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Macrophages not only represent an integral part of innate immunity but also critically
contribute to tissue and organ homeostasis. Moreover, disease progression is
accompanied by macrophage accumulation in many cancer types and is often
associated with poor prognosis and therapy resistance. Given their critical role in
modulating tumor immunity in primary and metastatic brain cancers, macrophages are
emerging as promising therapeutic targets. Different types of macrophages infiltrate brain
cancers, including (i) CNS resident macrophages that comprise microglia (TAM-MG) as
well as border-associated macrophages and (ii) monocyte-derived macrophages (TAM-
MDM) that are recruited from the periphery. Controversy remained about their disease-
associated functions since classical approaches did not reliably distinguish between
macrophage subpopulations. Recent conceptual and technological advances, such as
large-scale omic approaches, provided new insight into molecular profiles of TAMs based
on their cellular origin. In this review, we summarize insight from recent studies highlighting
similarities and differences of TAM-MG and TAM-MDM at the molecular level. We will
focus on data obtained from RNA sequencing and mass cytometry approaches.
Together, this knowledge significantly contributes to our understanding of
transcriptional and translational programs that define disease-associated TAM
functions. Cross-species meta-analyses will further help to evaluate the translational
significance of preclinical findings as part of the effort to identify candidates for
macrophage-targeted therapy against brain metastasis.

Keywords: cerebral metastasis, brain cancer, tumor microenvironment, tumor-associated macrophages,
microglia, tumor immunology, targeted therapy
INTRODUCTION

Mononuclear phagocytes comprise bone marrow-derived progenitors, blood monocytes, and tissue-
specific macrophage populations of embryonic origin (1). Fate-mapping studies in mice revealed
that macrophage populations of distinct organs (e.g., lung, spleen, liver, brain, skin) are established
early during development and are self-maintained during adulthood (2). The cellular identity of
tissue resident macrophages is shaped by the local environment of specific organs (3–5). Moreover,
the presence of a diverse range of receptors (6) allows macrophages to receive a broad spectrum of
org September 2021 | Volume 12 | Article 7165041
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signals and thus contribute in autocrine and paracrine
interactions. Hence, this functional plasticity places them at the
interface of developmental processes, tissue homeostasis, and
immunity (1).

As the sole immune cell type within the immune-privileged
brain parenchyma, yolk sac-derived microglia (MG) exert critical
functions in immune surveillance and host defense (7, 8). In
contrast to the brain parenchyma, where the entry of systemic
immunecells is strictly controlled, areas surrounding the brain (e.g.,
meninges) are constantly patrolled by different classes of lymphoid
and myeloid cells (9, 10) (Figure 1). In addition to the
heterogeneous MG populations that have been identified
throughout the brain parenchyma (11, 12), nonparenchymal
macrophages found in border regions [= border-associated
macrophages (BAMs)] represent a distinct population of central
nervous system (CNS) phagocytes (13). Similar to microglia, they
derive fromyolk sac progenitors during early development (14) and
populate the meninges (m), the perivascular areas (pv), and the
choroid plexus (cp). Eachpopulation is classifiedbasedon a specific
set of genes, and functional adaptation is driven by local traits.
Compared with MG, BAMs exhibit distinct transcriptional
signatures (10, 14, 15). Under homeostatic conditions, the
structures adjacent to the parenchyma maintain physical and
immunological separation of the CNS, but at the same time allow
restricted exchange and access of cells and molecules (16).
Frontiers in Immunology | www.frontiersin.org 2
Neurological disorders disrupt the tissue homeostasis of the
brain and lead to the recruitment of cells from the periphery,
mostly of myeloid origin (17). Accumulation of myeloid cells
within the parenchyma impacts the severity and disease outcome
of neurological disorders. Hence, understanding the biology of
specific myeloid subpopulations at spatiotemporal resolution is
crucial for the development of therapeutic strategies that resolve
underlying insults.

A prominent example is the development of brain malignancies.
Cerebral or cerebellar tumor formation is accompanied by a
massive recruitment of macrophages from the periphery, which
together with resident microglia represent the most abundant
stromal cell types in primary (18) and secondary (19) brain
tumors [brain metastasis (BrM)]. Although every tumor type can
metastasize to the brain, the highest incidence is associated to
melanoma, lung and breast cancer. Adding up relative numbers,
BrM originating from lung or breast cancer contribute to more
than 75% of all BrM (20–23).

The brain tumor-associated macrophage (TAM) population
consists of cells originating from resident microglia (TAM-MG)
and cells of monocytic origin, i.e., monocytes and monocyte-
derived macrophages (MDM). However, due to the lack of
definitive markers that discriminate both lineages within brain
tumors, it was (24, 25) challenging to determine quantitative and
qualitative contributions of both TAM populations to brain
FIGURE 1 | The cellular environment in the healthy brain and BrM. The healthy brain parenchyma consists of resident cell types, including neurons, astrocytes,
oligodendrocytes, and cells forming the vasculature (endothelial cells, pericytes). While microglia represent the sole immune cells within the parenchyma, border-
associated areas of the brain (e.g., meninges, perivascular areas) harbor every other cell type of the immune system. In contrast, brain metastasis (right) induce the
recruitment of all types of myeloid and lymphoid immune cells from the periphery. Tumor-associated macrophages (TAMs) represent a heterogeneous pool of
myeloid cells, which consist of brain-resident microglia, as well as monocytes, and monocyte-derived macrophages from the periphery. Recent studies further suggest
a partial involvement of recruited CNS/border-associated macrophages (BAMs).
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tumor biology in the past without the need of transplantation
models or lineage-tracing approaches. Bowman et al. employed
two lineage tracing models in combination with RNA sequencing
to identify markers, which reliably allow the discrimination of
TAM-MGs and TAM-MDMs in mouse and human primary and
metastatic brain tumors. This study led to the identification of
the integrin alpha subunit CD49d (encoded by Itga4) that is
specifically repressed in MG but highly expressed in MDMs.
Importantly, this expression pattern remains conserved within
brain tumors. In addition, the authors identified CD11a
(encoded by Itgal) as similarly differently regulated between
both major TAM populations (26).

The biggest differences between both TAM subpopulations
are determined by their different ontogenetic origin. Since brain
TAMs are known to critically influence the progression and
outcome of brain tumor biology (24, 25), understanding their
quantitative contributions under different conditions and
associated putative different functions is key in order to
develop novel strategies targeting distinct disease-associated
phenotypes in BrM.
TAMs AS CENTRAL PART OF THE BRAIN
METASTASIS MICROENVIRONMENT

TAMs are known to represent a highly abundant cell population
in primary and metastatic brain tumors with different
quantitative contribution to the myeloid cell pool depending
on primary tumor entity (18, 19). However, controversy
remained on the functional contribution of macrophage
populations depending on their ontogeny. Technical
integration of lineage-restricted markers or the use of single
cell-based techniques to characterize myeloid cells in brain
tumors has significantly broadened our knowledge on TAM
heterogeneity in experimental BrM models and patient-derived
data from various brain malignancies (Table 1).

