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Advances in understanding how cancer cells interact with the immune system allowed the
development of immunotherapeutic strategies, harnessing patients’ immune system to
fight cancer. Dendritic cell-based vaccines are being explored to reactivate anti-tumor
adaptive immunity. Immune checkpoint inhibitors and chimeric antigen receptor T-cells
(CAR T) were however the main approaches that catapulted the therapeutic success of
immunotherapy. Despite their success across a broad range of human cancers, many
challenges remain for basic understanding and clinical progress as only a minority of
patients benefit from immunotherapy. In addition, cellular immunotherapies face important
limitations imposed by the availability and quality of immune cells isolated from donors.
Cell fate reprogramming is offering interesting alternatives to meet these challenges.
Induced pluripotent stem cell (iPSC) technology not only enables studying immune cell
specification but also serves as a platform for the differentiation of a myriad of clinically
useful immune cells including T-cells, NK cells, or monocytes at scale. Moreover, the
utilization of iPSCs allows introduction of genetic modifications and generation of T/NK
cells with enhanced anti-tumor properties. Immune cells, such as macrophages and
dendritic cells, can also be generated by direct cellular reprogramming employing lineage-
specific master regulators bypassing the pluripotent stage. Thus, the cellular
reprogramming toolbox is now providing the means to address the potential of patient-
tailored immune cell types for cancer immunotherapy. In parallel, development of viral
vectors for gene delivery has opened the door for in vivo reprogramming in regenerative
medicine, an elegant strategy circumventing the current limitations of in vitro cell
manipulation. An analogous paradigm has been recently developed in cancer
immunotherapy by the generation of CAR T-cells in vivo. These new ideas on
endogenous reprogramming, cross-fertilized from the fields of regenerative medicine
and gene therapy, are opening exciting avenues for direct modulation of immune or tumor
cells in situ, widening our strategies to remove cancer immunotherapy roadblocks. Here,
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we review current strategies for cancer immunotherapy, summarize technologies for
generation of immune cells by cell fate reprogramming as well as highlight the future
potential of inducing these unique cell identities in vivo, providing new and exciting tools for
the fast-paced field of cancer immunotherapy.
Keywords: cancer immunotherapy, cellular reprogramming, tumor immunology, CAR-T, transcription factor,
dendritic cell, antigen presentation, cancer vaccine
INTRODUCTION

Cancer progression entails close crosstalk between tumor cells
and the immune system. The evolution of cancer is driven by
oncogenic mutations and the deregulation of important signaling
pathways. The unleashed proliferative capacity leads to the
accumulation of additional mutations, endowing tumor cells
with selective advantages such as improved fitness and
survival. Yet, such cancer diversity resulting from high
mutational burden comes with a cost. The more mutations
cancer cells acquire, the more likely they are recognized and
eliminated by the immune system due to the expression of
various tumor-associated antigens (TAAs) (1–3). However, the
pressure imposed by immune surveillance further shapes cancer
development, and the evolving tumor heterogeneity provides
opportunities for the selection of clones that have developed
mechanisms to evade the host’s immune system (4). These
mechanisms include the downregulat ion of Major
Histocompatibility Complex (MHC)-I molecules, over-
expression of inhibitory checkpoints that prevent or attenuate
T-cell responses, editing of neoantigens, or hijacking immune
cells by creating an immunosuppressive environment. Overall,
the complex, adaptable, and heterogeneous nature of cancer is
characterized by its ability to disengage a variety of immune cells
controlling specific modules of the immune response. For
example, the tolerogenic environment established in some
tumors promotes the activity of regulatory T-cells (Treg) and
compromises dendritic cell (DC) function, impacting the
productive induction of anti-tumor immunity (1, 5).

The idea of harnessing the body’s immune system to elicit
anti-cancer responses has now stepped into the spotlight of
cancer research. The field was pioneered by William Coley and
the development of vaccines that activated anti-tumor immunity
via exposure to bacterial toxins (6). The intravesical
administration of Bacillus Calmette Guerain (BCG) in
bladder cancer (7) and the use of interleukin (IL)-2 in
renal cell carcinoma (8) foreshadowed the era of modern
immunotherapy. Due to immense research efforts and
broadened understanding of tumor biology and its interactions
with the immune system, the past decade witnessed rapid
development of cancer immunotherapy, resulting in several
U.S. Food and Drug Administration (FDA) approvals, and the
highlight of seminal discoveries leading to immune checkpoint
blockade with a Nobel Prize. Immunotherapy changed the
paradigm of cancer treatment, and it is now established as a
potent therapeutic modality with long-term effects for multiple
cancers, adding to the clinical toolbox of more conventional
org 2
approaches encompassing chemotherapy, radiotherapy and
surgery. However, only a minority of patients respond to
immunotherapy, and some cancer types are not yet open to
these treatments, emphasizing the need for new strategies
to deliver clinical benefits to a larger number of patients and
indications. Harnessing the potential of the immune cell
repertoire and their functional features represent the next
frontier in immunotherapy.
STRATEGIES FOR CANCER
IMMUNOTHERAPY

Cancer Vaccines
The cancer vaccine concept relies on the induction of polyclonal
T-cell-specific immune responses against multiple TAAs,
offering a potential mechanism to target cancer heterogeneity.
Multiple strategies have been employed to generate cancer
vaccines, encompassing administration of irradiated whole
tumor cells, DCs preloaded with TAAs, or in vivo antigen
delivery via DNA or RNA (9). Therefore, successful cancer
vaccination requires 1) a supply of purified and functional DCs
to direct adaptive and innate immune responses and 2) a
selection of highly immunogenic and specific TAAs to engage
a powerful T-cell response exclusively against tumor cells (10).

DCs are phagocytic cells that can be found in peripheral
blood, lymphoid organs, and all tissues. Given their exceptional
ability to capture, process, and present antigens, as well as to
produce cytokines and migrate to lymph nodes to activate T-
cells, DCs play a pivotal role in orchestrating adaptive and innate
immune responses against pathogens and cancer (11). Human
DCs are a heterogeneous group comprising four main subtypes
with distinct ontology, phenotype, and function – conventional
type 1 (cDC1), conventional type 2 (cDC2), plasmacytoid (pDC),
and monocyte-derived (mo-DC) DCs (12, 13). Conventional
DCs are defined by the expression of CD11c and HLA class II
and include two main subsets. cDC1 are developmentally
dependent on BATF3 and IRF8 transcription factors and can
be identified by surface expression of XCR1, CLEC9A, and
CD141. They produce pro-inflammatory cytokines including
IL-12, IL-29, and CXCL10 and their hallmark function is
antigen cross-presentation and the generation of T helper (Th)
1 response (14–16). In contrast, cDC2 are characterized by the
expression of CD1c and constitute a highly heterogeneous subset
that relies partially on IRF4 and Notch signaling. Some cDC2
govern type 2 responses against parasites, some sense
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extracellular pathogens, whilst others mount type 3 response
driven by the activation of Th2/17 and Innate Lymphoid Cells
(ILCs) (17, 18). In contrast, CD123+CD11c- pDC cells,
dependent on transcription factor E2-2 and high levels of
IRF8, are endowed with exceptional ability to sense viral and
bacterial pathogens and release type I interferon in response to
acute infection (19). CD1c+CD14+ mo-DCs are usually rapidly
recruited during acute inflammation and are also capable of T-
cell activation. However, compared to cells primed with
conventional DCs that tend to launch effector-prone
differentiation, mo-DCs preferentially drive differentiation of
activated CD8+ T-cells into memory cells (20). While crosstalk
and synergy among DC subsets are important for the complexity
and magnitude of anti-tumor immune response (21),
experiments in mice have implicated the presence and
uncompromised function of cDC1 as vital to elicit efficient
cancer immunity. As shown by Hildner et al., selective loss of
cDC1 in BATF3-/- mice leads to deficient cross-presentation and
diminished CD8+ T-cell activation, resulting in deficient tumor
Frontiers in Immunology | www.frontiersin.org 3
control (22). In humans, genome-wide studies revealed that the
presence of cDC1s within the tumor microenvironment
correlates with a better outcome in patients (23). Given their
role in orchestrating immunity, cDC1 activity is thus
fundamental for effective response to immune checkpoint
blockade or adoptive T-cell transfer (24–26).

