages, which serves as a
protective and tightly connected barrier of synovial
macrophages. The researchers used a variety of methods,
including single cell sequencing, to study the subsets and
functions of macrophages in different states. CX3CR1 is a kind
of chemokine receptor that can be used by monocytes, CX3CR1+
lining macrophages and CX3CR1- interstitial macrophages are
two kinds of tissue-resident macrophages origin from the
embryo, among them, CX3CR1- stromal synovial macrophages
can be divided into specific subsets according to the expression of
AQP1, MHCII and RELM-a. Both RELM a+ macrophages and
CX3CR1+ lining macrophages are derived from proliferative
MHCII+ interstitial macrophages (110). This study found that
CX3CR1+ tissue resident macrophages derived from CX3CR1
monocytes form an internal immune barrier in synovial lining
and physically isolate joints (110).

Using an arthritis mouse model in which macrophages might
be tracked via engineering them to be fluorescent, the authors
reported that the barrier layer was remarkably dynamic. Upon
inducing arthritis, the layer experienced active remodeling
causing loosening of the physical cross talks between lining-
layer fibroblasts and barrier macrophages. The barrier
macrophages might ingest and remove inflammatory immune
cells called neutrophils that aggregate and die in the synovial
fluid in arthritis. These CX3CR1+ macrophages in the lining
layer of synovium provide tight junction mediated shielding for
intra-articular structures, forming a protective macrophage
barrier and restricting inflammatory response.

When comparing the single-cell RNA data from mice with
similar data sets available from an assessment of the joints of
individuals with RA, the gene-expression trends of the
macrophage subsets matched up between the two species. This
implies that cells, which are similar to the barrier, as well as
interstitial macrophages in mice could similarly exist in humans,
Frontiers in Immunology | www.frontiersin.org 8
and hence be relevant to human disease. This study reveals the
unexpected functional diversity among the synovial
macrophages, and the new subpopulation of the protective
barrier effect of the synovial macrophages, which is of new
significance for the study of the heterogeneity of macrophages
in health and disease.
REVIEWS AND PERSPECTIVES

The continuous application of ScRNA-seq technology can help
us to identify the heterogeneity of cells so as to determine the
targets related to the treatment of RA, and also play an important
role in tracking the lineage or development relationship between
synovial cells and immune cells, osteoclasts and other cells,
so as to further discover the synovial fibroblasts, synovial
macrophages and other immune cells in RA and making the
study of new subpopulations, differentiation and dynamic
evolution of cells more in-depth. The combination of scRNA-
seq technology and bioinformatics technology can effectively
interpret the gene expression, splicing and other information
obtained by sequencing, and construct the regulatory network
based on these information, so as to analyze the role of synovial
tissue in the occurrence and development of RA. ScRNA-seq
technology still has great application space in the research
of autoimmune diseases such as RA. In particular, the
development of high-throughput single-cell RNA sequencing
platform has carried out cell-to-cell difference analysis and
exploration of potential mechanisms from multiple
dimensions, and can predict the activity and radiological
progress of RA from the characteristics of cell and molecular
mechanism of synovial tissue, and predict the clinical efficacy
of csDMARD treatment (111), which will bring greater
breakthrough for RA treatment.
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