Two recent studies explored the cellular heterogeneity of
myeloid cells in experimental brain metastasis models by
multicolor flow cytometry (FCM) integrating CD49d as a
marker to distinguish TAM-MG and TAM-MDM. Although
approximately 75% of all CD45+ cells of the syngeneic breast
Frontiers in Immunology | www.frontiersin.org 3
cancer model 99LN-BrM were of myeloid origin, only 5%–10% of
all TAMs were MDMs (30). By comparison, the xenograft lung
cancer BrM model H2030-BrM induced stronger TAM-MDM
recruitment (32), which constantly increased across different
stages of tumor progression leading to 10% and 20% of TAM-
MDMs in small or large BrM, respectively (32). Moreover, it was
demonstrated that the TAM population within the H2030-BrM
model changed in response to whole brain radiotherapy (WBRT),
applied as a standard-of-care treatment modality (32). A relative
reduction of TAM-MDM contribution to the total TAM pool was
observed 3 days after hypofractionated as well as classically
fractionated WBRT. Interestingly, this effect was transient and
constant reinfiltration resulted in a steadily increasing TAM-
MDM population, as examined within the total myeloid cell
pool in H2030-BrM at several time points after WBRT. Hence,
the application of radiotherapy represents a useful strategy to
modulate the TAM pool by causing radiation-mediated cell
elimination on the one hand, but enhancing infiltration of naïve
cells from the periphery on the other hand. A similar way of
interfering with MDM recruitment has been shown in mouse
models of glioma in response to radiation (33).

Collectively, these data suggest that the TAM pool in
preclinical BrM models is highly dynamic. Moreover, recent
studies highlighted the contribution of each TAM population to
total TAMs. The relative contribution of each TAM population
to the total TAM pool is influenced by the primary tumor entity
and can be modulated by radiotherapy. TAMs of peripheral
origin have been found to be more abundant in recurrent glioma
samples upon surgery (34), further illustrating the impact of
antitumor therapy on the immune landscape. Interestingly, the
diversity of the TAM pool is similarly regulated by the origin of
the primary tumor in human BrM (27, 29, 31). Within the
studies by Friebel et al. and Klemm et al. the authors performed
comprehensive in-depth analysis of patient-derived primary and
secondary brain tumor tissue by integrating high-dimensional
techniques, such as, FCM, RNA sequencing, or mass cytometry
by time of flight (CyToF) to gain insight into cellular and
molecular aspects of the brain tumor immune landscape. In
contrast to primary brain tumors, BrM induced higher
infiltration of myeloid cells from the periphery, and the
majority of CD45+ cells was composed of neutrophils and
MDMs (27, 29). Lower abundance of macrophages from the
TABLE 1 | Overview of recent studies, examining the tumor microenvironment (TME) of preclinical models of brain metastasis (BrM), and human patient samples.

Reference Species Tumor Main methodology TAM differentiation Treatment of individuals Main
targets

Prior Post

Friebel et al. (27) H. sapiens Various Single-cell mass cytometry No Yes Treated various (CT, RT, IT) Protein
Guldner et al. (28) M. musculus Syngeneic, B2B CyTOF, CITE-Seq, scRNA seq No Yes Major analyses from untreated Gene/protein
Klemm et al. (29) H. sapiens Various Sorted bulk RNA seq, FCM Yes, FCM, CD49d Untreated and treated (CT, RT,

IT, others)
Gene

Niesel et al. (30) M. musculus Syngeneic, B2B Sorted bulk RNA seq, FCM Yes, FCM, CD49d Untreated Gene
Rubio-Perez et al. (31) H. sapiens Various scRNA seq, TCR seq No Yes Treated various (CT, RT, IT) Gene
Schulz et al. (32) M. musculus Xenograft, L2B Sorted bulk RNA seq, scRNA

seq, FCM
Yes, FCM, CD49d Untreated and treated (RT) Gene
September 2021 | Volume 12 | A
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periphery was observed in melanoma BrM compared with breast
and lung cancers (Figure 2).
MOLECULAR PROFILES OF TAMs IN BrM

TAMs are malignancy instructed and have been described as key
players at the interface between tumors and cells of the immune
landscape. This can be attributed to their high capacity of
integrating a broad range of external stimuli, resulting in
diverse activation states and highly plastic phenotypes (35, 36).
In the following paragraphs, we will provide an overview of
molecular alterations observed in both major TAM populations
of mouse and human BrM and highlight representative markers
that have been identified to be differentially expressed in TAM-
MG and TAM-MDM. Moreover, we will discuss candidate
factors that have been identified as core signatures of disease-
associated macrophages and are commonly up- or
downregulated in both major TAM populations. An overview
of the representative factors can be found in Table 2.

Transition From Normal to Disease-
Associated Cell States
It is increasingly appreciated that tumor-associated immune cells
are significantly different compared with their normal cellular
counterparts. However, it remains less well understood how
normal cells transition into disease-associated cell types upon
initial contact to tumor cells and within different stages of tumor
progression. Interestingly, Schulz et al. observed that the
instruction and education of TAMs represents an early event
during formation of the BrM-TME and occurs rapidly after
recruitment of resident TAM-MG or peripheral-derived TAM-
MDMs. Analyses of transcriptional program in TAMs isolated
from small- vs. large-stage BrM revealed an almost complete
absence of differences in gene expression in each population,
Frontiers in Immunology | www.frontiersin.org 4
suggesting stable transcriptomes during BrM progression (32).
However, further dissection of potential transition stages based
on single-cell approaches are needed to characterize the
acquisition of diseases-associated signatures across a broader
range of different stages of tumor progression and to identify the
progenitor cells that contribute to tumor-associated myeloid cell
pool for more precise comparison. In the following paragraph,
we will therefore highlight recent insight on signatures of
transition states based on trajectory analyses. Interesting
observations on the cellular differentiation route of TAM-
MDMs were made in a recent study in which the authors
dissected the myeloid cell pool in different stages of murine
and human glioma by single-cell RNA-Seq (scRNA-Seq)
approaches in combination with lineage-tracing experiments in
mouse models (34). By adoptively transferring classical or
nonclassical monocytes from Cx3cr1GFP/+ mice into Ccr2-KO
mice harboring orthotopically transplanted gliomas, the authors
demonstrated that only classical monocytes were able to
differentiate into MDMs within the tumor. If this applies to
TAM-MDM in BrM requires further investigation.

Disease-Associated Transcriptional
Signatures of TAM-MG in BrM
Microglia under homeostatic conditions represent a
heterogeneous cell population depending on their localization
within the brain parenchyma. Moreover, MG heterogeneity is
modulated by developmental stages with lower heterogeneity
found in adults compared with embryonic stages. Given the
inherent MG heterogeneity, it is not surprising that brain
pathologies induce an even higher degree of heterogeneity (12,
37), which was demonstrated with single cell RNA-seq for TAM-
MG (28, 32). For example, by using t-distributed stochastic
neighbor embedding (tSNE), a dimensionality reduction
method, of RNA-Seq data from single cells, Schulz et al.
reported that the majority of TAM-MG from the H2030-BrM
FIGURE 2 | Relative contribution of each TAM subpopulation to the total TAM pool in BrMs derived from melanoma, breast cancer, or lung cancer. Data represent
cumulative, relative data derived from preclinical (mouse models) and clinical (human) findings.
September 2021 | Volume 12 | Article 716504
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TABLE 2 | Selected markers and their regulation within murine (left) and human (right) TAM-MG and TAM-MDMs.

