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Jérôme Hadjadj1,2, Marie-Louise Frémond3,4 and Bénédicte Neven2,3*

1 Department of Internal Medicine, National Referral Center for Rare Systemic Autoimmune Diseases, Hôpital Cochin,
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Among inborn errors of immunity (IEIs), some conditions are characterized by
inflammation and autoimmunity at the front line and are particularly challenging to treat.
Monogenic diseases associated with gain-of-function mutations in genes critical for
cytokine signaling through the JAK-STAT pathway belong to this group. These
conditions represent good candidates for treatment with JAK inhibitors. Type I
interferonopathies, a group of recently identified monogenic auto-inflammatory diseases
characterized by excessive secretion of type I IFN, are also good candidates with growing
experiences reported in the literature. However, many questions remain regarding the
choice of the drug, the dose (in particular in children), the efficacy on the various
manifestations, the monitoring of the treatment, and the management of potent side
effects in particular in patients with infectious susceptibility. This review will summarize the
current experiences reported and will highlight the unmet needs.

Keywords: Jakinib, inborn errors of immunity (IEIs), interferonopathies, STAT 1 and STAT3 gain of function,
autoimmunity, novel therapies
INTRODUCTION

Use of next-generation sequencing (NGS) has permitted the identification of a growing number of
inborn errors of immunity (IEIs), with more than 450 conditions following the latest classification
from the International Union of Immunological Societies Committee on Inborn Errors of Immunity
(1, 2). The clinical features are broad, ranging from increased susceptibility to infections to immune
dysregulation, including multiple autoimmune manifestations, allergy, and lymphoproliferation.
Increased susceptibility to malignancy can also occur. Several monogenic autoimmune and/or auto-
inflammatory diseases have been identified, and the analysis of these genes has provided a wealth of
information on the mechanisms of tolerance that control reactivity to self in humans. These last
years, monogenic diseases affecting cytokine signaling and in particular the Janus kinase (JAK)/
Signal transducer and activator of transcription (STAT) pathway were described (3–7) and
responsible for overwhelming human immune dysregulation. These conditions, as well as the
hematological diseases related to somatic gain-of-function mutations of JAK2 and STAT3
respectively in myeloproliferative diseases (8) (MPNs) and large granular leukemia (9) (LGL),
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illustrate the key role of this signaling pathway in the regulation
of the immune response (Table 1). Furthermore, identification of
these mutations may influence treatment options to offer
targeted treatment. The goal of this review is to report the
available data on drug inhibiting the JAK-STAT pathway, i.e.,
JAK inhibitor (JAKinib), in the context of IEIs.

The Canonical JAK-STAT Pathway
The JAK-STAT signaling pathway is a direct, evolutionary
conserved pathway allowing quick signaling from membrane
to nucleus (10, 11). Numerous cytokine, interleukin, hormone,
and growth factor (57 in total) signaling pathways rely on JAKs
(11). These ligands bind to their cognate type I and II receptors,
characterized by the lack of their own enzymatic activity that
requires intracytoplasmic physically associated JAK tyrosine
kinases. Each receptor uses a selective homo- or heterodimer
composed of four JAK molecules (JAK1, JAK2, JAK3, TYK2)
(10). Every JAK comprises four structural domains (the carboxy-
terminal kinase domain, an adjacent pseudokinase domain, an
Src homology 2 (SH2)-like domain, and the amino-terminal
FERM domain which interacts with the cytosolic tail of the
receptor) (10). Following engagement of the receptor, homo- or
heterodimers of JAKs phosphorylate each other’s tyrosine
residues as well as the intracellular tail of the receptor, creating
a docking site that recruits downstream STAT DNA-binding
proteins (10). The phosphorylation of STAT mediates
dimerization, translocation, and accumulation into the nucleus
and DNA binding to regulate gene expression. There are seven
mammalian STATs: STAT1, STAT2, STAT3, STAT4, STAT5A,
STAT5B, and STAT6.
Frontiers in Immunology | www.frontiersin.org 2
Approved JAK Inhibitors
The implication of cytokines in many autoimmune diseases and
the role of JAK2 GOF (gain of function) mutations in MPNs
supported the rationale for development of molecules that block
the kinase activity of JAKs, preventing phosphorylation of
STAT (11).