Despite considerable efforts, the clinical translation of cancer
vaccines into potent therapies has been challenging. Traditional
DC vaccines are mostly based on DCs isolated from patients, or
on DCs differentiated from autologous peripheral monocytes,
which are further loaded with TAAs in tumor lysates.
Spiluleucel-T is the only FDA-approved vaccine that targets
the PAP antigen and increases overall survival in hormone-
refractory prostate carcinoma by approximately 4 months (27)
(Figure 1). However, mo-DCs have reduced capacity for efficient
antigen presentation, compromising the efficiency of DC
vaccines in most patients (20). An interesting approach
may lie in cancer vaccines utilizing purified DC subsets.
Importantly, vaccines derived from allogenic pDCs primed
FIGURE 1 | Strategies for cancer immunotherapy. Overview of the strategies for immunotherapy translated to clinical practice. Approved strategies include immune
checkpoint inhibitors, adoptive T-cell therapy, cancer vaccines, and oncolytic viruses. Checkpoint inhibitors (top left panel) are antibodies targeting key negative
regulators of T-cell activation. These include receptors expressed in T-cells targeted with anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4) (ipilimumab), anti-
programmed cell death protein 1 (PD-1) (nivolumab, pembrolizumab) and receptors expressed in tumor cells targeted with anti-programmed death-ligand 1 (PD-L1)
(atezolizumab). Adoptive T-cell transfer (top right panel) are autologous cellular therapies currently targeting hematological tumors. Approved Chimeric Antigen
Receptor (CAR) T-cells target CD19 (axicabtagene ciloleucel, tisagenlecleucel, brexucabtagene autoleucel, and lisocabtagene maraleucel) or B-cell maturation antigen
(BCMA) (idecabtagene vicleucel). Additionally, tumor infiltrated lymphocytes (TILs) expanded ex vivo and natural killer (NK) cells are currently in clinical trials. Cancer
vaccines (bottom right panel) exploit the antigen presentation capacity of dendritic cells (DC) to trigger polyclonal T-cell responses to tumor-associated antigens (TAA).
These include irradiated tumor cells expressing granulocyte-macrophage colony-stimulating factor (GM-CSF, GVAX), DCs loaded with tumor antigens (sipuleucel-T),
or the delivery of mRNA in vivo encoding multiple TAAs. Oncolytic viruses (bottom left panel) target cancer cells own vulnerability to viral infections while inducing
immunogenic cell death. Talimogene laherparepvec (T-VEC) is an approved intra-tumoral therapy consisting of a type-1 herpes virus expressing GM-CSF.
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cytotoxic immune responses in advanced melanoma patients
(28). Similarly, autologous cDC2 cells mounted CD8+ T-cell
responses and delivered long-term progression-free responses in
approximately 25% of melanoma patients (29). Combining DC
subsets may be another interesting strategy to enhance the
efficiency of DC vaccines as illustrated by pDC and cDC2
cooperation. pDCs produce high levels of CXCL3 that attract
a variety of immune effectors, including CD8+ T-cells, CD56+
T-cells, and gd T-cells, while cDC2 secure sufficient antigen
presentation and T-cell priming (30). However, cancer
vaccination strategies would potentially benefit if the
preparation of vaccines could be done from pure, functional
cDC1s, currently limited by their rarity. In this regard,
identification of transcription factors imposing the identity of
multiple DC subtypes by cellular reprogramming may open the
door for the generation of pure populations of DCs (31).

Despite the importance of using potent antigen-presenting
cells, not all types of cancer vaccines include DCs directly. The
development of GVAX is based on the use of irradiated tumor
cells expressing GM-CSF which further modulate antigen
presentation and support DC function (32).

Therapeutics based on nucleic acids have also emerged as an
alternative to conventional vaccine approaches. mRNA vaccines
recently attracted enormous attention as the basis of COVID-19
vaccination. In cancer immunotherapy, the mRNA approach has
been explored for delivery of TAAs directly to DCs, offering an
elegant solution for cancer vaccination. mRNA vaccines are
delivered by lipid nanoparticles containing lipoplexed RNA
molecules encoding selected neoantigens or TAAs (33).
Promising results were recently reported by interim results of
phase 1 clinical trial of FixVac, an RNA-LPX vaccine targeting
four highly prevalent melanoma-associated antigens that are
shared by most patients. When administered in a multiple-
dose regimen, FixVac alone, or in combination therapy with
checkpoint inhibitors, induced strong CD4+ and CD8+ immune
responses and delivered durable responses in patients with
unresectable melanoma (34). Nevertheless, a careful selection
of suitable treatment combinations, as well identifications of
biomarkers predicting response to cancer vaccines may help to
maximize the clinical benefit of the vaccination strategy for a
broader group of patients (35).

Oncolytic Viruses
Tumor cells frequently accumulate mutations in pathways
securing cellular anti-viral defense, rendering themselves
vulnerable to viral infections. This cancer vulnerability has
been also exploited as a potential strategy to control tumor
growth. Oncolytic viruses (OVs) are engineered to selectively
infect and replicate in tumor cells and to induce immunogenic
death. Hypothetically, the administration of OV therapy should
be able to target natural cancer-immunity interactions at
multiple levels: OV-mediated lysis of tumor cells promotes the
release of TAAs and type I interferon, boosting anti-
tumor immunity.

Since the first report of conditionally replicating Herpes
Simplex type 1 (HSV-1) engineered virus which prolonged
survival in nude mice with glioma (36), a myriad of viral
Frontiers in Immunology | www.frontiersin.org 4
backbones has been exploited, encompassing adenoviruses,
measles, coxsackie, polio, reoviruses, or poxviruses. The
selective tropism for tumor cells can be modulated by genetic
modifications of the capsid, utilizing epitopes targeting receptors
exclusively or highly expressed on tumor cells (37).

Furthermore, the engineering of OVs allows enforced
expression of genes with therapeutic potential, including
TAAs, costimulatory molecules, and cytokines (e.g. GM-CSF,
Il-2, IL-12, or TNFa), which can further amplify immune
responses and counteract tumor-induced immunosuppression.
The only FDA-approved oncolytic viral-based therapy is
talimogene laherparepvec (T-VEC), used in advanced
melanoma patients (Figure 1). T-VEC is an attenuated HSV-1
virus harboring a deletion of neurovirulence genes, engineered to
express GM-CSF to promote T-cell priming and boost
immunogenicity. In advanced melanoma patients, T-VEC
achieved durable responses and prolonged survival in nearly
20% of patients, benefiting particularly those at early stages of
metastasized disease (38).

Given their unique characteristics, OVs are promising
therapeutic agents, but their efficacy, when used as a single
therapy, leaves room for improvement. In this way, the
versatility of the oncolytic viral platform makes it suitable for
combination with other immunotherapies and conventional
treatments. The combination of T-VEC with immune
checkpoint inhibitors showed improved efficacy in melanoma
without an increase in adverse effects, delivering long-term
response in up to 62% of patients (39–41). The effect is
attributed to the ability of OVs to convert immunologically
cold tumors into immune hotspots, overcoming systemic
immunosuppression (42).

Immune Checkpoint Inhibitors
Immune checkpoints were originally discovered as a group of
evolutionarily conserved molecules acting as negative regulators
of T-cell activation, with cytotoxic T-lymphocyte Antigen 4
(CTLA-4) and PD-1 inhibitors being recently approved for
clinical practice. CTLA-4 is primarily found on T-cells and
controls early-stage T-cell activation by counteracting the
activity of the co-stimulatory molecule CD28 (43–45). Unlike
CTLA-4, PD-1 molecule is expressed following T-cell activation,
and its major role is to tame T-cell activity in peripheral tissues,
preventing tissue damage. As their natural role lies in the
maintenance of self-tolerance, and modulation of the duration
and magnitude of physiologic immune responses (46, 47), the
engagement of immune checkpoints is one of the mechanisms
which cancer cells deploy to hijack the host immune defense.
Therefore, the expression of PD-1 ligand (PD-L1) was identified
on many tumor cells including hematologic malignancies,
glioblastoma, lung, kidney, prostate, breast, and ovarian
carcinoma, and has a critical role in suppressing immune-
surveillance mechanisms (48). Interestingly, within the tumor
microenvironment, PD-L1 can be expressed by myeloid cells
including macrophages and DCs. The deletion of PD-L1 in the
DC compartment, but not in macrophages, strengthened
cytotoxic CD8+ mediated responses and abrogated tumor
growth (49).
July 2021 | Volume 12 | Article 714822
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Inhibition of immune checkpoint receptors employs synthesized
antibodies as a therapeutic intervention disrupting the ability of
some cancer cells to evade a patient´s immune response (45).
Administration of anti-CTLA-4 (ipilimumab) prolongs survival in
patients with metastatic melanoma where conventional treatment
approaches failed (50). Notably, ipilimumab was the first FDA-
approved checkpoint inhibitor, followed by anti-PD-1 inhibitors
(nivolumab and pembrolizumab) for the treatment of squamous
non-small cell lung carcinoma (NSCLC) as well as melanoma (51,
52) (Figure 1). Given their impact in reactivating anti-tumor
immunity in humans, checkpoint inhibitors became a milestone
achievement in cancer research of the past decade, as highlighted by
the Nobel Prize awarded to James Allison and Tasuko Honjo
in 2018.

Despite delivering unprecedented long-lasting anti-tumor
responses (53), persisting for more than 10 years after
discontinuation of therapy in some patients, important
challenges remain: 1) only about 20% of patients benefit from
immune checkpoint treatment (54) and, 2) cancer types that
build a local strong immunosuppressive environment do not
respond consistently to these therapies (55), suggesting that the
future lies in combining interventions targeting mechanistically
independent immune evasion mechanisms.