Human

TAM-MDM

(27, 29)
(29)

Low (29)
Unchanged (29)

Higher in MDM but downregulated (27) or
upregulated (29)
Higher in MDM (27, 29)

Slight upregulation and higher than MG (32)

(29)

Higher presence than MG (27, 29)

(29)

(29)

Upregulated in MDM-3 (27), no expression
change (29)

(29) C1QB high (31)

(29)

Strong upregulation (29)

Slight upregulation (29)

Slight downregulation (29)

Unchanged (29)

Strong upregulation (29), high expression (31)

Strong upregulation (29), high expression (31)

Strong upregulation (29)

Strong upregulation (29), high expression (31)

Strong upregulation (29)

(27, 29)
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29)

29)

29)
Category Target (depending
on study, referred to
gene or protein)

Mouse

TAM-MG TAM-MDM TAM-MG

Microglia lineage CX3CR1 (28, 30, 32) (30, 32) (28, 29)
P2RY12 (28, 30, 32) (30, 32) (28, 29)

SALL1 (30, 32) Slightly up (30, 32) (29)
TMEM119 (28, 30, 32) (30, 32) (28, 29)

Macrophage
lineage

CCR2 Lower in MG (30, 32) Higher in MDM (30, 32) Lower in MG (27, 29)

CD49d Lower in MG (30, 32) Higher in MDM (30, 32) Lower in MG (27, 29)

Antigen
presentation

H2-Aa (only mouse) Lower than MDM, but upregulated (30, 32) Higher than MG (28, 30, 32)
H2-Ab (only mouse) Lower than MDM, but upregulated (30, 32) Higher than MG (28, 30, 32)
H2-Eb (only mouse) Lower than MDM, but upregulated (30, 32) Higher than MG (28, 30, 32)

H2-D1 (only mouse) (30, 32) Strongly upregulated (30), slightly
regulated (32)

B2M (30, 32) (30, 32) (higher than MG) Strong upregulation (29)

HLA-A (only human) (29)

HLA-DR (only human) (27) [high but slightly decreased
expression in (29)]

CD74 (30, 32) Higher than MG (28, 30, 32) Slight downregulation (29)

T cell interaction CD275/ICOSLG/B7-
H2

Unchanged (30) or slightly upregulated (32) Upregulated (30, 32) No expression change (29)

PD-L1 Unchanged (30) or slightly upregulated (32) Higher than MG (28, 30, 32) No expression change but highe
MDM (27, 29)

Complement C1Q (28, 30, 32) (but higher than MDM) (28, 30, 32) Slight downregulation (29)

C3 (30, 32) Unchanged (30) or slightly
upregulated (32)

(28, 29)

C3AR1 (30, 32) (30, 32) (29)

C4B (30, 32) (30, 32) Slight upregulation (29)

C5AR1 (30, 32) (30, 32) Slight downregulation (29)

Cytokine CCL2 (30, 32) (30, 32) (29)

CCL3 (30, 32) (30, 32) (29)

CCL4 (30, 32) (30, 32) (29)

IL1A (30, 32) (30, 32) Slight downregulation, high level

IL1B (30, 32) (28, 30, 32) Slight downregulation, high level

TNF (30, 32) (30, 32) Slight downregulation, high level

TAM signaling AXL (30, 32) (30, 32) (29)
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TABLE 2 | Continued

Human

TAM-MDM

Partially (27) or strong upregulated (29)

Strong upregulation (29)

Unchanged/slightly downregulated (29)

Downregulated, but higher levels than MG (29)

Slightly downregulated, but higher than MG (29)

(29)

(29)

Strong upregulation (29)

Down on protein level (27), up on RNA (29)

(27, 29)

(27, 29, 31)

Strong upregulation (29)

Strong upregulation (29)

(27, 29, 31)

Slight downregulation (29)

Unchanged high expression (29)

High on MDM-3 (27) or downregulated (29)

ion In H. sapiens: MS4A4E, strong upregulation (29)

ion In H. sapiens: MS4A6E (29)

(29)

, (29): high expression level but down in TAM-
MDM (S100A4, S100A6)

(31): slight expression of S100A8, S100A9
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Category Target (depending
on study, referred to
gene or protein)

Mouse

TAM-MG TAM-MDM TAM-MG

MERTK Downregulated (30), unchanged (32) (30, 32) Moderate (27)

GAS6 (30, 32) (30, 32) (29)

Growth factor
and ECM
organizer

APOE (30, 32) (higher than MDM) (28, 30, 32) Mixed acc. to primary (29), higher
expressed than MDM (31)

CTSB (30, 32) (30, 32) Unchanged (29)

LGALS3 (28, 30, 32) Not regulated (30) or
downregulated (32), higher than
MG (28)

Strong upregulation (29)

SEMA4B (30, 32) Slightly up (30) or down (32) (29)

SPARC Slightly upregulated (30, 32) (30, 32) Strong upregulation (29)

VEGFA Slightly upregulated (30, 32) (30, 32) Moderately upregulated (29)

Receptors CD33/SIGLEC3 Downregulated (30), unchanged high
expression (32)

(30, 32) Absent (27)

CD64/FCGR1 Unchanged (30, 32) Upregulated (30), no change (32) (29)

CD163 No expression (30, 32) No expression (30), upregulated
(32)

Low (27) or upregulated (29, 31)

MARCO No expression (30, 32) No expression (30, 32) Low expression (29)

NR4A2 (30, 32) (30) (slightly) (32), (29)

CD206/MRC1 Downregulated (30) or slightly upregulated
(32)

(30, 32) (29)

P2RX4 (30, 32) (30, 32) Unchanged high expression (29)

TREM2 Slightly upregulated (30, 32) Strongly upregulated (30, 32) Slight downregulation (29)

Others CD209/CLEC4L No expression (30) or slightly upregulated
(32)

High expression (30, 32) Low (27, 29)

MS4A family
members
MS4A4C Slight upregulation (30, 32) No change (30, 32), upregulated

(28)
In H. sapiens: MS4A4E, low express
(29)

MS4A6C (28, 30, 32) Unchanged high expression (30,
32); slightly upregulated (28)

In H. sapiens: MS4A6E, low express
(29)

MS4A7 (30, 32) High expression (30, 32) Slight downregulation (29)

S100A family
members

Higher then MDM in (28): S100a4, S100a6,
S100a10

S100a6, S100a10 (32) (29): S100A4, S100A6 [high in (31)]
S100A10 [high in (31)]

Not expressed: S100a4 (30, 32), S100a6
(32); S100a10 [slightly down (32)]

(31): low expression of S100A8,
S100A9
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model were contributing to three transcriptionally distinct cell
cluster in treatment-naïve BrM. The cluster comprising most of
the TAM-MG (cluster 9) was represented by high expression of
cytokines (Ccl3, Ccl4, Cxcl13), cathepsin Z (Ctsz), the epidermal
growth factor receptor 1 (Egfr1), as well as MG typical marker
(C1qa,Hexb) (38, 39). The complement member andMG lineage
marker C1qa was found to be upregulated in TAM-MG in
several studies (Table 2), whereas other members of the MG-
specific “sensome” core signature (Cx3cr1, P2ry12, Tmem119)
(11, 38, 39) were consequently downregulated in murine and
human TAM-MG (Table 2). While an increased expression of
C1q members in MG belongs to their activation profile (40, 41),
downregulation of homeostatic markers most likely is a
consequence concomitantly occurring with downregulation of
the homeostatic regulatory gene Sall1/SALL1 in murine and
human TAM-MG. This further mirrors a classical activation
response of MG associated to any damage of the brain, as
observed under neuroinflammatory conditions (42).

