
Frontiers in Immunology | www.frontiersin.

Edited by:
Thierry Roger,

Centre Hospitalier Universitaire
Vaudois (CHUV), Switzerland

Reviewed by:
Brandt D. Pence,

University of Memphis, United States
Anna Smed-Sorensen,

Karolinska Institutet (KI), Sweden

*Correspondence:
Jonas Schulte-Schrepping
jschrepping@uni-bonn.de

Specialty section:
This article was submitted to
Molecular Innate Immunity,

a section of the journal
Frontiers in Immunology

Received: 03 June 2021
Accepted: 07 July 2021
Published: 21 July 2021

Citation:
Knoll R, Schultze JL

and Schulte-Schrepping J
(2021) Monocytes and

Macrophages in COVID-19.
Front. Immunol. 12:720109.

doi: 10.3389/fimmu.2021.720109

REVIEW
published: 21 July 2021

doi: 10.3389/fimmu.2021.720109
Monocytes and Macrophages
in COVID-19
Rainer Knoll 1,2, Joachim L. Schultze1,2,3 and Jonas Schulte-Schrepping1,2*

1 Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany, 2 Genomics &
Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany, 3 PRECISE Platform for
Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University
of Bonn, Bonn, Germany

COVID-19 is a contagious viral disease caused by SARS-CoV-2 that led to an ongoing
pandemic with massive global health and socioeconomic consequences. The disease is
characterized primarily, but not exclusively, by respiratory clinical manifestations ranging
from mild common cold symptoms, including cough and fever, to severe respiratory
distress and multi-organ failure. Macrophages, a heterogeneous group of yolk-sac
derived, tissue-resident mononuclear phagocytes of complex ontogeny present in all
mammalian organs, play critical roles in developmental, homeostatic and host defense
processes with tissue-dependent plasticity. In case of infection, they are responsible for
early pathogen recognition, initiation and resolution of inflammation, as well as repair of
tissue damage. Monocytes, bone-marrow derived blood-resident phagocytes, are
recruited under pathological conditions such as viral infections to the affected tissue to
defend the organism against invading pathogens and to aid in efficient resolution of
inflammation. Given their pivotal function in host defense and the potential danger posed
by their dysregulated hyperinflammation, understanding monocyte and macrophage
phenotypes in COVID-19 is key for tackling the disease’s pathological mechanisms.
Here, we outline current knowledge on monocytes and macrophages in homeostasis and
viral infections and summarize concepts and key findings on their role in COVID-19. While
monocytes in the blood of patients with moderate COVID-19 present with an
inflammatory, interferon-stimulated gene (ISG)-driven phenotype, cellular dysfunction
epitomized by loss of HLA-DR expression and induction of S100 alarmin expression is
their dominant feature in severe disease. Pulmonary macrophages in COVID-19 derived
from infiltrating inflammatory monocytes are in a hyperactivated state resulting in a
detrimental loop of pro-inflammatory cytokine release and recruitment of cytotoxic
effector cells thereby exacerbating tissue damage at the site of infection.
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INTRODUCTION

COVID-19 (1, 2) is primarily a mild to moderate respiratory
tract infection caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), an enveloped, single-stranded
RNA betacoronavirus (3–5). While 80% of the infections lead
to asymptomatic or mild disease with common cold symptoms
including dry cough, headache, loss of taste, dyspnea, fatigue and
fever, contained by an efficient immune response (6–8), 15% of
the patients go on to develop severe disease requiring intensive
care and oxygen support and 5% develop critical disease with
life-threatening pneumonia, acute respiratory distress syndrome
(ARDS) and septic shock often culminating in multi-organ
dysfunction and death (9).

Age, various comorbidities, including diabetes, obesity, lung
and cardiovascular diseases, as well as genetic polymorphisms
correlate with a higher risk of respiratory failure (10–13).