Following the therapeutic success in metastatic melanoma
and NSCLC, checkpoint inhibitors became increasingly used as a
treatment alternative in a range of solid tumors, particularly in
cancers attributed to carcinogen exposure or infectious origin. In
addition to NSCLC, smoking is associated with the development
of bladder cancer, head and neck carcinoma, renal cell
carcinoma, or stomach malignancies, conferring a high tumor
mutational burden (56–60). Importantly, as high mutational load
generally predicts a good response to checkpoint inhibition (61),
patients with mismatch repair deficiency (MMR) are suitable
candidates for checkpoint immunotherapy (62). Recent
publications also reported therapeutic success of checkpoint
inhibition in Hodgkin lymphoma (63), and pembrolizumab
and anti PD-L1 (atezolizumab) are currently setting the way to
improve the outcome in triple-negative breast carcinoma, as PD-
L1 positive patients reached 25-month survival compared to 18
months in the control group (64). Overall, the efficacy of
checkpoint inhibitors as an adjuvant therapy complementing
surgery or chemotherapy is currently being evaluated in several
clinical trials (65). On the other hand, the administration of
checkpoint inhibitors is associated with excessive immune
activation, with almost every third patient suffering from
immune-related adverse effects, encompassing diarrhea, colitis,
hepatitis, development of hypothyroidism, type 1 diabetes, or
adrenocortical insufficiency (66). Notably, melanoma patients
who received combined CTLA-4/PD-1 inhibition showed longer
overall survival although at the cost of higher adverse effects (53,
67). Although the clinical benefit clearly outweighs toxicity,
additional efforts should be made towards strategies to identify
patients who can benefit the most from checkpoint therapy.

Adoptive Cellular Therapy
Harnessing T-cells for immunotherapy has long been of prime
interest to cancer research. T-cells are unique immune cells:
Frontiers in Immunology | www.frontiersin.org 5
they are long-lived in resting conditions and proliferate extensively
when encountering specific stimuli. T-cells elicit specific, robust,
and enduring responses against tumor cells. As their action is
systemic, they can reduce the tumor burden at the primary site
and eradicate distant metastatic sites. On the downside, the
manufacturing of lymphocytes for immunotherapy is
challenging as it is so far tailored for each individual patient.

Tumor-Infiltrating Lymphocytes
First attempts to use T-cells in immunotherapy were based on
tumor-infiltrating lymphocytes (TILs), a pool of T-lymphocytes
pre-trained to recognize patient´s specific cancer cells. When
expanded, pre-activated ex vivo, and reinfused into patients, TILs
induce rapid tumor regression (68, 69). In the context of
melanoma, around 20% of patients show durable responses to
administration of ex vivo expanded TILs (5-year survival 93%)
(70). Despite achieving outstanding responses in melanoma, the
nature of the therapy makes it amenable only for highly mutated,
immunologically hot tumors. Indeed, TIL-based therapies
entered clinical trials also for the treatment of head and neck
cancer, cervical carcinoma, ovarian carcinoma, or NSCLC.

CAR T-Cells
Chimeric antigen receptors (CAR) T-cells represent another
breakthrough in immunotherapy. CAR T-cells are genetically
engineered to express a synthetic T-cell receptor tailored to
recognize surface antigens on cancer cells. The current
generations of chimeric receptors usually consist of a single-chain
variable fragment portion of the target receptor, along with the
costimulatory intracellular domain of CD28, 4-1BB, or OX40 (71).
CD19 targeting CAR T-cell-based immunotherapy encountered
massive success in the treatment of B-cell hematologic
malignancies, which translated into FDA approval of axicabtagene
ciloleucel for relapsed or refractory large B cell lymphoma, as well as
tisagenleucel in refractory pediatric B-cell acute lymphoblastic
leukemia and B-cell lymphoma. More recently, B-cell maturation
antigen (BCMA) CAR T-cells (idecabtagene vicleucel) were
approved for therapy of advanced myeloma (72, 73),
brexucabtagene autoleucel for mantle cell lymphoma, and
lisocabtagene maraleucel for relapsed or refractory large B-cell
lymphoma (Figure 1). However, the high efficacy of CAR T-cell
treatments also comes with relatively high toxicity and particularly,
with the risk of cytokine release syndrome (CRS) (74).

Despite achieving tremendous efficiency in the treatment of
hematological malignancies, clinical success with CAR T-cells in
the context of solid tumors is less encouraging, having hit
multiple roadblocks from a limited number of targetable
antigens to the inefficient trafficking of CAR T-cells into the
tumor sites. Nevertheless, attempts are being made with CAR T-
cells armed against ERBB2/HER2 receptor tyrosine kinase
frequently over-expressed by tumor cells, as well as targeting
TAAs including mesothelin, carcinoembryonic antigen (CEA),
GD2 (75–79), or IL13Ra2 (80).

NK Cells
NK cells are innate cytotoxic lymphocytes critical for defense
against abnormal cells, and, therefore, attracted plenty of
July 2021 | Volume 12 | Article 714822
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attention in cancer immunotherapy. Unlike T-cells, their
activation is induced via the direct interaction of native NK
receptors with ligands on target cells. They are specially
competent in recognizing cells that have lost MHC-I
expression (81, 82), and lyse abnormal cells by granzyme B
and perforin. NK cells also secrete a myriad of cytokines and
chemokines, including IFN-g, TNFa, IL-13, CCL3, CCL4, and
GM-CSF, and, therefore, can modulate anti-tumor response by
influencing trafficking other immune cells including cDC1s (83).
However, NK cell function is severely compromised in patients,
mostly due to the reduced expression of NK-activating
ligands and suppressive effect of TGF-b within the tumor
microenvironment (84–86), ultimately leading to their inability
to lyse cancer cells and contributing to the progression of
tumor development.

Adoptive NK cell therapy was originally successful in the
treatment of hematologic malignancies, as administration of
alloreactive NK cells elicited graft versus leukemia response
and protected bone marrow transplanted acute myeloid
leukemia (AML) patients from leukemia relapse (87), which
largely prompted clinical endeavors in the application of NK
transfer for solid tumors treatment.

In addition to AML, NK cell immunotherapy is delivering
promising results also in children with neuroblastoma who were
treated with anti-GD2 followed by allogenic NK transfer,
eliciting a response in approximately 40% of patients (88). An
exciting treatment opportunity further opens with the generation
of NK cells expressing CARs – which are currently being tested,
for example in glioblastoma (HER2-NK-92), pancreatic
carcinoma (ROBO1-NK), colorectal carcinoma (Epcam-NK),
or in patients with relapsed or refractory AML (CD33-NK-92)
(89–91). As NK mediated cytotoxic happens independently on
antigen processing, the use of NK cells may help overcome
immunotherapy roadblocks imposed by lost antigen
presentation or in tumors with a low mutational burden. NK
therapy bypasses the need of the HLA-matched donors (92), and
holds promise as off-the-shelf, bio-banked immunotherapy,
which could be available on demand. Isolation of NK cells
from donors at scale is problematic, but recent efforts have
been made towards the manufacturing of NK cells via directed
differentiation of induced Pluripotent Stem Cells (iPSCs), paving
the way to harness cell reprogramming for immunotherapy
(93, 94).
IMMUNE CELL PROGRAMMING
AND REPROGRAMMING

The definition of individual immune cellular identities entails
unique transcriptional, epigenetic, and functional signatures.
Advances in next-generation sequencing and single-cell
technologies have revealed additional layers of complexity in
cell identity and cellular differentiation. For many years, cell
differentiation was perceived as an irreversible, one-way road,
metaphorically depicted as balls rolling down hills. Pioneering
work with somatic cell nuclear transfer in frogs by John Gurdon
Frontiers in Immunology | www.frontiersin.org 6
in 1962 demonstrated that nuclei of terminally differentiated
somatic cells retain the genetic information necessary to generate
an entire individual, laying the foundation of cellular
reprogramming (95). Decades later, Ian Wilmut cloned sheep
from an adult mammary gland cell nucleus, providing evidence
that somatic cell reprogramming can be achieved from adult cells
in mammals (96). Discoveries with somatic cell nuclear transfer
then prompted efforts to identify the factors that elicit
reprogramming. The landmark discovery of Shinya Yamanaka
in 2006, showing that enforced expression of the transcription
factors OCT4, SOX2, KLF4, and MYC induced pluripotency in
fibroblasts (97, 98) created a sea change in stem cell research.

The capacity to modify cell identity with a small set of
transcription factors created exciting opportunities to
investigate the fundamental principles of cell identity, provided
a strategy to generate rare subtypes for drug screening and
disease modeling, and opened avenues in regenerative
medicine and cell replacement therapy.