Because JAKs are essential for signaling downstream from a
wide range of substrates, the action of JAK inhibitors (JAKinibs)
is large (12). The list of marketed drugs is shown in Table 2.
Three JAKinibs of the first generation with poor specificity and a
large range of cytokines signaling inhibition are approved in
humans to treat autoimmune, inflammatory, and hematological
conditions (13) such as rheumatoid arthritis (RA), psoriasis
arthritis, ulcerative colitis (UC), MPNs, and acute graft versus
host disease (GVHD) (11). Other sporadic autoimmune and
hematological malignancies are good candidates for JAKinibs,
and trials have been performed or are ongoing (in alopecia
areata, atopic dermatitis, psoriasis, vitiligo, systemic sclerosis,
spondyloarthritis, dermatomyositis, lupus, Crohn’s disease,
primary biliary cholangitis, autoimmune hepatic disease, and
type I diabetes).

Second-generation selective JAKinibs (11), with a more
specific anti-JAK-1 (e.g., filgotinib and upadacitinib) or JAK2
(fedratinib) activity, narrow spectrum of action, and possibly
improved safety, are now emerging. Topical and inhaled
JAKinibs are also under investigation (11).

Most of the marketed JAKinibs are eliminated by metabolism
via the cytochrome P450 enzymatic complex. This can lead to
frequent drug–drug interactions (DDI) that need to be taken into
consideration (14). In contrast to the others, baricitinib is mainly
TABLE 1 | Main IEIs and hematologic conditions in humans related to germline and somatic mutations in members of the JAK-STAT pathway.

mol. Main signaling pathways Mode of
inh.

LOF Mode of
inh.

GOF

JAK1 Gamma chain family, TSLP, GP130 family, IFN I, II, III,
IL-10 family

AR MSMD, mild viral infections Somatic,
AD

Hypereosinophilia, autoimmunity

JAK2 Beta chain family, TSLP, GP130 Family, Leptin, GH,
prolactin, EPO, TPO, IFN II, IL12 family

Somatic,
AD

MPNs

JAK3 Gamma chain family AR severe combined immunodeficiency Somatic T cell malignancies
Tyk2 IFN I, III, GP 130 family, IL-10 family, IL-12 family, IL-27 AR MSMD, intracellular bacteria, viral

susceptibility
STAT1 IFN type I, II, III, and IL-27 AR

complete
viral infections (mostly herpes virus)
mycobacterial infections

AD CMC, autoimmunity,
inflammation

AR
partial

milder disease (same spectrum than AR
complete deficiency)

AD MSMD
STAT2 IFN I and III AR viral susceptibility including to life vaccines AR Early-onset auto-inflammation
STAT3 Signaling from a large array of receptors (mainly

common beta chain and GP-130 families)
ADa hyper IgE syndrome with CMC and extra-

hematopoietic manifestations
Somatic LGL
AD Lympho-proliferation,

autoimmunity
STAT5B IL-2, GH AR Short stature, autoimmunity, allergy,

infectious susceptibility
Somatic Hypereosinophilia, urticaria,

atopic dermatitis, diarrhea
Sep
tember 20
aDominant negative LOF mutations.
AD, autosomic dominant; AR, autosomic recessive; CMC, chronic mucocutaneous candidiasis; EPO, erythropoietin; IFN, interferon; GH, growth hormone; GOF, gain of function; LGL,
large granular leukemia; LOF, loss of function; Mol, molecules; Mode of inh, mode of inheritance; MPNs, myeloproliferative neoplasia; MSMD, Mendelian susceptibility to mycobacterial
diseases; TPO, thrombopoietin; TSLP, thymic stromal lymphopoietin.
Beta chain cytokine family: IL-3, IL-5, and GM-CSF; gamma chain cytokine family: IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21; GP130 cytokine family: IL-6, IL-11, IL-31, Oncostatin, ciliary
neurotrophic factor, cardiotropin-1, leukemia-inhibitor factor, neurotrophin-1; IFN: interferon type I (alpha and beta), type II (gamma), type III (lambda); IL-10 cytokine family: IL-10, IL-19, IL-
20, IL-22, IL-24, IL-26; IL-12 cytokines family: IL-2, IL-13, IL-23.
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cleared by renal elimination through glomerular filtration and
active secretion via transporters such as OAT3 (15). Thus far,
inhibitors of this transporter such as probenecid can increase
drug exposition of baricitinib. More broadly, marketed JAKinibs
interact with drug transporters in several ways, which may
trigger DDI, modify pharmacokinetics (PK), and increase risk
of drug toxicities. These DDI are particularly relevant in the field
of IEI where co-medications are frequent.