SARS-CoV-2, similar to SARS-CoV (14), enters host cells via
the angiotensin-converting enzyme 2 (ACE2) receptor and uses
the human protease TMPRSS2 as entry activator (15, 16). These
genes are expressed in a wide range of cells, including nasal and
bronchial epithelial cells, enterocytes, cardiomyocytes, vascular
and testicular cells, placental trophoblasts, bile duct cells (17, 18)
as well as macrophages (19, 20). Furthermore, additional entry
molecules, such as Neuropilin (NRP1), have been discussed to
facilitate viral cell entry (21, 22).

Although acute respiratory manifestations are the most
common feature, COVID-19 can have multiple acute extra-
pulmonary clinical effects likely to be related to vascular
pathology (23), and also long-lasting complications referred to
as the post-COVID syndrome or long COVID, including fatigue
or neurological sequelae (24–27).

Control of viral infections and resolution of inflammation
generally depends on dose and route of infection, viral virulence
properties aswell as host immune factors (28, 29). Tightly regulated
interactions between epithelial cells and immune cells, orchestrated
by cytokine signaling anddirect cellular contacts, play a critical role,
also in COVID-19 (30, 31). Moreover, viral clearance does not
necessarily mean recovery to a healthy state. Hyperactivated and
dysregulated immune cells pose a substantial danger for
exacerbated tissue damage (32–34) and alter susceptibility to
secondary bacterial superinfection (35, 36).

Severe COVID-19 has been associated with pronounced
changes in peripheral immune activity (37, 38), including
increased levels of acute phase reactants and pro-inflammatory
cytokines (39, 40), neutrophilia and emergence of immature and
low-density neutrophils (41, 42), increased neutrophil-to-
lymphocyte ratio and lymphopenia (43) as well as myeloid
inflammation (44) and reduced expression of the human
Abbreviations: AMs, alveolar macrophages; APC, antigen-presenting cells;
COPD, chronic obstructive pulmonary disease; COVID-19, Coronavirus disease
2019; DC, dendritic cells; IL, intereukin; IFN, interferon; IPF, idiopathic
pulmonary fibrosis; ISG, interferon-stimulated genes; MNPs, mononuclear
phagocytes; Mo-AMs, monocyte-derived AMs; Mo-DC, monocyte-derived DC;
ORF, open reading frames; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2; scRNA-seq, single-cell RNA-sequencing; snRNA-seq, single-
nucleus RNA-sequencing.
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leukocyte antigen DR isotype (HLA-DR) by circulating
monocytes (42, 45).

A time-dependent, multi-stage disease model for COVID-19
has been proposed (28). Early and efficient activation of the
immune system through induction of a potent interferon
response is crucial for controlling the virus. However, a
delayed and/or prolonged interferon response may lead to
progressive tissue damage, which may ultimately result in a
deleterious hyperinflammation characterized by excessive
activation of mononuclear phagocytes (MNPs) and coagulation
in combination with dysregulation of tissue repair mechanisms
and fibrosis (46).

Together with dendritic cells (DC), macrophages and
monocytes form the MNP system (47). In addition to being
professional antigen-presenting cells (APC), MNPs sense and
phagocytose pathogens, mediate leukocyte recruitment, initiate
and shape immune responses and regulate inflammation.

Macrophages are a heterogeneous family of tissue-resident,
phagocytic innate immune cells, including brain microglia, liver
Kupffer cells and lung alveolar and interstitial macrophages, that
play an important role in tissue homeostasis and immune
defense (48). In case of infection, macrophages sense danger
signals from microbial pathogens or tissue damage via a plethora
of pattern recognition receptors (PRRs), and respond by release
of inflammatory molecules that eliminate pathogens, initiate
inflammation and recruitment of additional effector cells and
promote tissue repair (32). However, as is the case for example in
macrophage activation syndrome (MAS), an overwhelming
macrophage response can be detrimental to the host (33).