Reprogramming to pluripotency was successfully shown from
multiple somatic cell populations including fibroblasts,
keratinocytes, neural progenitors, and peripheral blood cells
(97–102), demonstrating the feasibility of iPSC generation
from patient´s own biological material. iPSC reprogramming
can generate target cell types on a large scale suitable for ex vivo
production, as well as enable in vitro engineering to deliver
desirable genetic modifications (e.g. CAR). However, clinical
exploitation of iPSC technology has several major challenges.

iPSCs, just like embryonic stem cells (ESCs), are pluripotent
and retain the capacity to generate all cell types of the embryo
when provided with stage-specific signaling allowing
differentiation to the cell type of interest. It is however a major
challenge to fully recapitulate this process in vitro. In addition,
the iPSC differentiation process is very dependent on line-to-line
variability, and generates a heterogeneous population of cells,
hampering clinical translation. Importantly, despite epigenetic
resetting during induction of pluripotency, iPSCs may retain
residual parental epigenetic memory which may bias their
differentiation potential into certain cell types based on the
source of donor cells used to establish iPSC (103). There is
also the additional safety concern due to possibly contaminating
iPSCs in the differentiated cell population as iPSCs are
pluripotent and may generate teratomas in vivo. Therefore, to
meet safety standards for clinical trials, more stringent protocols
to purify differentiated cells are currently being developed. For
example, a study exploiting iPSCs as a therapy of Parkinson
disease is using a positive selection of differentiated
dopaminergic neurons with anti-chorin antibody (104), while
another clinical trial evaluating iPSCs in heart failure treatment
uses the elimination of undifferentiated CD30+ cells by an
antibody conjugated with an antimitotic agent (105).

iPSC technology holds the potential to provide a source of a
wide range of blood cells. Differentiation of pluripotent stem cells
recapitulates events known to occur during embryonic
development. Given the complexity of hematopoiesis, which
encompasses various anatomic locations and the formation of
progenitors via endothelial-to-hematopoietic transition in
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several waves, in vitro differentiation of hematopoietic precursors
then requires multiple steps involving the formation of
embryonic bodies allowing mesodermal development.
Furthermore, a range of differentiation cytokine cocktails, as
well as co-culture with feeder layers promote cell growth and
differentiation (Figure 2). Since the usage of multiple feeder cells
is self-limiting for expansibility of target cell production, the
development of feeder-free differentiation techniques is critical
for wide-scale translation.

The possibility of reverting somatic cells into the pluripotency
encouraged investigation of combinatorial codes driving the
conversion of somatic cells into another unrelated somatic cell
type directly, without transiting through intermediate
pluripotent or multipotent stages. Bypassing developmental
stages, direct cellular reprogramming is specific, more efficient,
Frontiers in Immunology | www.frontiersin.org 7
faster, and easier from the manufacturing point of view, as well as
suitable for in vivo applications as it does not impose the risk of
malignant transformation associated with pluripotency. On the
downside, cells generated via direct reprogramming may show
premature phenotypes and higher infidelity to their physiologic
counterparts caused mainly by the incomplete epigenetic
memory loss during the reprogramming process. For instance,
while both iPSC-derived and directly reprogrammed neurons
launch gene regulatory networks specific for neurons, directly
reprogrammed cells retain basal levels of the parental identity
attributed to the incomplete erasure of DNA methylation and
histone marks of the parental genome (106).

Nevertheless, the number of cell types generated via direct
cellular reprogramming is rapidly increasing. The first example
of direct reprogramming was in 1987, with the reprogramming
FIGURE 2 | Cell reprogramming as a source of immune cells. Cellular reprogramming provides an opportunity to generate tailored immune cells for immunotherapy. Somatic
cells can be reprogrammed to induced pluripotent stem cells (iPSCs) with the transcription factors OCT4, SOX2, KLF4, and c-MYC. iPSCs are then differentiated to
hematopoietic progenitor cells (HPCs) with the cytokines stem cell factor (SCF), vascular endothelial growth factor (VEGF), and bone morphogenetic protein 4 (BMP4).
Protocols for the differentiation of HPCs into myeloid and lymphoid lineages involve exposing cells to complex cytokine cocktails and/or feeder layers including MS-5, OP9-
DL1, or artificial thymic organoids (ATO) supporting lymphopoiesis. Due to the self-renewal capacity of pluripotent stem cells, iPSC reprogramming (top panel) can generate
immune cells on a large scale and is suitable for ex vivo genome editing. Cells undergo rejuvenation and erasure of epigenetic marks associated with aging or exhaustion.
However, iPSC differentiation into mature immune cells is challenging (dashed lines) and leads to the generation of heterogeneous populations. Direct reprogramming (also
known as transdifferentiation, bottom panel) refers to a change in cell fate mediated by lineage transcription factors that, unlike in iPSC reprogramming, does not involve
pluripotent intermediates. The direct reprogramming of fibroblasts to macrophages (MØ) or conventional dendritic cells type 1 (cDC1) induce exclusively the target immune cell
fate. Direct reprogramming is a faster and more efficient process. It can be elicited both in vitro and within the target tissue, thus having potential for in vivo reprogramming. It
also reduces tumorigenic risks from contaminating stem cells. Moreover, direct reprogramming may retain epigenetic aging hallmarks, making it more suitable for modeling
aging-related disease but more difficult to achieve complete epigenetic reprogramming. Transcription factors can also be applied to accelerate and direct the differentiation of
iPSCs (also known as forward reprogramming, top panel). FLT3L, Fms-like tyrosine kinase 3 ligand; TPO, Thrombopoietin; IL, interleukin; G-CSF, granulocyte colony-
stimulating factor; GM-CSF, granulocyte-macrophage colony-stimulating factor; cDC2, conventional dendritic cells type 2 DCs; pDCs, plasmacytoid DCs; NK, natural killer;
ILCs, innate lymphoid cells.
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of fibroblasts to myoblasts via forced expression of a single
transcription factor, MyoD1 (107). The combinatorial
approach has enabled the identification of master lineage
transcription factors for the direct reprogramming into
neurons, cardiomyocytes, blood progenitors, hepatocytes,
neurons, Sertolli cells, adipocytes, chondrocytes, osteoblasts, or
pancreatic insulin-producing b-cells (108–120).

Overall, a better understanding of cell fate plasticity opened
new avenues for the potential application of cell reprogramming
in regenerative medicine and tissue repair. Importantly, cell
reprogramming is now providing the means to modulate
tumor immunity either by iPSCs immunomodulatory
properties or through the generation of discrete immune cell
populations that can reinitiate the cancer-immunity cycle. Cell
reprogramming may facilitate large-scale and standardized
manufacturing of clinically relevant cell types which can be
bio-banked and used as an off-the-shelf therapy. Such
approach could meet limitations of current strategies for
cancer immunotherapy and provide alternative sources of
important immune players such as T-cells, NK-cells, or DCs,
addressing current challenges of limited availability, and
functional exhaustion.

iPSCs in Development of Cancer Vaccines
Given their proliferative potential and metabolic requirements,
iPSCs share many features with cancer stem cells. Among these,
iPSCs express TAAs which may be recognized by the immune
system (121, 122). Interestingly, immune responses launched by
iPSCs do not propagate the development of autoimmunity,
indicating that fetal-like and adult settings are associated with a
differential expression of antigens. To this end, their immunogenic
properties render iPSCs as an interesting, patient-specific, source of
cells for manufacturing prophylactic cancer vaccines, circumventing
tumor mass collection. The efficacy of iPSCs-based vaccines has
been addressed. Li et al. compared the efficiency of immunization
with iPSCs and ESC lines in a mouse colorectal cancer model and
demonstrated that while both vaccines activated IFN-g and IL-4
producing T-cells, tumor growth was prevented only in the context
of ESC-based vaccine (123). In contrast, transplantation of mouse
fibroblast-derived iPSC into teratoma-bearing mice leads to T-cell
infiltration and tumor shrinkage (124). More recently, iPSC-based
vaccination halted growth of murine breast cancer, mesothelioma,
and melanoma, as well as prevented melanoma relapse (122).

Reprogramming Into Macrophages
Macrophages are malleable immune cells that promptly respond
to environmental cues and signals. Macrophages are essential for
tissue homeostasis by clearing dying cells and invading
pathogens, but their role is ambiguous and under certain
conditions, macrophages actively contribute to the
development of atherosclerosis or neurodegeneration. The
ambiguity of macrophage functions is given by their
polarization towards the promotion or suppression of
immunity. In the context of cancer, pro-inflammatory
macrophages (M1) can contribute to tumor clearance by the
production of IL-12 and other pro-inflammatory cytokines,
generation of reactive oxygen species, and presentation of
Frontiers in Immunology | www.frontiersin.org 8
antigens from engulfed dead tumor cells. However, cues
produced by tumor cells can polarize macrophages into M2
anti-inflammatory phenotype, inducing an immunosuppressive
microenvironment and supporting tumor development (125).

Several publications reported successful differentiation of
macrophages from iPSCs upon culture with IL-3 and M-CSF
(126, 127). iPSC-derived macrophages displayed a potent
phagocytic capacity and rescued immunodeficient mice from
Pseudomonas aeruginosa infection (126). Despite displaying
functional features, differentiated macrophages showed low
polarized phenotypes, expressing features of both pro-
inflammatory M1 (CD195+, HLA-DR+) and suppressive M2
macrophages (CD163+, CD206+). Similarly, this ambiguity was
mirrored by secretion of both pro-inflammatory cytokines, such
as IL-6, CXCL8, CCL2, CXCL10, and M2-like cytokines, IL-10
and VEGF (128). A major challenge for the derivation of
immune cells from iPSC resides in the specification of
definitive hematopoietic stem cells (HSCs). Despite intense
efforts in the last two decades, there is still no robust protocol
for the generation of engraftable HSCs from iPSCs that would
provide a renewable source of definite hematopoietic and
immune cells (129). However, in contrast to other immune
cells, microglia, the only lifelong resident immune cells of the
central nervous system (CNS), have been suggested to be derived
predominantly from yolk sac progenitors (130). This increases
the feasibility of generating these highly specialized macrophages
with fidelity from iPSCs that have recognized roles in
neurodegenerative diseases (131–133).