Pharmacokinetic (PK), pharmacodynamic (PD), and dose
escalation studies have been performed mainly in adults and
have defined the dose and treatment regimen for each JAKinib in
approved conditions. FDA has approved (i) tofacitinib in
children aged 2 years and older to treat patients with
polyarticular juvenile idiopathic arthritis, (ii) baricitinib in
children as young as 2 years for emergency use authorization
for primary COVID-19 pneumonia in conjunction with
remdesivir, and (iii) ruxolitinib down to age 12 for steroid
refractory GVHD. PK studies allowed to define dosing regimen
in this population for this condition (16). The ruxolitinib PK and
preliminary PD phase I study has been performed in children
Frontiers in Immunology | www.frontiersin.org 3
with oncologic or hematologic malignancies with assessment of
JAK2 and STAT5 phosphorylation as readout (17). Baricitinib
PK and PD studies have been conducted in monogenic
interferonopathies in a compassionate use program. Based on
these data, a dose and scheme based on body weight and
glomerular filtration rate have been proposed to optimize
decrease of interferon (IFN) biomarkers (18).
Side Effects of First-Generation JAKinibs
Tofacitinib, Baricitinib, and Ruxolitinib
Data from long-term extension studies and meta-analysis of
tofacitinib and baricitinib in RA and ruxolitinib in MPNs
provide important insight about the safe profile of these drugs,
at least in adults (19–23) with infections being the most frequent
followed by cytopenia and hyperlipidemia. Risk of side effects
may vary depending on the underlying condition, the
concomitant immunosuppression, the population (especially
the age), and the dose of JAKinib required to control the
disease (24).
FIGURE 1 | Representative schematic of inborn errors of immunity (IEI) where JAK inhibitors have been used. T1I, type I interferonopathies; JAK-STAT, IEIs related
to mutations in components of the JAK-STAT pathway. HI, haploinsufficiency.
TABLE 2 | Approved marketed JAKinibs.

Name Specificity Approved indications Elimination

Tofacitinib JAK1/JAK3/(JAK2) RA, PsA, UC, pA JIA metab. by Cyto.
Baricitinib JAK1, JAK2 RA urine excretion
Ruxolitinib JAK1, JAK2 MPN, acute GVHD metab. by Cyto.
Peficitinib pan-JAK RA (Japan) metab. indt of cyto
Fedratinib JAK2, Flt3 MPN metab. by Cyto.
Upadacitinib JAK1 RA, PsA metab. by Cyto.
Filgotinib JAK1 RA (Europe, Japan) urine excretion
September 2021 | Volume 1
RA, rheumatoid arthritis; PsA, psoriasis arthritis; UC, ulcerative colitis; pA JIA, polyarticular juvenile idiopathic arthritis; MPN, myeloproliferative neoplasm; GVHD, graft versus host disease;
metab. by cyto, metabolized by cytochrome P450 complex; metab. indt of cyto, metabolism independent of cytochrome P450 complex.
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Infections
The most frequent infectious complication regardless of the drug
(tofacitinib, ruxolitinib, and baricitinib) and the underlying
disease is reactivation of herpes zoster (23, 25). Other serious
or opportunistic infections such as bacterial pneumonia,
tuberculosis, BK virus nephropathy (24), and toxoplasmosis
are also observed but with a lower incidence (26). One case of
progressive multifocal leukoencephalopathy related to John
Cunningham (JC) virus infection under ruxolitinib has been
reported (27). The unexpected low incidence of serious
infections may be due to the spared immune function relying
on IL1, IL8, IL17, and TNFa with JAK-independent signaling.
This may not be true when concomitant immunosuppressants
are used in patients with IEIs.

Anemia and Leukopenia
Inhibition of JAK2 may be responsible for anemia and
thrombocytopenia by interfering with erythropoietin and
thrombopoietin signaling (10). Lymphopenia and a decreased
number of NK cells can be observed with tofacitinib depending
on the dose, likely due to the inhibition of JAK3-dependent T-
cell functions.

Lipid and Cardiovascular Diseases
A warning signal for increased risk of thromboembolic
complications such as deep vein thrombosis and pulmonary
embolism was raised by post-marketing safety studies of
tofacitinib, ruxolitinib, and baricitinib, especially in patients
carrying other risk factors for such complications (28, 29).
These risks appear to be relatively low and might be disease-
specific and dose-dependent. Increased low-density lipoprotein
cholesterol and triglycerides are observed under JAKinib. Weight
gain and increased body mass index (BMI) are reported with
ruxolitinib (30) and tofacitinib (31). Such association with
baricitinib is less clear. These side effects could be related to
reduced postprandial leptine signaling due to JAK2 inhibition
resulting in hyperphagia and contributing to weight gain, as
demonstrated in mice (30).