Once activated and educated by tumor cells, TAM-MG
upregulate several markers known to be crucial for inflammation
in the injured brain, thereby probably contributing to BrM
progression, e.g., via exerting immune-suppressive functions.
Presumably, this is accompanied with profound metabolic
changes as seen in an apparent deregulation of members of solute
carrier (Slc) genes (32).

Some of the frequently observed markers in MG associated to
neurological damage are apolipoprotein E (Apoe/APOE) and the
triggered receptor expressed on myeloid cells 2, Trem2/TREM2,
which were highly expressed/upregulated in TAM-MG of murine
BrMmodels, whereas the expression of both members only slightly
varied in human TAM-MG. The APOE-TREM2 axis has been
described to drive activated MG states in neurodegenerative
diseases along with downregulation of homeostatic markers (39,
43). However, especially TAM-MDMs showed elevated expression
levels of Trem2/TREM2 in preclinical BrM models or patient
material of BrM derived from various primary tumors (Table 2).
The contributions of TREM2 and APOE to neurological diseases
[e.g., Alzheimer’s disease (AD) or multiple sclerosis (MS)] have
been extensively described with regard to MG (44, 45).
Importantly, it was shown that targeting TREM2+ MG represents
an interesting approach to attenuate disease progression. In
addition to the broadly studied APOE-TREM2 axis, another key
player of MG-mediated neurological dysfunction, and ligand for
TREM2, is Galectin-3, encoded by Lgals3/LGALS3. Galectin-3
shows a multitude of functions in MG. Elevated extracellular
levels within the BrM-TME might drive inflammatory responses
in a Toll-like receptor (TLR) 4 binding-mediated self-sustaining
manner (46, 47). In line with this, TLR4 expression was found to be
upregulated in TAM-MG of H2030-BrM (32). In a recent study,
Siew et al. analyzed the contribution of MG-derived Galectin-3
signaling in a mouse model of Huntington’s disease (48). Elevated
cytokine levels were attributed to high Galectin-3 signaling, and
strategies targeting its expression have been shown to be sufficient
in decreasing levels of inflammatory cytokines, thereby
ameliorating MG-mediated pathogenesis (48).

While profiling across different conditions revealed that Lgals3/
LGALS3 expression levels are strongly increased in TAM-MG,
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varying but high levels within TAM-MDMs have been found in
murine or humanBrM aswell (Table 2). Similarly, high expression
levels were rather associated to TAM-MDMs of murine (49), or
human recurrent glioma (34), as revealed in high-dimensional
single-cell profiling studies. Therefore, contribution of elevated
Lgals3/LGALS3 levels need to be carefully evaluated in a context-
specific manner. Another group of genes (S100 family members)
shows an interesting alternating pattern across TAMs in mouse
and human BrM. S100 members are small, Ca2+-binding
proteins, which regulate several cellular functions in an autocrine,
or paracrine fashion, and can act as damage-associated molecular
pattern (DAMP) (50). For example, S100b has been shown to serve
as a noninvasive, astrocytic marker of blood-brain barrier (BBB)
integrity and function, also in brain tumors (51), whereas several
S100A members have been implicated in neurodegenerative
diseases like AD (52). In addition, distinct S100 proteins have
been associated to the regulation of inflammatory responses and
TAMmigration and invasion in tumors (50). Hence, upregulation
or high expression especially in TAM-MG of BrM (e.g., S100A6,
S100A10) (Table 2) (28, 31), might reflect a central mediator of
BrM-associated inflammation. In contrast, in glioma elevated
expression level of S100A6 has been implicated in a transitory
TAM-MDMstate inmouse andhumans (34) orwas part of a strong
“macrophage signature” (49). Since S100A6, which was implicated
in tumor progression in several other cancers (53), can either act on
MG in a cell-restricted manner or can be secreted, elevated
expression levels of S100A6 and other S100 members need further
examination. To date, it remains unclear if the regulation of S100
members represents a cause or consequence of progressing BrM.

Direct comparison of both TAM populations on the single cell
(27, 28, 31), and bulk population level (29, 30, 32) revealed further
cell type-restricted molecular profiles in mouse models and
human patient samples. TAM-MG showed higher upregulation
of distinct proinflammatory cytokines (e.g., CXCL5, CXCL8, IL6)
(29), or genes belonging to cell migration, e.g., Vim/VIM (28, 31)
within a changing environment.

Cathepsins (Cts/CTS) encompass a family of proteases known
to play several protumorigeneic roles in the tumor context by,
e.g., remodeling the extracellular matrix (ECM) (54). In the
brain, cathepsin S has been described as BrM-promoting via
enhancing transmigration through the BBB (19). High
expression levels of different cathepsins within TAMs of
established BrM further suggest profound remodeling of the
TME in outgrowing tumors. Among them, Ctsd (28) and CTSL
(31) exhibited higher expression levels in TAM-MG, while Ctsb
was strongly upregulated in both TAM populations of different
murine BrM models (30, 32), but in human BrM was, together
with CTSW, rather enriched in TAM-MDM (29). Hence,
different highly expressed members of this family of ECM
modulators further suggest an involvement for generating a
BrM-promoting environment, but specific contributions for/
with each TAM population in BrM have not been elucidated yet.

Disease-Associated Transcriptional
Signatures of TAM-MDM in BrM
Recruitment of monocytes to the CNS has been predominantly
attributed to the chemokine axis including the receptors Ccr2/
Frontiers in Immunology | www.frontiersin.org 8
CCR2 and Cx3cr1/CX3CR1 (17), which was shown in the brain
tumor context using lineage-tracing approaches in glioma mouse
models (26, 55). Interestingly, while Ccr2/CCR2 is dramatically
downregulated upon entry into the parenchyma and during the
monocyte-to-macrophage transition in glioma (55), and also
BrM (27), Cx3cr1/CX3CR1 levels are upregulated in TAM-
MDMs (Table 2), whereas the protein was downregulated on
the majority of MDM subsets but remained abundant on only a
small subset (27). These data suggest that high levels of Cx3cr1/
CX3CR1 are partially required to integrate into the CNS
parenchyma, since the axis is usually involved in glia-neuronal
crosstalk (56). Comparing TAM data for the expression of
another potent chemokine receptor known to be involved in
cell migration, it became apparent that especially TAM-MDMs
possess high levels or strongly upregulated the C3A receptor,
C3ar1/C3AR1 in murine and human BrM (Table 2). This
suggests the contribution of a conserved mechanism of
recruitment via the anaphylatoxin/chemokine axis.