Microglia can cross the blood-brain barrier, which makes
them interesting vehicles for the delivery of therapeutic agents to
the CNS. To this end, macrophages can be armed with a single
chain variable fragments (scFv) specific to b-amyloid to help
devour amyloid plaques, bringing new potential for the
treatment of Alzheimer’s disease (134). A similar approach
of macrophage modification can be also used to enhance the
macrophage activity against certain tumors. As an example,
macrophages generated from iPSCs engineered to express
CD20-specific scFv eliminated B-lymphoblastic leukemic cells
both in vitro and in a xenograft murine model (134).
Macrophages modified with CARs to direct the engulfment of
specific antigens have also been produced, showing an increased
ability to phagocyte cancer cells (135).

Macrophages can also be generated by direct cellular
reprogramming (Figure 2), via combined expression of the
transcription factor CEBPa or CEBPb, which favors myeloid
development by the downregulation of B-cell commitment
transcriptional factor PAX5, and PU.1 which is critical for
instructing myeloid transcriptional program (136). By this
approach, human fibroblasts were successfully reprogrammed
into functional macrophage-like cells in less than a week,
acquiring the ability to phagocyte bacteria and mount
inflammatory responses (137). Transcription factors can also
be applied to accelerate and direct the differentiation of iPSCs, a
process also known as forward reprogramming (138, 139). Chen
et al. have recently tested this strategy for the induction of
immune cells. PU.1 and CEBPa were utilized to orchestrate
rapid reprogramming of iPSCs into induced microglia endowed
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with several functional properties including LPS/IFN-g-induced
inflammatory responses, ADP/ATP-evoked migration, and
phagocytic capacity (140). These findings highlight the
advantage of employing direct reprogramming core regulatory
circuits not only to define immune cellular identities but also to
support their generation from somatic or pluripotent cells.

Reprogramming Into Dendritic Cells
DCs are key orchestrators of both innate and adaptive immunity.
Given the low abundance of DCs in peripheral blood, cell
reprogramming may offer an exciting opportunity to generate
DC subsets at scale. The protocols to differentiate DC subsets
from iPSCs are at their infancy, revealing heterogeneity of
generated DC populations as one of the main challenges to
overcome. DCs derived from iPSCs need multistep protocols,
including differentiation with FLT3L, SCF, GM-CSF (that enrich
in pDC-like cells), and IL-4 (enriching in cDC1 and cDC2-like
cells), as well as the maturation signals TNFa and LPS (141).

Sachamitr et al. reported the directed differentiation of iPSCs
into CD141+ cDC1 cells resembling naturally occurring cDC1s.
Consistently with their capacity for antigen presentation, CD141+
iPSC-DCs acquired immunostimulatory CD40+ CD86+ phenotype
upon TLR engagement and could elicit activation and proliferation
of naïve T-cells. However, induced DCs produced only limited
amounts of IL-12 cytokine and in a steady state displayed
tolerogenic features characteristic for tissue-resident DCs (142).
CD141+ DC1-like cells were differentiated also from iPSCs
derived from T-cells and showed functional capacity to process
antigens (143).

Additionally, iPSCs derived DCs displayed rather fetal,
immature phenotypes, reflected by the low expression of HLA
class II and costimulatory molecules, low secretion of the
hallmark cytokine IL-12, and limited ability to activate
antigen-specific cytotoxic T-cells via antigen cross-presentation
(134). Nevertheless, immature fetal DC phenotype can be
partially circumvented by differentiation of iPSCs generated
from CD11c+ DCs, resulting in an overall improvement of
DC-specific functions and a significant increase in DC-
mediated T-cell activation (144). Interestingly, the utilization
of the iPSC reprogramming platform also allows to introduce
genetic modifications which can potentiate anti-tumor
responses. For instance, vaccination with mo-DC-like DCs
derived from modified, CEA expressing iPSCs restricted
growth of CEA-positive murine colon carcinoma model (145).

We have recently reported the generation of cDC1-like cells
by direct cellular reprogramming from mouse fibroblasts with
the master regulators PU.1, IRF8, and BATF3 (Figure 2). Only
nine days after reprogramming initiation, induced DCs
established a cDC1 specific transcriptional program and
morphology resembling their natural counterparts .
Importantly, induced DCs were endowed with cDC1 hallmark
functional properties including secretion of IL-12 and other pro-
inflammatory cytokines, phagocytosis of dead cells, and cross-
presentation (146). This study opens the way to employ direct
cell reprogramming and forward reprogramming principles for
the specification of homogeneous sub-populations of DCs.
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Reprogramming Into Granulocytes
In contrast with numerous efforts towards reprogramming into
macrophages and dendritic cells, differentiation towards
granulocytic lineages was investigated less intensively.
However, generation of autologous granulocytes holds promise
to replenish immune competence in patients after HSC
transplantation or chemotherapy to prevent the development
of sepsis and severe bacterial infections. Using multistep
protocols and growth factor cocktails, granulocytes have been
successfully differentiated from iPSCs. iPSCs are first instructed
towards hematopoietic precursors, followed by the induction of
myeloid lineage and subsequent terminal differentiation towards
granulocytic fate with FLT3L, SCF, TPO, IL-3, IL-6, G-CSF. This
results in the generation of enriched populations of eosinophils,
and upon OP9-DL1 co-culture, allows the specification of
neutrophils (126, 147, 148). In accordance with their natural
counterparts, iPSC-derived granulocytes acquired competence to
phagocyte, produce reactive oxygen species, and, to a lesser
extent, the ability to migrate in response to chemotactic stimuli
(147). Alike many other immune cells, the instructor
transcription factors that in combination impose granulocytic
cell identity remain to be identified.

Reprogramming Into NK Cells
NK-based immunotherapy recently received plenty of interest.
Many clinical and preclinical trials demonstrated significant
efficacy of NKs particularly against AML and ovarian cancer
(149). However, current NK-based immunotherapy products
face hurdles imposed mainly by relatively high variability in
the efficacy of NKs derived from different donors. Furthermore,
allogenic NK products are usually prepared from donor blood by
apheretic depletion of CD3 and CD19 cells, resulting in a
monocyte/NK cell mixture containing approximately only 30-
40% of NK cells in the final product (150). Therefore,
immunotherapy approaches may leverage iPSCs to generate an
off-the-shelf supply of NK cells with a known haplotype in a
highly standardized manner. Indeed, iPSC-derived NK cells are
currently being tested in the clinical setting, representing the first
example of immune cells generated by cell fate reprogramming
to reach patients.

NK cells can be differentiated from human iPSCs using a two-
stage protocol without additional sorting or the use of
xenogeneic feeder cells. In this way, iPSCs are first instructed
into hematopoietic progenitors and then stimulated with IL-3,
IL-7, IL-15, SCF, and FLT3L to further promote NK
differentiation. At the end of a 30-day culture period, induced
NK cells expressed inhibitory and activating receptors including
KIR, CD16, NKG2D, or NKp46 (151). Recently, Dege et al.
identified iPSC-derived erythro-myeloid progenitors-like NK
cells that are more potent in terms of cytotoxicity than adult
CD16+ NK cells. Despite using the same protocol to induce NK
cells, hematopoietic progenitors that resemble yolk sack
precursors gave rise to NK cells with higher degranulation
response when stimulated with K562 cancer cells, suggesting
that this new population has potential for cancer immunotherapy
(152). In addition, protocols to expand NK cells by the co-culture
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with artificial antigen-presenting cells such as K562 expressing
membrane-bound 4-1BBL, IL-15, or IL-21 have been developed
(153, 154).

Anti-tumor activity of induced NK cells can be further
potentiated with a non-cleavable CD16a activating receptor
which confers increased antibody-dependent cellular toxicity
(155). In terms of function, in an ovarian xenograft mouse
model, iPSC-NK cells reduced tumor burden comparably to
NK cells purified from peripheral blood. Furthermore, iPSC-
derived NKs may serve as a platform allowing modification of
NK cells with CARs to improve cytotoxicity against NK therapy-
resistant tumors. In this regard, Ueda et al. developed a feeder-
free differentiation protocol employing FLT3L, IL-7, and
phytohemagglutinin (PHA) to yield CAR-expressing NK/ILC
cells from an iPSC line transduced with anti-GPC3-CAR.
Notably, CAR NK/ILC were capable to elicit cytotoxic
response against GPC3 expressing tumor cells, and prolonged
survival when injected into mice with ovarian cancer (156).
While the transcriptional code for direct reprogramming of
NK cells has not been unveiled, Li et al. have provided
evidence for the transdifferentiation of mouse T-cells into NK
cells by the deletion of Bcl11b, a transcription factor that acts as a
guardian of T-cell development and identity maintenance,
allowing a rapid switch to NK identity (157).