Cancer
JAKinibs might interfere with adaptive immune function in
cancer immunosurveillance and with antineoplasic function of
IFN. Thus far, data from a clinical trial in patients with RA or
other immune-mediated diseases have not revealed an increased
risk of hematological malignancies or solid tumors (32–34). A
post-marketing surveillance study for tofacitinib conducted
in >4,000 patients (50 years and older) with RA may suggest
an increased risk of cancer (35). Additional long-term
monitoring and caution is thus required. Long-term data in
children are missing.

Screening Before Treatment
Independently to disease-specific recommendations, the
following screening is advised before JAKinib initiation:
complete blood count (CBC), liver function test, serum
creatinine, fasting lipid panel, and screening for tuberculosis
(36). BK viremia should also be excluded before treatment and
Frontiers in Immunology | www.frontiersin.org 4
monitored since BK nephropathy has been reported in patients
treated for interferonopathies (24). Hepatitis B and C and HIV
serology may be considered. Vaccination update prior to
initiation of treatment is recommended, including varicella
vaccine in case of negative serology and if the patient’s
immune status allows for live vaccines. The latter will be
contraindicated once treatment is initiated.

JAKinib Withdrawal Syndrome
Ruxolitinib discontinuation syndrome was mainly reported in
patients treated for MPNs (37–39). It is a life-threatening
condition characterized by acute relapse of disease symptoms,
sometimes mimicking septic shock that occurs 24 h to 3 weeks
after drug cessation. To explain this withdrawal syndrome, it was
shown that ruxolitinib blocked the dephosphorylation and
ubiquitin degradation of JAK1 and JAK2, which accumulated
and could lead to a notable activation of downstream signaling
when ruxolitinib was removed (39). Similarly, we observed
severe relapse of symptoms in patients with monogenic
interferonopathies under ruxolitinib when treatment was
temporarily stopped (references (40, 41) and unreported
observations). Among baricitinib phase 3 trials in patients with
RA, a brief interruption of baricitinib was associated with a
minor increase of RA symptoms (42) while rebound phenomena
were reported in animal models following abrupt withdrawal of
JAK1 inhibitor oclacitinib (43) (a first-generation JAKinib
prescribed in dogs). The risk of discontinuation syndrome may
vary depending on the condition treated and the JAKinib
prescribed, but it should not be overlooked. This also indicates
the need for a careful tapering of the drug when JAKinib
is interrupted.

Special Consideration for Children
Growth hormones signal through the JAK-STAT pathway via
JAK2 (10). The JAK-STAT pathway is also involved in bone
homeostasis in various ways since many cytokines with bone-
protective and bone-degrading properties signal through JAK-
STAT. Of note, Adam et al. showed in various models of mice at
steady states and in inflammatory conditions that tofacitinib and
baricitinib displayed a bone-sparing effect (44).

IEI Candidates for JAKinibs, Reported
Experiences
These last years, monogenic diseases associated with gain of
function of cytokine signaling members and in particular
involving the JAK-STAT pathway have been described to cause
overwhelming immune dysregulation conditions (Table 1).
These diseases represent good candidates for treatment with
JAKinibs (Figure 1). IEIs associated with overproduction of
cytokine signaling by the JAK-STAT pathway such as
interferonopathies—a group of recently identified monogenic auto-
inflammatory diseases characterized by excessive secretion of type I
IFN—are also good candidates with growing experiences reported in
the literature. All published patients are summarized in the
Supplementary Table 1. In addition, JAKinibs are promising in
primary hemophagocytic lymphohistiocytosis (HLH) (45), a family of
diseases characterized by hyper-immune activation and massive
September 2021 | Volume 12 | Article 717388
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release of inflammatory cytokines, mostly but not exclusively IFNg.
Because this topic will be covered in the framework of this series of
mini-review, it will not be addressed here.