Given the fact that bulk analysis usually masks different
expression/antigen density levels, Friebel et al. comprehensively
dissected the heterogeneity of TAMs derived from different
human brain malignancies, and showed that TAM instruction
is not a random process, but rather driven by the underlying
tumor, both in primary and secondary brain malignancies (27).
By combining in total 38 markers for their myeloid panel, the
authors captured a broad range of cellular states as depicted by
distinct lineage-specific, but also activation markers. Upon
merging all TAM CyTOF data from both, glioma and BrM
samples, the authors created a detailed relationship and
trajectory analyses focusing on abundance of typical monocyte/
macrophage markers in silico. One of the common features they
found was downregulation of CCR2 and the SIGLEC family
member, SIGLEC3 (CD33), which represents a transmembrane
receptor implicated in pattern recognition and regulation of
phagocytosis, and in that regard has been described to be a
risk factor for AD (57). Moreover, transitioning cells were found
to commonly upregulate the innate immune sensor receptor
CD163, together with the TAM receptor MERTK (Table 2).
Monocytes transition to macrophages through a more common
MDM state (termed MDM 1), and finally develop into three
distinct MDM subpopulations (MDM 2, 3, 4), and this transition
was driven by differential regulation of certain markers,
including CD169, CD206 (mannose receptor c-type I, MRC1),
CD209 (C-type lectin receptor, CLEC4L), CD38, and PD-L1.
Some of these markers were further used in combination with
IBA1 to specifically stain for MDMs in the TAM compartment
(27). Since not only CD206 but also CD209 usually are associated
to alternative macrophage activation, it is not surprising that
those markers have been found to be predominantly upregulated
in TAM-MDMs of murine and human BrM across different
conditions (Table 2). MERTK upregulation was found to be
gradual, and highest antigen density was allocated to the MDM 4
population (27), whereas bulk RNA-Seq of murine and human
TAM-MDMs revealed in general elevated expression levels
(Table 2). MERTK and AXL, which were also found to be
significantly upregulated especially in TAM-MDMs (Table 2),
represent two of the three TAM (TYRO3, AXL, MERTK)
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receptor tyrosine kinases, which are involved in phagocytosis and
regulation of inflammatory responses (58). Interestingly, one of the
ligands for AXL,Gas6/GAS6, was also highly expressedwithin both
TAMpopulations inmurine BrM, but rather upregulated in TAM-
MDMs of human BrM samples (Table 2). Although GAS6-AXL
signaling is present in the healthy CNS, and is associated to
phagocytosing MG (59), deregulation can cause enhanced
inflammation in the CNS (60). Moreover, this signaling axis can
lead to a protumorigenic TME (61) and has been found to be
coexpressed in TAMs with high C1QC levels in various primary
tumors (62).

Despite several differences between the same TAM
population within both mouse and human, further commonly
regulated markers of TAM-MDMs included Nr4a2/NR4A2. This
nuclear receptor family is known to control macrophage gene
expression during inflammation (63) but is implicated in
maintaining normal functions of dopaminergic neurons in the
healthy brain. Interestingly, NR4A2 has been found particularly
upregulated in a transitory monocyte population in glioma (34),
further suggesting regulatory involvement in inducing
inflammatory phenotypes during MDM development.

While certain patterns associated to these inflammatory states
of TAMs seem to be conserved between species, other families of
proteins are rather restricted to either a species, or a cell type.
One interesting group encompasses the membrane-spanning
(MS) protein family of MS4A members (Table 2). While for
some of the family members (e.g., MS4A1 = CD20) their
functions are well described, most of them remain poorly
understood. In a recent study, Liu et al. generated new lineage-
tracing mouse models targeting Ms4a3 (Ms4a3Cre and
Ms4a3CreERT2) and validated lineage specificity of this marker,
which specifically distinguishes monocytes and granulocytes
from embryonically derived resident macrophage populations,
including MG, under steady state but also inflammatory
conditions (64). MG possess strong expression levels of certain
Ms4a members (Ms4a6b, Ms4a6c, Ms4a6d, Ms4a7) during early
development, while these high expression levels are not found in
adult MG or in response to injury. Nevertheless, MG of that
specific subpopulation of MG identified during early
development cluster also showed overlapping features to BAMs
(37). Several genes of the MS4A family appeared in all of the
BrM-omics studies among the top regulated genes, and some of
them have been described as risk factors for AD (65), including
Ms4a4c (mouse)/MS4A4E (human), Ms4a6c/MS4A6E, and
Ms4a7/MS4A7. Interestingly, all of them were found at high
expression levels or strongly upregulated across both TAM
populations of murine BrM with slightly higher levels in
TAM-MDM (Table 2). Contrary, in human TAMs, MS4A
members were found predominantly upregulated or higher
expressed per se in TAM-MDMs. Similarly, high and stable
expression of Ms4a7 was reported as part of a core signature
for BAMs in steady state and under neuroinflammatory
conditions (42). Taken together, this data is in line with the
situation in glioma TAMs (34) and further corroborate strong
similarities in transcriptional profiles between each TAM
population derived from distinct diseases. These findings are
Frontiers in Immunology | www.frontiersin.org 9
strengthened by higher intersect levels of each TAM pool
between glioma and BrM (29).

Aiming to describe heterogeneity within certain TAM subsets,
all of the recent studies looking into the TME by single-cell
approaches confirmed that especially the TAM-MDM pool
consists of a more diverse range of cellular states (27, 28, 32).
Whereas, Guldner et al. even described BAMs to contribute to the
TAM-MDM pool within their model. With respect to identity of
cell types within cell populations that were FACS purified prior to
transcriptomic analyses, it is important to carefully consider
procedures of sample preparation and marker selection.
Macrodissection of tumor lesions is critical to reduce the risk of
diluting the disease-associated cell pool with normal cell types.
Moreover, the use of different marker combinations can lead to
different assignment of cell types to certain subpopulations. For
example, several commonly used markers to discriminate MG and
MDM including CD45, SALL1, and TMEM119 (30, 66) are
known to show assimilation of expression levels in both
populations in brain tumors. Hence, the choice of marker
combinations can lead to differences in population assignment.
This determines the classification of subpopulations and
consequently significantly affects the respective transcriptional
programs. Nevertheless, typical non-MG clusters (TAM-MDMs/
BAMs) were shown to be dominated by the expression of genes
belonging to antigen processing and presentation particularly
associated to MHC class II presentation, including H2-Aa, H2-
Ab1, H2-Eb, and CD74 (Table 2) in several independent studies
(28, 30, 32). Expression of the MHC class II member HLA-DR in
human TAMswas similarly higher in TAM-MDMs (Table 2), and
upregulated expression can be attributed to the transition from
monocytes toMDMs (27), similarly as in the glioma situation (34).
Interestingly, this raises the question to which extent each TAM
population contributes to T-cell interaction, hence influencing
a cancer-promoting, or immunosuppressive TME. Using
multiplexed immunostaining, spatial organization of TAMs with
respect to T cells was examined in murine (30) and human BrM
(29). Both studies found a close proximity of both TAM
populations to CD4+ and CD8+ T cells, yet Niesel et al.
observed closer proximity of TAM-MDM to T cells compared
with TAM-MG based on discrimination by TMEM119 (30).
Moreover, it was observed that PD-L1 was almost absent in
tumor-free brains, whereas BrM induced the recruitment of PD-
L1+ myeloid cells, and levels of PD-L1 were highest among TAM-
MDMs (30). On the gene expression level, several costimulatory
and also inhibitory markers were found to be present among both
TAM populations, whereas most of them were expressed at higher
levels in TAM-MDMs (30). Representative comparison of
different T-cell regulatory markers across TAMs revealed that
both, activating Icosl/ICOSL, and inhibitory Pd-l1/PD-L1 markers
are present in TAMs with slight higher levels in the TAM-MDM
compartment (Table 2). Given the spatial organization of TAMs
within the BrM-TME, one can assume that TAM-MGs in the BrM
periphery are in contact with T cells at the tumor-stroma interface,
while immunosuppression within the BrM core is fostered by
TAM-MDMs once T cells have entered the tumor mass.
Furthermore, T-cell profiles confirm exhaustion states within the
September 2021 | Volume 12 | Article 716504
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TME (27, 30). Additional immunoregulatory mediators within
BrMs predominantly derived from TAM-MDMs were the
chemokines CCL8, CCL13, CCL17, and CCL18 (29). Together,
all of them are attributed to an alternative, rather tumor-
promoting phenotype (= M2) of macrophages, which is found
in many tumors (35). Despite this fact, both TAM-MG and TAM-
MDMs upregulate a broad range of inflammatory mediators (29,
32), and hence cannot be classified into the conservative M1–M2
scheme, but rather exist within a continuum, depending on their
current local environment.