Reprogramming Into T-Cells
There is wide interest in utilizing iPSC technology towards the
generation of naïve T-cells, as patient-derived T-cells are
frequently rare or functionally exhausted. Large-scale,
standardized production of cytotoxic T-cells would have an
immense impact on CAR T-cell manufacturing. These systems
are still under development to recapitulate fully functional T-
cells and require extensive cell culture steps with cytokines or
artificial thymic organoids (ATO) (158). The iPSC differentiation
process itself recapitulates the natural T-cell development,
transiting through hematopoietic precursors, double-positive
CD4+CD8+ thymocytes, and maturation of CD4+ or CD8+
cells upon culturing with FLT3L and IL-7 on OP9-DL1
feeder layers mimicking NOTCH-ligand rich thymic
microenvironment. Although initial studies failed to produce
T-cells with a high level of resemblance to their natural
counterparts, CD8+ T-cells generated from iPSCs elicited
specific cytotoxic responses, despite some phenotypic
differences including the absence of CD28 (159, 160).
However, the maturation into CD4+ T-cells is even more
challenging and requires ATO-based T-cell differentiation
supported by FLT3L, SCF, and IL-7 (161). In an effort to move
T-cell reprogramming further towards clinical applications,
Iriguchi et al. developed a clinically applicable T-cell
differentiation technique based on SDF1a and p38 inhibitor,
allowing differentiation without feeder layers (162). For
the specification of T-cells, the somatic origin of iPSC
significantly impacts differentiation. iPSCs derived from cells of
hematopoietic origin are more efficient to produce CD4+CD8+
double-positive lymphoid precursors, probably due to partially
retained epigenetic memory which alleviates differentiation
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blocks in T-cell development (160). Moreover, iPSC derived
from T-cells confer parental genetically rearranged TCR loci
which will remain unchanged during reprogramming and
differentiation, allowing the generation of rejuvenated T-cells
that maintain antigen specificity (159, 160). In this regard, taking
advantage of pre-existing anti-tumor antigen specificity, tumor-
specific T-cells clones were reprogrammed to iPSCs to produce
rejuvenated and functionally competent T-cells recognizing
common tumor-specific antigens including MART-1
(melanoma), WT1 (leukemia) or GPC3 (hepatic and ovarian
carcinoma) (159, 163). In regards to additional T-cell
populations, Themeli et al. differentiated CAR-modified T-
iPSC with FLT3L, SCF, IL-7 into CD3+TCR+CD8a+ CAR T-
cells resembling gd T-cells in their transcriptomic profiles and
functions, and demonstrated that despite expressing endogenous
ab TCR, the induced T-cells conferred functional characteristics
of innate lymphocytes (164).

While direct reprogramming of T-cells has not been reported,
Zhang et al. showed the in vivo conversion of pro-pre-B cells into
functional early T-cell lineage progenitors by transient
expression of HOXB5. Although the conversion occurred in
the bone marrow, early T-cell lineage progenitors migrate to
the thymus and mature into functional polyclonal T-cells (165).
The forward reprogramming approach has also been attempted
by Guo et al., reporting a generation of T-cells from iPSCs in
vivo. In this protocol, hematopoietic progenitors with thymus-
homing abilities were generated by the expression of RUNX1 and
HOXA9 at the endothelial-to-hematopoietic transition stage.
Upon engraftment, these induced progenitor cells gave rise to
T-cells that restore immune surveillance in immune-deficient
mice (166).

Reprogramming within the lymphocyte lineage has also been
shown to occur in humans. Interestingly, mutations in FOXP3, a
transcription factor tightly controlling Treg homeostasis,
functionally reprogram Treg towards Th2-like phenotype,
causing immune dysregulation, and driving autoimmune
polyendocrinopathy (167).

An additional approach to T-cell reprogramming relies on
de-differentiation. Several publications demonstrated functional
reprogramming of T-cells into stem cell-like memory CD8+ T-
cells by inducing metabolic changes or the introduction of
transcription factors. Memory T-cells self-renew, live longer
and exert stronger effector functions, and therefore can act
as a reservoir for effector T-cells with a potent therapeutic
potential. Lu et al. promoted reprogramming of terminally
differentiated effector T-cells into a less differentiated state via
the overexpression of early T-cell differentiation-specific
transcription factors LEF1, KLF7, ID3, EOMES, BCL6, TCF7,
FOXP1, and FOXO1 (168).

Another type of reprogramming that does not entail a change
in cellular identity is metabolic reprogramming. While it is well
described that cancer cells undergo metabolic reprogramming to
enhance survival in the hypoxic tumor environment (169), there
is a growing body of evidence that metabolic alterations also
occur in immune cells altering their function. Changes in the
metabolic profile impacts differentiation and the activity of
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T-cells and other immune cells, a topic recently discussed by
others (170, 171). In lymphocytes, metabolic reprogramming
following T-cell activation imprints different functional fates.
Interestingly, the promotion of lipolysis along with the inhibition
of glycolysis induced by PD-1/CTLA-4 inhibition hamper T-cell
effector differentiation (172). Zhang et al. hinted that increasing
fatty acid oxidation in CD8+ T-cells prevents T-cell functional
exhaustion and works synergistically with checkpoint inhibitors
to delay or prevent tumor growth in murine cancer models (173).
Exhausted tumor-infiltrating CD8+ T-cells were recently
reinvigorated by IL-10 which revived their proliferative
capacity and cytotoxic functions against cancer cells (174).
Moreover, Verma et al. demonstrated reprogramming of CD8+
T-cells into memory stem cells with enhanced functional
capacities using a MEK1/2 inhibitor, enhancing respiratory
capacity and fatty acid oxidation, metabolic features previously
associated with memory cells. Functionally, MEK inhibition
administered with vaccination against known antigens
(gp100 in melanoma, HPV16E7 in cervical carcinoma model)
in murine cancer models successfully increased numbers
of circulating CD8+ T-cells, reduced tumor burden, and
improved survival rates (175). Indeed, manipulations of T-cell
metabolism may help to improve the efficacy of T-cell-based
immunotherapies (176).

Reprogramming Into B-Cells
Generation of B-cells from iPSCs is equally challenging. Under
specific conditions promoting lymphopoiesis, iPSCs can
differentiate towards the B-cell lineage and form pre-B cells
expressing CD45, CD19, and CD10. Reprogrammed B-cells
upregulated the expression of pre-B specific genes including
PAX5, IL7aR, and VpreB receptor. Interestingly, while they
remained negative for surface IgM, induced cells displayed
genomic D-J rearrangements, consistently with the adoption of
pre-B identity (177). French et al. took the differentiation a step
further and reported the generation of CD19+ CD10+ B
lymphocytes via terminal differentiation with FLT3L, SCF, IL-
3, and IL-7 on MS-5 stroma. iPSC-derived B-cells underwent full
VDJ rearrangement and expressed surface IgM (178). While
efforts in reprogramming and programming individual immune
cell identities with fidelity will provide valuable cell sources for
cancer immunotherapy, additional approaches take advantage of
cellular reprogramming principles to modify cancer cell
fate directly.
MODIFYING THE CELL FATE OF
CANCER CELLS

Tumor development is accompanied by both epigenetic and
genetic changes of the genome. Unlike genetic changes,
epigenetic changes do not alter the primary DNA sequence
and are therefore reversible. So, reprogramming paradigms are
also highly relevant to understand oncogenesis, from the initial
cellular transformation to the hierarchical organization of
established malignancies (179). Indeed, alike somatic cells,
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cancer cells may be endowed with similar epigenetic flexibility.
During reprogramming, the whole epigenetic landscape
undergoes massive remodeling, and changes in histone
modification and DNA methylation patterns underlie dramatic
changes in gene expression (179). It was quickly hypothesized
that the fate of cancer cells could be modified by direct
reprogramming leading to a potential loss of tumorigenicity.
The concept of reversing tumorigenicity dates to 1969, when
experiments performed by Henry Harris attenuated malignant
phenotype by fusing mouse cancer cells with fibroblasts,
providing first insights into the activity of tumor suppressor
genes (180). Experiments with somatic cell nuclear transfer –
where melanoma nuclei were fused to enucleated oocytes showed
that it is possible to re-establish pluripotency in cancer cells
leading to differentiation into multiple benign cell types.
Therefore, these experiments demonstrated that genetic and
epigenetic changes of a melanoma nucleus are compatible with
broad developmental potential but predispose mice to
melanomas (181).

Reprogramming the cancer cell phenotype with transcription
factors draws two relevant implications. First, induced
pluripotent cancer stem cells are offering a valuable model to
study cancer heterogeneity, cancer stem cells, and their genetic
drivers as iPSC clones derived from single cells retain mutational
signatures (182). Second, the reorganization of cancer cell
epigenome may allow cancer cells to acquire a benign
phenotype (183).

Reprogramming of tumor cells into pluripotency was
achieved in various types of malignant cells, however, given
pre-existing reprogramming barriers, the efficiency remains low
(184). Enforced expression of all or several of OSKM
transcription factors generated iPSCs from multiple cancer cell
lines including mouse melanoma (185), glioblastoma (186, 187),
chronic myeloid leukemia (188), bladder cancer (189), breast
carcinoma (190), and a range of gastrointestinal cancers (191)
(Figure 3). Moreover, iPSC generation was achieved also from
primary malignant leukemic blasts (192). In accordance with
epigenetic rewiring, cancer reprogramming alleviated
tumorigenicity in vitro and in vivo in most reprogrammed
cells, even in those harboring constitutively active oncogenes.
For instance, iPSC derived from BRAF mutated melanoma were
further differentiated into non-tumorigenic neurons and
fibroblasts displaying normal phenotype and functions (193).
Furthermore, iPSC generated from primary BCR-ABL+ myeloid
blasts differentiated into hematopoietic cells which did not retain
leukemia potential. Upon transplantation, derived hematopoietic
cells engrafted only temporarily and recipient animals did not
develop chronic myeloid phenotype (192). Zhang et al. showed
that sarcoma-derived iPSC generated primary connective tissue
cells and erythroid cells. Moreover, when transplanted into mice,
iPSC-derived adipocytes and osteoblasts did not form tumors,
suggesting that reprogramming overrode tumorigenicity of
parental sarcoma lines (183).