STAT1 Gain of Function
Heterozygous STAT1mutations that confer hyper-responsiveness
to stimulation are associated with a mixed phenotype
characterized by infection, autoimmunity, and inflammation.
Chronic mucocutaneous candidiasis (CMC) occurs in almost all
patients, but a broader infectious susceptibility to invasive fungal
infections and bacterial and viral infections is frequent (3, 46, 47).
Various autoimmune and inflammatory manifestations are
reported in one-third of the patients such as autoimmune
endocrinopathies, hepatitis, cytopenia, skin involvement, and
pseudo-IPEX enteropathy (48). Vascular aneurysms further
enlarge the phenotype. The severity of the disease is variable
with a broad spectrum. The increased risk of autoimmunity in
these patients might be explained by an enhanced transcription of
IFN-induced genes due to signal-induced increased levels of
phosphorylated STAT1. CMC can be explained by a decreased
proportion of circulating TH17 cells, but the molecular
mechanism accounting for this decrease remains to be
elucidated (49). Management of these patients included
long-lasting antifungal and antibacterial prophylaxis and,
when indicated, immunoglobulin replacement. Use of
immunosuppression in case of autoimmunity needs to be
balanced by the increased infectious susceptibility, and many
treatments have failed. Experiences with hematopoietic stem cell
transplantation (HSCT) are limited and associated with high
morbidity and mortality (50, 51). Use of JAKinib was first
reported in 2015 by Higgins et al. in an adult patient suffering
from alopecia areata and CMC in whom ruxolitinib treatment
allowed complete resolution of both (52). The latter relapsed after
cessation of the drug. Since this first promising observation, 11
reports (see Supplementary Table 1) shared their experiences
with JAKinibs in 18 patients suffering from STAT1 GOF (12
children from 1.1 to 17 years of age and 6 adults), mainly treated
by ruxolitinib (n = 17) and baricitinib (n = 1). Forbes et al.
reported the largest multicentric retrospective series of 11 patients
(53). All patients had experienced CMC or other chronic fungal
infections associated with recurrent or chronic viral and/or
bacterial infections. Inflammation (mainly inflammatory bowel
disease and chronic ulcers) and various autoimmune diseases
(autoimmune cytopenia, aplastic anemia, hepatitis, type I diabetes,
thyroiditis, etc.) were noticed in 9 and 10 patients respectively.
Dysimmune manifestations required several lines of
immunosuppressive drugs with limited benefits in most patients.
Doses of ruxolitinib were variable, from 0.3 to 1 mg/kg (in two
divided doses) in children and from 5 to 40 mg (in one or two
divided doses) with a median follow-up of 5 months (range 0.5 to
14). Significant improvement of all main features of the disease
was noticed. CMC resolved or improved while chronic severe
dermatophytosis and disseminated coccidioidomycosis reported
in one patient each got worse (54). Inflammatory and
autoimmune manifestations dramatically improved including
one teenage patient with reversible type 1 diabetes under
ruxolitinib allowing long-lasting remission (55). The benefit of
Frontiers in Immunology | www.frontiersin.org 5
ruxolitinib on TH17 cell differentiation or IL-17 production
remains controversial (49). Despite these very encouraging
clinical results, many questions and uncertainties remain. The
follow-up of the reported patients is short, and the optimal dose
especially in children and the long-term effects in this particular
IEI are unknown. The management of drug interactions of
ruxolitinib with drugs metabolized, inhibiting or enhancing
similar cytochrome metabolic pathways, in particular azoles and
azithromycin, needs special consideration.

STAT3 Gain of Function
STAT3 hyperactivity due to germline heterozygous GOF
mutations causes an early-onset immune dysregulation
syndrome characterized by lymphoproliferation and a broad
spectrum of autoimmune manifestations (4). Clinical
phenotype is variable in terms of organ involved, age at onset,
and severity. No clear genotype–phenotype correlation is
described. In a systematic review describing clinical aspects of
42 patients from 18 publications, hematologic diseases was the
most frequent finding (83% of cases), especially autoimmune
cytopenia (56). Immunodeficiency with infection susceptibility
and hypogammaglobulinemia were observed in 67% of cases.
Other features included type I diabetes, enteropathy, interstitial
lung disease (ILD) that can be life-threatening (56), arthritis, and
growth failure.

Molecular consequences of STAT3 GOF mutations are variable
(57). Autoimmunity might be caused by increased STAT3 activity,
especially in response to IL-6 and IL-21, resulting in enhancement
of TH17 cell fate determination (4, 58). It has also been suggested
that reduction in regulatory T cell number and function caused by
impaired cytokine-induced phosphorylation of STAT5 could lead
to autoimmune manifestation (4).