Finally, in order to understand putative dichotomous
functions of TAMs, and their relevance for the inflammatory
TME in BrM (Figure 3), detailed annotation and pathway
analyses of differently regulated genes were performed based
on results obtained from RNA-Seq experiments (28–30, 32).

To delineate functional changes upon TAM instruction,
comparative analyses of significantly differently regulated genes
of TAMs vs. their healthy counterparts (i.e., normal MG, or
blood monocytes) in breast cancer BrM (30), and lung cancer
BrM (32) were performed. Together, both studies showed that
altered transcriptional profiles in TAM-MG resulted in
upregulation of pathways and signaling cascades associated to
inflammation, regulation of cytokine production, type I
interferon (IFN) signaling, cell migration and motility, and
proliferation. Interestingly, TAM-MG were found to be
involved in the recruitment and interaction with neutrophils,
in both mouse models of BrM (30, 32), and also in human BrM
Frontiers in Immunology | www.frontiersin.org 10
(29). Concurrently, TAM-MG downregulates genes involved in
housekeeping functions, such as synapse organization or
regulation of neuronal organization.

TAMs derived from the periphery are more plastic than MG
as described above. Thus, their altered transcriptional profiles
need to be evaluated more carefully in a context-dependent
manner. Compared with their normal cellular counterparts,
TAM-MDMs upregulated pathways involved in inflammatory
responses, cytokine production and interaction, migration,
mitosis and cell cycle, and also organization of the ECM (30,
32). In addition, human BrM TAM-MDMs showed slightly
higher relevance of genes related to mitosis and cell division,
compared with TAM-MGs; however, staining of human BrM
samples for proliferation markers indicated proliferation in both
cell types (29). However, if this results from an environment
promoting local proliferation, or is caused by other stimuli, e.g.,
prior treatment remains to be elucidated. Analyses of patient
samples stratified based on treatment history will be required to
gain further insight whether different intervention strategies
modulate recruitment and expansion of TAM-MDMs as
previously shown in a lung-to-brain model in response to
radiotherapy (32). Both human TAM populations showed an
enrichment for genes related to type I IFN, and NF-kB signaling
(29). Not surprisingly upon entering the BrM-TME, and
transitioning from monocytes, TAM-MDMs downregulated
genes related to chromatin organization, and intracellular
reorganization of, e.g., the cytoskeleton (30).
FIGURE 3 | Molecular features of both major TAM populations in BrM. Recent cellular and molecular findings underline the differences of TAM-MG (left) vs. TAM-
MDM (right) within the BrM microenvironment. Representative markers shared between TAMs from murine or human BrM are illustrated, together with major
functional annotations.
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Transcriptional Programs Shared in
TAM-MG and TAM-MDM
In addition to lineage-restricted transcriptional programs in
TAM populations, it became clear that both TAM populations
also share a significant proportion of similarly regulated markers
by Top marker principal component, and overlapping gene
analysis in human TAMs (29), or by comparison of all
differently regulated genes (DEGs) (32).

In H2030-BrM, approximately 300 DEGs were found to be
commonly upregulated, and around 900 DEGs commonly
downregulated between both TAM populations (32).
Functional annotation of all jointly regulated markers revealed
the induction of inflammatory pathways, as well as regulation of
cell adhesion and cell migration. Downregulated DEGs were
mostly associated to homeostatic functions in the brain, e.g.,
synapse organization. In contrast to the results obtained from
experimental BrM models, the number of shared genes between
TAM-MG and TAM-MDM was rather small in the human
situation (29). The difference can potentially be explained by
the fact that human RNA-seq data in this study were not
stratified based on primary tumor type thereby possibly
missing important similarly regulated genes. Comparison of
typical inflammatory cytokines (e.g., CCL2, CCL3, CCL4, IL1B)
across mice and human BrM-TAMs revealed that although most
of them exhibited much higher expression levels in the BrM
situation in mice, it rather were TAM-MDMs upregulating them
in the human scenario (Table 2). RNA velocity analysis of single-
cell RNA-Seq data of mouse TAMs further showed that Il1b and
also Tgfb were genes similarly regulated at convergence points
between TAM-MG and TAM-MDM clusters (28).

Osteopontin which is encoded by Spp1/SPP1 is a marker
usually associated to MG of early development or has been
described as one key marker of all disease-associated MG (DAM)
subcluster (37). In BrM, Spp1/SPP1 was found highly expressed
or upregulated in both TAM populations across species
(Table 2), however with slightly higher expression levels in
TAM-MG, similar as in primary brain tumors (34). Although
a broad range of cellular functions has been assigned to
osteopontin, under inflammatory conditions it most likely
regulates inflammation itself via enhancing the recruitment of
not only myeloid but also lymphoid cells (67) to the TME.
Aiming to reduce or dampen inflammation within the BrM
TME, osteopontin hence might represent an interesting target.

In addition to the high expression levels of the complement
cascade-initiating member C1q/C1Q within the BrM-TME, two
other inflammatory factors, Il1a/IL1A and Tnf/TNF, showed
broad abundance and were highly expressed or upregulated in
TAMs of murine or human BrMs (Table 2). Together, the
presence of all three molecules strongly raises the possibility of
TAM-mediated astrocyte activation towards a neurotoxic
phenotype (termed A1), which partially would be sustained
due to constant factor availability. This mechanism of astrocyte
activation has been described in mouse models of
neuroinflammatory conditions, and A1 astrocytes were found
in samples of various human diseases. A characteristic marker
for A1 astrocytes is the central complement component C3 (68).
Frontiers in Immunology | www.frontiersin.org 11
Interestingly, next to C1q/C1Q, other members of the
complement system were apparently deregulated in BrM (32),
and cross-conditional comparison revealed upregulation of, for
example, C4b/C4B among all TAMs in mice and human
(Table 2). While oligodendrocyte-derived C4b in mice has
been associated to pathogenicity in an AD model (69), its
functions within the TAM pool of BrM remain to be shown.