Interestingly, iPSC derived from MLL-rearranged acute
myeloid leukemia cells could be differentiated into non-
tumorigenic cardiomyocytes and neurons exerting physiologic
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functions despite the presence of oncogenic drivers. However,
hematopoietic differentiation of AML-iPSC resulted in retrieval
of leukemia potential (194).

Direct Reprogramming of Cancer Cells
Into Benignity
In contrast to the strategies forcing pluripotency in cancer cells,
direct reprogramming allows the modification of somatic
identity and may provide an undeviating way to disrupt
the epigenetic tumorigenic drive. Considering the impact of
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CEBPa on reprogramming of B-cells into the myeloid lineage,
Rapino et al. utilized its enforced expression to induce
macrophage identity in human B-cell leukemia and lymphoma,
generating quiescent phagocytic cells with transcriptomic
profiles resembling macrophages (Figure 3). Importantly,
activation of macrophage regulatory network, including
endogenously expressed CEBPa, sustained the newly acquired
macrophage identity (195). Similarly, McClellan et al.
transdifferentiated primary acute leukemia blasts into
macrophages either with overexpression of CEBPa and PU.1
FIGURE 3 | Disrupting cancer cell tumorigenicity with cellular reprogramming. Several tumor cell types have been described to be amenable to cell reprogramming
towards induced pluripotent stem cells (iPSCs). Melanoma, glioblastoma, sarcoma, gastrointestinal (GI), as well as breast, bladder, and liver cancers, acute myeloid
leukemia (AML), and chronic myelogenous leukemia (CML) have all been successfully reprogrammed towards iPSC with OCT4, SOX2, KLF4, and c-MYC. Following
reprogramming to iPSCs, cancer cells can be differentiated into benignity by either differentiation to their original cell type or by converting them into a different lineage
(highlighted by the colored lines). Similarly, in vitro direct reprogramming has been demonstrated in glioma, B-cell acute leukemia (B-ALL), Burkitt lymphoma (BL),
squamous cell carcinoma (SCC), and hepatic cellular carcinoma (HCC). Lineage-specific factors rewrite the cancerous epigenetic and transcriptional program into
mature terminally differentiated cells (glioma to neuron; SCC to melanocyte; HCC to hepatocyte), or by modifying cell fate and therefore disrupting the tumorigenic
drive [B-leukemias to macrophage (MØ)].
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or upon exposure to a myeloid cytokine cocktail comprising
FLT3L, IL-7, IL-3, GM-CSF, and M-CSF, overcoming the
differentiation block and reducing leukemogenicity (196).

Loss of tumorigenicity is also induced when cancer cells from
the same lineage are induced into mature differentiated cells.
Melanocytes induced from squamous cell carcinoma via
overexpression of MITF, PAX3, SOX2, and SOX9 lose
tumorigenicity, as shown by reduced proliferation, migration,
and invasion (197). To explore enforced differentiation in the
context of liver cancer, Cheng et al. deployed a combination of
transcription factors HNF1A, HNF4A, and FOXA3 to
reprogram hepatocellular carcinoma into hepatocytes.
Importantly, reprogrammed hepatocytes retrieved benign
functions including albumin and glycogen production, and
actively contributed to liver regeneration in a murine model of
genetic liver dysfunction (113). In glioblastoma, NGN2 and
SOX11 were employed to force post-mitotic arrest and
differentiation of glioma into neurons (198). In an attempt to
develop transgene-free reprogramming methods, neuronal
reprogramming in glioma was recently induced with ROCK
and mTOR inhibitors (199). Alternatively, Yuan et al. induced
a similar conversion with a small compound cocktail composed
of forskolin, ISX9, DAPT, CHIR99021, and I-BET 151 (200).

Another solution that does not strictly reflect classical
reprogramming was recently proposed by Ishay-Ronan et al.
Exploiting the brief window of high cellular plasticity during
epithelial-mesenchymal transition (EMT), breast carcinoma cells
were diverted into post-mitotic functional adipocytes with a
cockta i l composed of TGF-b , BMP2, insul in , and
dexametazone. Notably, rosiglitazone-induced EMT together
with adipogenic differentiation therapy efficiently prevented
cancer cell invasion and formation of metastasis in vivo (201).
However, not all conversions of cellular identity entail the loss of
tumorigenicity. Reprogramming of primary Pax+/-Ebf+/- pro-B
leukemic cells into the T-cell lineage via constitutive induction of
NOTCH1 forced lineage conversion into early-stage T-cells
which displayed leukemic phenotype and potential (202).

Inducing Antigen Presentation in Cancer
Cells with Cellular Reprogramming
A large body of evidence indicates that inhibition of antigen
presentation is one of the major mechanisms underlying cancer
immune evasion, allowing tumor cells to become invisible to
immune effector cells. Therefore, restoration or enforcement of
antigen presentation machinery in cancer cells holds enormous
potential to reactivate cytotoxic anti-tumor responses. While all
cell types can present their own antigens through HLA class I
molecules, only professional antigen-presenting cells, such as
DCs or macrophages, can prime productive T-cell responses by
providing costimulatory signals besides HLA class I/II and TCR
interactions. Interestingly, expression of class I and class II
molecules in tumor cells can be, at least to a certain extent,
induced by radiotherapy, several chemotherapeutic agents, a
range of small compounds including histone deacetylase
(HDAC) inhibitors, tyrosine kinase inhibitors (203), CDK4/6
inhibitors (204), or IFN-g (205). Unfortunately, instead of
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boosting immune surveillance, these compounds may further
escalate immunosuppression through induction of T-cell anergy
triggered by TCR engagement in the absence of proper co-
stimulation. In this context, reprogramming of cancer cells
towards professional antigen-presenting cells may represent an
unexplored avenue to elicit anti-tumor polyclonal T-cell
responses. The establishment of dendritic-like cell identity in
tumor cells could aid immune surveillance reactivation in a more
complex way, removing two critical barriers of efficient anti-
tumor immunity – deficient antigen presentation of tumor
antigens and insufficient T-cell activation. Moreover, as DC-
reprogrammed tumor cells could promote the recruitment of T-
cells to the tumor site by the secretion of CXCL9 and CXCL10,
such strategy could also potentiate the effect of other T-cell-based
cancer immunotherapies including immune checkpoint
blockade and adoptive cell transfer.
REPROGRAMMING IN VIVO

Inducing Cell Fate Reprogramming In Vivo
iPSC differentiation and direct reprogramming are now starting to
provide the means to address the potential for cancer
immunotherapy of unique patient-tailored immune cell types.
However, long-term survival and functional integration within
the target tissue remain long-term challenges for transplantation
of in vitro generated cells. In parallel with ex vivo based therapy,
the development of viral vectors for gene delivery has opened
opportunities for in vivo reprogramming in regenerative medicine,
an elegant strategy circumventing current limitations of in vitro
cell manipulation. Therefore, the possibility of switching cell
identity within the living organism gained attention for its
immense therapeutic potential. The main advantages of
inducing immune cell reprogramming in vivo would be the use
of internal cell sources, limited immune rejection, limited risk for
tumor formation and increased reprogramming efficiency and
fidelity (206). In an in vivo setting, cells receive a full set of external
cues that are difficult to recapitulate in vitro, maximizing the
efficiency of reprogramming. However, efficient, safe, cell-specific
delivery of transcription factors required for eliciting
reprogramming represents the major bottleneck (Figure 4).
Safety concerns accelerated the development of non-integrative
viral vectors, non-viral delivery systems, as well as prompt efforts,
and the design of cell type-specific promoters for more precise
targeting (207–211).

In vivo reprogramming has been demonstrated with the
expression of OCT4, SOX2, KLF4, and c-MYC and the
induction of pluripotency. These studies demonstrated
the feasibility of inducing transcription factor-mediated
reprogramming in vivo but also highlighted the role of the
tissue microenvironment. As the microenvironment and the
presence of internal cues have a profound effect on cellular
plasticity, local factors significantly impact the efficiency of the
reprogramming process. Two independent studies highlighted
the favorable effect of senescence, which in vitro significantly
hampers reprogramming. Aging or cell damage triggers
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senescence and induces secretion of inflammatory cytokines,
enhancing the natural plasticity of neighboring cells, and
making them more amenable to undergo lineage conversion.
Notably, lung epithelial cells could have been generated in vivo
only after bleomycin-induced damage, accentuating the impact
of injury regenerative response on intrinsic cell plasticity
(212, 213).