Before the identification of STAT3 GOF mutations, patients
were treated with years of various nonspecific immunosuppressive
agents that were overall ineffective. Use of an anti-IL-6 receptor
antibody (i.e., tocilizumab) was first reported (4), showing
promising results, but the effect seems to plateau. Some patients
received HSCT with high mortality (56). Experiences of JAKinibs
were published in 13 patients in 6 reports suffering from STAT3
GOF (children from 1 month to 15 years of age) (53, 59–62), in
combination with tocilizumab in 6 cases. Indications were mainly
lymphoproliferation, autoimmune cytopenia, enteropathy, ILD,
and arthritis not controlled with other therapies. Ten patients
received ruxolitinib and three tofacitinib with various dosages.
Ten patients had significant clinical improvement with a
spectacular effect in some cases, i.e., cessation of oxygen therapy
(including mechanical ventilation) and radiographic resolution of
ILD, or independence of parenteral nutrition for enteropathy (53,
62). Three patients had no or minimal response. In the first case,
respiratory failure progressed despite ruxolitinib leading to death.
In the second, ruxolitinib was introduced during severe sepsis with
multiorgan failure (53). In the last case, indication was pure red
cell aplasia and ruxolitinib led to minor improvement (61).
Tolerance was good in most cases. Adverse effects included
thrombocytopenia, transiently increased transaminase and/or
bilirubin levels, and influenza infection. In all cases, the follow-
up of the reported patients is short (Supplementary Table 1).
September 2021 | Volume 12 | Article 717388
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Interferonopathies
Type I interferonopathies are a group of recently identified
monogenic auto-inflammatory diseases characterized by
constitutive signaling of type I IFN resulting from their
excessive or dysregulated secretion. There are more than 25
monogenic diseases that are associated with increased
production of type I IFNs (63) which in turn drive the
expression of IFN-stimulated genes (ISG) (also called IFN
signature) through the engagement of a common receptor that
subsequently activates JAK1 and Tyk2. The concept of type I
interferonopathies was raised in 2011 and supports the
hypothesis that some if not all symptoms of these syndromes
would be related to excessive or dysregulated type I IFN
production warranting therapeutic intervention with drugs
targeting this pathway (64).
SAVI
STING-associated vasculopathy with onset in infancy (SAVI)
was described in 2014 and is related to GOF mutation in STING1
(65, 66). Most patients harbor heterozygous mutations, but few
patients with homozygous GOF mutation have been recently
described (67, 68). STING is a central component in DNA
sensing that leads to induction of type I IFNs, which in turn
drives the expression of ISG. In a review from December 2020, 70
patients in 49 families are reported (69). The disease is variably
characterized by early-onset systemic inflammation with fever,
skin vasculopathy, and ILD leading to early-onset pulmonary
fibrosis. Arthralgia or arthritis is also frequent, and infections are
observed in patients with severe skin lesions and/or lung damage.
Chronic elevated inflammatory markers and increased ISG are
constant while T cell deficiency with lymphopenia and defect of
T cell proliferation are also observed. SAVI is minimally
responsive to conventional immunosuppressive therapies
and thus is associated with a significant morbidity and
increased mortality.

In vitro, the three JAKinibs tested on the patient’s
lymphocytes (ruxolitinib, tofacitinib, and baricitinib) were able
to block the constitutive phosphorylation of STAT1 (65). Based
on the hypothesis that inhibiting JAK1 signaling would slow
down IFN signaling and thus improve disease-related symptoms,
JAKinibs have been proposed to patients suffering from SAVI.
To date, 34 patients (14 female) (16 reports) received JAKinibs,
i.e., ruxolitinib, baricitinib, and tofacitinib, in 19, 11, and 5
patients, respectively. Patients were less than 2 years in 7 cases
and between 2 and 10 years in 13, while 8 were aged 11 to 18
years and 6 were adults. Skin involvement was reported in 22
patients including 9 with severe lesions (ulcers, ischemia of
extremities). Lung disease was noticed in all but four patients;
arthritis and failure to thrive were reported in eight patients each.
All patients with appropriate clinical information provided
presented systemic inflammation. Treatment failed on eight
occasions, in four patients affected by severe lung involvement
and respiratory failure at treatment initiation who died (n = 3) or
required lung transplantation (n = 1), in two patients treated
with a low dose of ruxolitinib (absence of response), and two
patients worsened/deteriorated under tofacitinib (70, 71).
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Among the remaining patients, skin involvement improved in
all cases with complete or partial remission, depending on the
initial degree of severity. Lung involvement was also improved,
and arthritis mostly resolved. General status and quality-of-life
improvements were noticed by all authors. When reported, ISG
were not normalized under treatment (24, 40, 41). Doses of the
JAKinibs were extremely variable, from 0.2 to 1.5 mg/kg/day for
ruxolitinib (10 to 35 mg/m2/day) in two divided doses, and from
2.5 to 5 mg bid for tofacitinib. Doses and scheme of
administration of baricitinib were supported by PK studies
associated with in vitro assessment of IFN biomarkers and
more homogeneous (18). The main reported side effects were
infectious (shingle, rhinovirus, and other viral respiratory
infection, rotavirus enteritidis). Aspergilloma in lung cavities
was also noticed (reference (41) and unpublished observations).
Papillary edema and ruxolitinib discontinuation syndrome were
also reported (40, 41).