In summary, recent discoveries and previously unknown
molecular insights into macrophages/microglia associated to
BrM have dramatically shifted the paradigm of BrM-TAMs
representing one homogeneous population. In comparison
with data derived from recent “omics” studies involving
glioma, it became clear that TAMs in brain malignancies
constitute a heterogeneous mixture of resident and recruited
mononuclear phagocytes, with multifaceted activation states
(Figure 3). Moreover, each major subpopulation contributes to
the inflammatory TME in a unique way, and disease-specific
manner. The discovery of molecular markers present in both
TAM populations or conserved between species opens novel
avenues to develop targeted approaches in order to fight this
deadly disease.
TRANSLATIONAL ASPECTS

TAM-targeted therapies have attracted attention as promising
therapeutic strategies for a variety of different primary cancers
(Table 3). Besides their high abundance, TAMshave been shown to
critically influence tumor biology, often in a protumorigenic
fashion by exerting immune-suppressive functions, and at the
same time interacting with tumor cells to reciprocally support
each other (35). However, in the brain, targeted approaches have
to be carefully designed, in order to address modulation within
specific TAM populations, without affecting resident macrophage
populations (i.e., adjacent MGs) to prevent side effects.

Given the central role of CSF1-CSF1R signaling for survival
and proliferation of macrophages, it is not surprising that
specifically this axis has been targeted by antibodies, or small
inhibitory molecules in order to reduce macrophage infiltration
or deplete resident, tumor-promoting populations. Aiming to
suppress tumor-promoting TAM functions, Pyonteck et al.
utilized a CSF1R inhibitor in preclinical glioma models (18).
Interestingly, CSF1R inhibition as monotherapy resulted in
improved survival and even tumor regression, accompanied by
re-education of TAMs into a rather antitumor phenotype. Long-
term treatment however resulted in acquired resistance driven by
IGF signaling between TAMs and tumor cells, which resulted in
prolonged glioma cell survival and invasive capacities (71).
Improved efficacy however can be obtained by combining
CSF1R inhibition with radiotherapy in glioma (33). CSF1R
inhibition was shown to reduce to breast cancer cell invasion
(79) and lead to antitumor efficacy in melanoma-BrM and
intracerebrally inoculated breast cancer cells (72, 80). However,
therapeutic efficacy of CSF1R inhibition still needs to be carefully
evaluated with regard to long-term efficacy and potential
resistance mechanisms as observed in glioma.
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Another strategy of limiting TAM functions within the TME
includes blockade of their recruitment, via interfering with
chemokines (81) or chemokine receptors, e.g., CCR2 or
CXCR4 to inhibit general TAM recruitment (73) or by
targeting newly identified markers that are implicated in the
recruitment of TAM subpopulations such as CD49d (33). Given
the high abundance of the anaphylatoxin receptor C3ar1/C3AR1
predominantly on TAM-MDMs of murine and human origin,
blockade of this axis could also be used to inhibit monocyte/
macrophage recruitment to the brain. Antibody- or small
molecule-mediated inhibition of the C3-C3AR1 axis could
have strong inhibitory effects and furthermore might impact
the permeability of the BBB at sites of malignant inflammation.
In leptomeningeal metastasis, this axis has been shown
particularly important for enhancing the permeability at the
choroid plexus epithelium, in order to trophically support
metastasized cancer cells within the CSF (70). By interfering
Frontiers in Immunology | www.frontiersin.org 12
with the C3-C3AR1 axis, one might even trigger another
antitumoral response due to blockade of the interaction of
astrocytes and MG as shown by Litvinchuk et al. in a mouse
model of neurodegeneration. While astrocyte-derived C3 via
C3AR1 on MG induces proinflammatory programs via STAT3
signaling (82), activation of astrocytes could in part be mediated
via C1Q plus two other cytokines, IL1A and TNF (68), which
seem to be broadly present within the BrM-TME. Since
astrocytes have been shown to exert multiple BrM-promoting
functions (83–86) and elimination of the three aforementioned
factors was beneficial in an ALS mouse model by attenuating
gliosis (87), targeting one or several steps within the complement
cascade seems promising and has the potential to reverse or
block the immunosuppressive, cancer-permissive TME in BrM.

Althoughsomeof themarkers inTAMsseemtoberegulated in a
more conditional manner (e.g., by different model, primary tumor
entity, genetic background, species), a distinct set of genes was
TABLE 3 | Examples of preclinical and clinical studies targeting certain TAM-related receptors/factors as mono- or combination therapies in various types of extra- and
intracranial tumors.

Target Tumor/model Species Treatment/drug/resource Major effects Study
reference

C3AR Leptomeningeal
metastasis (LeptoM)
models from breast and
lung cancer

M. musculus Nonpeptide antagonist SB290157/Santa Cruz Prolonged survival and reduced LeptoM
burden

(70)

CSF1R Glioma M. musculus BLZ945/Novartis Improved survival of glioma-bearing mice,
tumor regression, TAM repolarization, tumor
relapse observed after the period of tumor
stasis

(18)

Glioma M. musculus BLZ945/Novartis + Pi3K inhibition Combination delays glioma relapse (71)
BLZ945/Novartis + IGF-1R inhibition

Glioma M. musculus BLZ945/Novartis + 5 × 2 Gy WBRT Combination delays glioma relapse (33)
Intracerebral induced
melanoma BrM

M. musculus PLX3397/Selleck Chemicals Reduction of BrM burden and BrM size (72)

Different primary tumors,
including glioma

H. sapiens Cabiralizumab (anti-CSF-1R mAB)/Five Prime
Therapeutics (± nivolumab)

Ongoing study NCT02526017

CXCR4 Adult glioblastoma (and
other primary CNS
tumors)

H. sapiens AMD3100/Plerixafor/ Improved local tumor recurrence control (73)
(NCT01977677)

TREM2 Different primary solid
tumors

M. musculus Anti-TREM2 mAB clone 178 Reduced tumor growth and remodeling of
myeloid landscape within the TME, enhanced
immunotherapy (e.g., anti-PD-L1)

(74)

Different primary solid
tumors

H. sapiens PY314/mAB against TREM2 on myeloid cells in
the TME/Pionyr Immunoherapeutics

Ongoing study NCT04691375

VEGF Glioma M. musculus Aflibercept/VEGF-trap/Sanofi (in combination
with antiangiogenic therapy, Ang-1/Ang-2
peptibody, and immunotherapy, anti-PD-1/
BioXCell)

Improved survival, tumor vessel normalization,
immunostimulatory reprogramming

(75)

Breast cancer BrM M. musculus Bevacizumab/anti-VEGF mAB (in combination
with anti-Ang2 L1-10)

Reduced BrM burden and permeability of
blood vessels associated to BrM

(76)

Breast cancer BrM H. sapiens Bevacizumab/anti-VEGF mAB (in combination
with carboplatin)