Direct cell reprogramming between unrelated somatic cells
holds more attractive therapeutic prospects. Injury response may
lead to fibrotic tissue damage and loss of function, as seen for
instance after myocardial infarction or brain injury. In this context,
in vivo direct reprogramming offers an interesting alternative to
restore damaged cell types and tissue function (Figure 4). In mice,
resident cardiac fibroblasts were reprogrammed into functional
cardiomyocytes with GATA4, MEF2C, and TBX5, counteracting
adverse ventricular remodeling and improving function after a
heart attack (112, 214). Similarly, overexpression of neural
transcription factors in astrocytes and glial cells triggered
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reprogramming into neurons that were able to integrate within
the existing neuronal circuits (215–217). Furthermore,
encouraging results were delivered by conversion of pancreatic
acinar/exocrine cells into insulin-producing b-cells (120, 218)
or by induction of functional hepatocytes in the murine fibrotic
liver, leading to an improvement in liver performance (219,
220). Notably, restoration of liver function was achieved also
with hepatocytes reprogrammed in vivo from hepatocellular
carcinoma cells (113). More recently, Kurita et al. turned wound
resident mesenchymal cells into epithelial skin cells with DNP63A,
GRHL2, TFAP2A, and MYC (221), while Yao et al. utilized in vivo
reprogramming to restore vision in congenitally blind mice, with
the overexpression of OCX2, CRX, and NRL. This transcription
factor combination promoted photoreceptor identity in
proliferating Müller glia cells preconditioned with b-catenin
(222). Despite the numerous examples and vast range of
applications in regenerative medicine, in vivo reprogramming
paradigms have not yet been explored for immunotherapy.
FIGURE 4 | In vivo reprogramming strategies for regenerative medicine and immunotherapy. Overview of parallel in vivo approaches for cell fate reprogramming and
immune cell engineering. In vivo cell fate reprogramming offers an approach to restore damaged cell types and tissue function (top panel). The concept has been
demonstrated in multiple tissues and cellular conversions. Examples include the reprogramming of Müller glia cells to photoreceptors leading to restoration of vision
in congenitally blind mice; reprogramming of astrocytes and glial cells to neurons; the conversion of fibrotic tissue after myocardial infarction to functional
cardiomyocytes and the reprogramming of pancreatic acinar/exocrine cells into insulin-producing b-cells. These strategies mainly rely on the delivery of lineage-
specific factors through viral vectors. In parallel, in vivo engineering of immune cells has been developed allowing the generation of genetically modified immune cells,
often designated immune reprogramming (bottom panel). Recent examples in cancer immunotherapy include the conversion from macrophage type 2 (M2) to
macrophage type 1 (M1), manipulation of cancer cells to express immunogenic circuitry and cytokines, and the in vivo delivery of chimeric antigen receptors (CAR) to
circulating T-cells. Delivery strategies are diverse including lipid nanoparticles coupled with DNA or replicative RNA, and viral vectors (lentivirus, AAV, retrovirus,
adenovirus, Sendai virus). In vivo approaches in regenerative medicine and immunotherapy converge towards the creation of off-the-shelf, immunocompatible
therapies that harbor low tumorigenic risks. Simplified clinical translation and manufacturing are balanced by challenges in delivery and the control of cell-type
specificity and numbers. AAV, adeno-associated virus.
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In Vivo Immune Cell Engineering
An analogous approach has been recently developed in cancer
immunotherapy by the generation of immune cells engineered in
vivo. Thus, there is a conceptual parallel between in vivo cell fate
reprogramming and in vivo immune genetic engineering (often
named immune reprogramming), highlighting a possible
convergence of approaches towards cancer immunotherapy
(Figure 4). The engineering of immune cells may help to
overcome cancer therapy limitations, including lack of
targetable antigens or tumor-mediated immune suppression.
Although immune-stimulatory factors such as cytokines and
chemokines could be directly used to attempt to overcome
these challenges, systemic administration often results in
strong off-target activity and severe adverse effects,
underscoring the need for in situ solutions.

The maintenance of tolerogenic tumor niche is attributed to
tumor-associated macrophages (TAM). Their targeted
elimination via CSF1R blockade emerged as a potential
solution to reactivate localized immune responses (223).
However, although CSF1R inhibition limited survival of TAMs
and promoted favorable TAM polarization and elimination of
glioblastoma in mice (224), also impacted tissue-resident
macrophages and brought systemic toxicity. Interestingly, the
mission to prevent pro-tumorigenic activities of TAMs may be
also accomplished with the reprogramming of M2-polarized
TAMs towards M1 pro-inflammatory phenotype. Exploiting
the intrinsic phagocytic ability of macrophages, Zhang et al.
reprogrammed TAMs with nanoparticles delivering M1
polarizing factors IRF5 and IKK and showed, that repeated
delivery of therapeutic lipoparticles abrogated tumor growth
and significantly prolonged survival in mice with ovarian
carcinoma, melanoma, and glioblastoma. Notably, surviving
mice did not form tumors when re-challenged with cancer
cells, indicating that reprogramming-based macrophage
polarization induced durable systemic immunity which may
prevent the formation of metastasis (225).

The immunogenicity of cancer cells is another fundamental
determinant of the immune response. The strategy to increase
tumor immunogenicity reported by Wang et al. consisted of
intratumoral delivery of activating CRISPRa components to
augment endogenous expression of TAAs. In mouse melanoma
and pancreatic adenocarcinoma models, CRISPRa-mediated
enhanced expression of TAAs increased the proportion of
antigen-presenting cells and T-lymphocytes within the tumor
microenvironment and elicited systemic anti-tumor immunity.
Notably, the developed platform can be modified to direct
simultaneous activation of expression of multiple TAAs as well
as other immunomodulatory molecules, chemokines, or
cytokines to further support cancer immune responses (226).
A strategy based on RNA was developed by Li et al. with an
oncolytic nanoparticle-based system delivering self-replicating
RNA encoding IL-12. The combination of immunogenic cell
death with high levels of IL-12 elicited a systemic immune
response and eradicated melanoma and colon carcinoma in
mice (227). Similarly, functional engineering of tumors
enhancing immunogenicity was recently accomplished by
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Tzeng et al. who used nanoparticles to transfect and
overexpress 4-1BBL and IL-12 in cancer cells. Considering that
most cancer cells retain at least low levels of HLA class I
molecules displaying tumor antigens, additional expression of
the costimulatory molecule and IL-12 may endow cancer cells
with the ability to prime T-cells and trigger NK cell activation,
mimicking actions of true professional antigen presenting cells.
Notably, functionally reprogrammed cells elicited systemic cell
mediated anti-tumor responses and in combination with
checkpoint blockade significantly abrogated tumor growth in
mice with melanoma and colorectal carcinoma, inducing
systemic cancer immunity (228).

A riveting solution to boost tumor immunogenicity and to
fuel local anti-cancer immune responses was recently suggested
by Nissim et al. who engineered lentiviral-delivered synthetic
gene circuits driving expression of immune-modulating
components including a surface T-cell engager, the chemokine
ligand CCL21, IL-12, and anti-PD1 antibody directly in tumor
cells. To prevent unwanted toxicity and the risk of autoimmunity
due to the off-target delivery into neighboring non-malignant
cells, the expression of immune-modulating agents was linked to
the activation of cancer-specific promoters, ensuring that the
immune response is directed exclusively against cancer cells.
Interestingly, the proposed immune-modulating therapy elicited
a robust T-cell mediated response and resulted in the rejection of
ovarian cancer (229).

In Vivo Generation of CAR T-Cells
Ex vivo produced CAR T-cells recognizing tumor antigens has
proved as a highly effective treatment for patients with refractory
B-cell malignancies. The manufacturing process which requires
extensive and time-consuming procedures is the limiting step. To
simplify the process, Pfeiffer et al. recently developed lentiviral
vectors enabling highly selective targeting of CD8+ cells which is
used for in vivo generation of CAR T-cells. Despite the relatively
low transduction efficiency (not exceeding 5%), in vivo engineered
CD19-CAR T-cells demonstrated the ability to eliminate CD19+
cells in mice (230). Importantly, a single injection of CD8 targeted
lentivirus was sufficient to generate CD19-CAR T-cells and
efficiently eradicate CD19+ leukemic blasts in mice within two
weeks (231). Elimination of malignant B-cells was achieved also
with in vivomodified CD4+ T-cells expressing CD19-CAR within
2-3 weeks. Interestingly, in tumor-bearing mice, CD4+ CD19-
CAR T-cells exhibited higher anti-CD19 activity and
outperformed CD8+ CAR T-cells especially in the context of
higher tumor burden, suggesting that CD4+ CAR T-cells are less
prone to exhaustion (232). In the clinical context, in vivo CAR
generation may have major implications on the manufacturing
process and facilitate the development of off-the-shelf CAR T-cell
therapy, making it accessible for a larger group of patients.

Cancer immunotherapy has revolutionized cancer treatment.
The limits of the current strategies both individually or in
combination will be elucidated in the coming years. Harnessing
cell reprogramming concepts towards immunotherapy represent an
entirely new set of approaches with the potential to take advantage
of the full immune repertoire, their identity, and the individual
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immunity modules under their control. Possibilities range from
novel sources of allogeneic immune cells, rejuvenating functionally
exhausted effector cells, disrupting vicious regulatory networks of
cancer cells, or modifying the immunosuppressive tumor
microenvironment by inducing immune cell identities in vivo.
Overall, the redefinition of immune cell identity and their
regulatory circuits by cell fate reprogramming is now providing
new and exciting tools for the fast-paced field of
cancer immunotherapy.
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