AGS and FCL
Aicardi-Goutières syndrome (AGS) is the paradigm of the type I
interferonopathies and is associated with high morbidity and
mortality related to the prominent central nervous system
involvement. AGS can be caused by any of the nine AGS-
related genes (63, 72), with all the proteins encoded involved
in either the processing or the sensing of nucleic acids. Given the
marked efficacy of JAK1/2 inhibition in chilblain lupus due to
TREX1 deficiency (73, 74) or STING GOF, the potential benefit
of this treatment on the neurological component of AGS was also
considered, despite uncertainty about the bioavailability of the
drug in the central nervous system (75–78). Last year, the group
of Adeline Vanderver published a large open-label study
involving 35 AGS patients treated with baricitinib over a
minimal period of 12 months (79). A clear efficacy was
observed on skin vasculopathy, and neurological improvement
was reported, although evaluation of neurological function is
challenging especially in patients with differential onset and
disease progression. Related to this, Neven et al. (78) reported
an AGS child who presented first neurological symptoms at 14
months, despite that treatment with ruxolitinib started at age 5
months when the child was asymptomatic. This raises the
question of (i) the drug penetration in the central nervous
system [concentration of ruxolitinib in the cerebrospinal was
measured at 10% of that in the blood (78)] and (ii) the role of
additional triggers of the disease (e.g., infections and
vaccinations). We note here that careful monitoring of
pulmonary hypertension is recommended in patients treated
with JAKinib considering the high risk of this AGS-related
complication (79, 80) that can be exacerbated by JAK
inhibition (81).

COPA
Heterozygous mutations in the gene encoding the coatomer
subunit alpha (COPA) were described in 2015 to underlie an
auto-inflammatory disorder associating mainly ILD and/or
diffuse alveolar hemorrhage, joint involvement, and lupus-like
nephritis (82). The disease is rare (less than 70 patients reported)
and characterized by a high frequency of clinical non-penetrance
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(up to 25%) (69). COPA is part of a complex (COPI) involved in
the intracellular trafficking of cargo proteins (83), and mutations
in COPA were associated with enhanced endoplasmic reticulum
(ER) stress and priming of a TH17 response (82). More recently,
a positive IFN signature was recorded in the blood of several
COPA patients (84). Studies from four different teams
demonstrated that mutations in COPA led to STING-mediated
IFN signaling and defined a role for wild-type COPA in STING
retrieval from the Golgi back to the ER to prevent chronic
immune activation (85–88). Considering these data, a few
COPA patients (five in total) have been treated with JAKinib
(85, 89–91) and follow-up on treatment has been reported for 3
(89–91). Complete or partial remission has been achieved for
arthritis in two patients (89, 91) while a major improvement was
observed in a COPA patient with a severe diffuse alveolar
hemorrhage (90). However, she has subsequently experienced
recurrences of diffuse alveolar hemorrhage associated with
progression toward lung fibrosis on chest CT scan (authors’
personal observation).

PRAAS
In the large observational study of the use of baricitinib in type I
interferonopathies published by Sanchez et al. (24), 10 patients
with PRAAS (previously referred to as CANDLE-Chronic
Atypical Neutrophilic Dermatosis with Lipodystrophy and
Elevated Temperature), harboring monogenic mutations in
PSMB8 (n = 6) and PSMB4 (n = 1), or digenic mutations in
PSMB4/PSMB9 (n = 2) and PSMA3/PSMB8 (n = 1), were treated,
with a major clinical improvement as compared to SAVI. Indeed,
half of the patients reached durable remission with no disease
symptoms, normalization of inflammatory markers, and
discontinuation of steroid therapy (24). Interestingly, these five
patients (who achieved remission) also normalized their IFN
score, a unique observation to date in the literature in monogenic
IFN-related diseases treated with JAKinib. Of note, one PRAAS
patient discontinued the treatment due to acute renal injury
related to BK virus infection and subsequently died after a
relapse of his disease and a respiratory tract infection.
Nevertheless, these very encouraging results in PRAAS were
further confirmed by two single patient cases treated with
another JAKinib (tofacitinib) (91, 92).

Post IFN Signaling
Defective negative regulation of the type IFN response, for
example due to LOF (loss of function) mutations in USP18 and
more recently GOF mutations in STAT2 (93, 94), supports the
concept of type I interferonopathies. LOF mutations in USP18
have been described in six patients from three unrelated families
(95, 96) to cause pseudo-TORCH syndrome, a severe condition
mimicking the phenotype secondary to transplacental
transmission of pathogens referred to as TORCH (97). USP18
is recruited by STAT2 to the type IFN receptor subunit IFNAR2
where it competes with JAK1 to enable negative-feedback control
of type I IFN signaling (98). Ruxolitinib was trialed in one
neonate with inherited USP18 deficiency and was associated
Frontiers in Immunology | www.frontiersin.org 7
with a promising complete recovery with 2 years of follow-
up (96).