High rate of durable objective CNS response (77)
(NCT01004172)

Solid tumor BrM H. sapiens Bevacizumab/anti-VEGF mAB (after failure of
WBRT)

About 80% of patients showed disease
response, defined as stable disease or better

(78)
(NCT01898130)

VISTA Breast cancer BrM M. musculus Anti-VISTA/13F3, mAB//BioXCell (in combination
with anti-PD-L1)

Reduction of BrM burden and increase of CD3
+ cell abundance

(28)

Various types of solid
tumors, however
exclusively without BrM

H. sapiens CI-8993/anti-VISTA mAB/CURIS, Inc. Ongoing study NCT04475523
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data can be found at: www.clinicaltrials.gov.
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conservatively regulated, and similarly across TAM populations
and species (e.g.,MS4Aproteins,TAMreceptorsAXLandMERTK,
TREM2). While little is known about the specific functions of
individual MS4A members, they might play a central role in
regulating cellular functions, including cell growth, survival, and
activation by serving as family of ion channels and/or adaptor
proteins facilitating intracellular protein-protein interaction (41).
For example, MS4A4A has been described as a key marker of
BAMs (14, 15, 42) and was described as a novel M2-like marker of
metastasis-associatedmacrophages (88). Hence future studies need
to address the consequences on the inflammatory state upon
interfering with, e.g., MS4A7, which was highly upregulated on
both,murine and humanTAM-MDMs inBrM.Given their surface
exposure, MS4A members are potentially druggable by, e.g.,
antibodies (41).

Interestingly, within the study form Mattiola et al., the authors
showed thatMS4A4A interactswith a ß-glucan receptor dectin-1 in
lipid rafts of the cell membrane. The dectin-1 pathway transmits
intracellular signals similar to those of TREM2. Hence, TREM2
deficiencycanbecompensatedby enhanceddectin-1 signaling (89).
TREM2 signaling is essential for MG function and disease-
associated phenotypes in MG can be induced by the APOE-
TREM2 pathway (43). In AD, TREM2-deficient MG undergoes
autophagy due to impaired mTOR signaling and metabolism (89).
Since TREM2 seems to be dramatically upregulated in all TAMs
across different conditions, antibody-mediated blockade of this
receptor signaling pathway represents a promising approach.
Within a recent study, the authors examined TREM2 function in
TAMs of distinct tumormodels (74). Interestingly, they found that
both, mice deficient for TREM2, or antibody-mediated blockade of
TREM2 signaling, resulted in delayed tumor growth.
Simultaneously, the immune landscape within their model was
altered including an increase of intratumoral CD8+ T cells, which
consequently led to enhanced efficacyof anti-PD1 immunotherapy.
More importantly, the authors showed ubiquitous abundance of
TREM2+ macrophages across distinct human tumor samples, and
that TREM2 expression inversely correlated with greater overall,
and relapse-free survival in colorectal carcinoma and triple negative
breast cancer patients (74). Given the negative correlation between
MDMs and T-cell frequencies in BrM (29), it is tempting to
speculate that high expression of TREM2 in TAM-MDM as seen
under variousBrMconditionsmight be an interesting candidate for
combination therapies. If this furthermore leads to remodeling of
the TMEwith enhancedT cell recruitment, also inBrM, needs to be
evaluated. In summary, targeting TREM2 in combination with
immunotherapy (e.g., anti-PD-L1), or radiotherapy, might
represent an attractive strategy to overcome immunosuppression.
It was previously shown that radiotherapy has the potential to
transiently lift immunosuppressive features of the TAM pool by
enhancing the recruitment of naïve monocytes/MDMs to BrM in a
lung-to-brain metastasis model (32). However, acquired resistance
to combined radioimmunotherapy was partially mediated by PD-
L1 expression from infiltrated myeloid cells (30), which rapidly
undergo tumor education. In addition to targeting the PD1-PD-L1
axis in order to enhance antitumor responses, targeting different
TAM populations showed promising results in glioma and BrM
Frontiers in Immunology | www.frontiersin.org 13
models. For example, Guldner et al. inhibited the negative immune
checkpoint VISTA (encoded by Vsir) on TAMs which similar as
targeting TREM2 enhanced the CD3+ cell abundance within BrM
leading to improved efficacy of anti-PD-L1 (28). Given the high
abundance and strong expression of Vegfa/VEGFA in TAMs,
interference with VEGF signaling could furthermore lead to
enhanced antitumor responses, as shown in a triple treatment
approach of murine glioma (75). The authors blocked the
angiogenic factors VEGF and ANG-2 in combination with PD-1,
which resulted in extended survival of mice compared with anti-
VEGF as monotherapy (75). However, targeting VEGF in BrM is
not indicated for every primary tumor typewhich gives rise toBrM.
While double inhibition ofVEGFandANG-2 reducedBrMburden
in preclinical models of breast-to-brain metastasis (76), VEGFA
inhibition can induce long-term dormancy in lung-to-brain
metastasis (90). For breast-to-brain metastasis patients,
combination of VEGFA inhibition with bevacizumab in
combination with carboplatin resulted in a high rate of durable
responses (77). Moreover, VEGFA inhibition resulted in a 25%
disease response rate in 80% of solid cancer patients with current
brain metastasis that failed whole-brain radiotherapy (78).

In summary, novel targeted therapeutic approaches need to be
carefully evaluated in a context-specific manner upon
spatiotemporal determination of leukocytic subsets within the
TME. This is particularly important for targeting specific
phenotypic features of TAMs, but at the same time spare
homeostatic features of adjacent, non-BrM-associated
populations. Furthermore, it will be critical to evaluate to which
extent altered gene expression also translates into altered protein
abundance, which in addition requires evaluation on a spatial
level. In combination with standard therapy, targeting distinct
TAM subsets represents a promising strategy. Combination
therapies are expected to induce synergy by on the one hand
repressing tumor-promoting traits, and on the other hand lifting
immunosuppression, thereby enhancing antitumor immunity.
CONCLUDING REMARKS

Driven by technical advances, as well as scientific and clinical
interest in understanding cellular and molecular landscapes in
health and disease, recent research has resulted in tremendous
insight into the heterogeneity of TAM of primary and
secondary BrMs.

RNA sequencing, multiplexed flow, and mass cytometry
revealed the dichotomous nature of TAMs in BrM, wherein
resident microglia as well as recruited monocyte-derived
macrophages represent the two major populations and contribute
significantly to the entire immune cell landscape. Although both
TAMs quantitatively differentially contribute to the local TAM pool
and populate different niches within the TME, their phenotypic
changes occur early upon disease-specific instruction in a highly
plastic manner. Together, both TAM populations contribute to the
establishment of an immunosuppressive and tumor-promoting
environment in BrM. In order to evaluate the applicability of
novel targeted approaches, further research needs to determine
September 2021 | Volume 12 | Article 716504
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molecular pattern in spatiotemporal resolution. Detailed
mechanistic understanding how standard therapy can be used as
an immune modulator in addition to the identification of
transcriptional programs that drive disease-promoting states in
TAMs to provide scientific rationale for the development of
improved therapeutic avenues against BrM is needed.
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