STAT2 homozygous GOF mutations were reported in three
patients from two unrelated families characterized by a severe
early-onset inflammation of type I interferonopathies (93, 94).
This novel disease largely phenocopies USP18 deficiency in
clinical presentation and molecular mechanism by an impaired
regulation of late cellular response to type I IFN. Ruxolitinib was
used in two cases and led to partial response, but these patients
died despite this treatment (93).

The use of JAKinib in these rare inherited diseases with
impaired IFN signaling regulation deserves additional reporting.

Others
Few other case reports have described the use of JAKinib in the
context of monogenic type I interferonopathies [i.e., due to
DNASE2 (91, 99) and POLA1 (100) mutations, respectively].
These single observations together with a short follow-up do not
allow any conclusion to be reached in these severe disorders, of
which the pathophysiology is not yet completely understood.

Emerging IEIs
JAK1 GOF mutations leading to activation of multiple STAT
proteins were recently reported in four patients from two
unrelated families (5, 6). These mutations give rise to a
complex immune dysregulatory syndrome characterized
by severe atopic dermatitis, profound eosinophilia with
eosinophilic organ infiltration, failure to thrive, and
autoimmune manifestations such as membranous nephropathy
and thyroiditis. The description of this complex phenotype may
reflect the scope of the various cytokine signaling pathways
involved. JAKinib (ruxolitinib in two cases and tofacitinib in
one case) resulted in remarkable improvement in clinical disease
and biological abnormalities.

Germline LOF heterozygous SOCS1 mutations leading to
haploinsufficiency were also recently described to be associated
with a dominantly inherited predisposition to early-onset
autoimmune disease including especially autoimmune
cytopenias and systemic lupus, related to cytokine
hypersensitivity (i.e., IFNg, IL-2, and IL-4) in immune cells (7,
101). Given that these mutations were associated with
uncontrolled JAK-STAT activation after cytokine stimulation,
JAK1/2 inhibition was trialed and showed efficacy in vitro and
ex-vivo. Until now, only one patient with SOCS1 deficiency and
systemic lupus was treated with JAKinib (baricitinib), showing
clinical remission, decrease in anti-DNA autoantibodies, and
good tolerance (7). Therefore, JAK inhibitors may represent
targeted therapies of value for SOCS1-insufficient patients.

Somatic STAT5B GOF mutations, while frequently described
in T lymphocyte-derived neoplasms (102, 103), have been
reported in three patients with IEI associating early-onset
atopic disease, hyper-eosinophilia, urticaria, dermatitis, and
diarrhea (104, 105). Use of ruxolitinib in two patients resulted
in remarkable improvement of clinical symptoms and
hypereosinophila (105).
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CONCLUSIONS AND PERSPECTIVES

The marketed JAKinib as well as the new more specific inhibitors
in development find numerous indications in the field of IEIs,
whether related to an intrinsic defect of the JAK-STAT pathway
[mutations of one of its components or of a molecule involved in
its regulation (i.e., SOCS1)] or extrinsic due to hypersecretion of
one or more cytokines signaling through the JAK-STAT
pathway. The clinical and biological data of JAKinibs in these
conditions summarized above are very promising and open
interesting perspectives, but remain preliminary, sporadic, and
too heterogeneous to give firm and definitive therapeutic
recommendations. Although this analysis does not raise red
flags in terms of safety, particularly in terms of infection,
caution remains in the context of IEIs. These data highlight the
need for prospective, if possible multicenter, evaluation, which
would provide answers to the most burning questions: i) what
are the risk of infections in the short and long term? ii) what is
the long-term safety of JAKinibs in children, particularly with
regard to growth and bone metabolism? iii) are these molecules
equivalent in terms of safety and efficacy? iv) how does this
targeted treatment fit into the management of these conditions?
Is it a long-term treatment or a bridge to transplant? v) what
dosage and what administration scheme should be proposed
according to the pathology and the age of the patient? Should the
benefit of the treatment be monitored clinically and/or
biologically, and what are the best readouts? The issue of
Frontiers in Immunology | www.frontiersin.org 8
blood–brain barrier crossing will also be important to consider
in the context of AGS and HLH. Finally, the benefit of next-
generation JAKinibs will need to be assessed. There are obviously
more questions than answers, and everything must be done in
the coming years to collectively provide answers to these matters.
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