Monocytes are blood-circulating, phagocytic innate immune
cells classically divided into three subsets based on their respective
expression of CD14 and CD16 [classical (CD14+CD16−), non-
classical (CD14dimCD16+), and intermediate (CD14+CD16+)]
(48, 49). Under pathological conditions, including viral infections,
monocytes, activated and recruited by inflammatory mediators,
infiltrate affected tissues and acquire inflammatory macrophage
andDC-like phenotypes to fulfil their effector functions of pro- and
anti-inflammatory activities, antigen-presentation and tissue
remodeling (50).

Here, we outline major findings concerning the role of
monocytes and macrophages in COVID-19 and put them into
the context of general knowledge of these cells in viral infections.
ALVEOLAR AND INTERSTITIAL
MACROPHAGEONTOGENY AND FUNCTION

Every day, the lung inhales thousands of liters of air containing
high amounts of pathogens including viruses, bacteria, and fungi
(51). To prevent infection and its resulting complications for the
organism, a tight control by the immune system is needed. In the
lung, macrophages are the most abundant immune cell type
under homeostatic conditions. Based on their exact location, they
can be separated in at least two different populations; the
interstitial macrophages (IMs) and alveolar macrophages
(AMs) (52, 53).
July 2021 | Volume 12 | Article 720109

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Knoll et al. Monocytes and Macrophages in COVID-19
IMs reside in the parenchyma between the microvascular
endothelium and alveolar epithelium, while AMs have close
contact to epithelial cells of alveoli and reside in the airspace
lumen. However, a recent study by Neupane et al. showed that
AMs are, in contrast to macrophages in other tissues, not sessile
but can crawl in and between alveoli using the pores of Kohn
(54). By expression of integrins, CD11cnegCD11bpos IMs can be
distinguished from CD11cposCD11bneg AMs (52).

In addition to mucus and the epithelial barrier, AMs are the
first defenders against pathogens entering the respiratory system.
They originate from the yolk sac and populate the lung early after
birth (55, 56). AMs have proliferative capacity, thus can persist
over the lifespan by self-renewal and are independent of
replacement from the bone marrow (57–59). AMs detected in
bronchoalveolar lavage fluid (BALF) after lung transplantation
were almost exclusively donor derived (60). Following depletion
of lungmacrophages inmice, repopulationoccurred almost entirely
by in situ proliferation (61). In contrast, analysis of pulmonary
MNPs in patients receiving bone marrow transplantation for
hematologic disorders provided evidence for replenishment of
AMs by monocytes of bone marrow origin (62). The current
understanding of the plastic composition and complex ontogeny
of pulmonary MNPs is best described by a dynamic interplay of
cells derived from yolk sac macrophages, fetal liver, and adult
monocytes given pathologic threats and vacant niches (63).

The functional phenotype of AMs strongly depends on the local
microenvironment and can change with contact with epithelial
cells, oxygen tension and surfactant-rich fluid, highlighting the
relevance of AM plasticity (64, 65). Therefore, AMs can be pro-/
anti-inflammatory, pro-/anti-fibrotic, pro-asthmatic, pro-resolving
and/or tissue-reparative. In the physiological state, AMs are critical
for homeostasis by removing apoptotic cells, foreignmaterials, and
surfactant, thereby ensuring that the lungs remain free of debris. Of
note, they typically show an immunosuppressive phenotype (52).
The anti-inflammatory program is critical to prevent unwanted
inflammation in the lung that can be of serious danger for the
organism. Although AMs have antigen presenting capacities and
expressHLA-DR, theypromote toleranceand suppress lymphocyte
activation under homeostatic conditions by producing
immunosuppressive prostaglandins and TGFb, of which the latter
together with retinoic acid may drive the development of
FOXP3+ regulatory T cells (Treg), further strengthening the anti-
inflammation (66–68).By signaling throughvarious receptors, such
as by CD200R (69), SIRPa (70), mannose receptor CD206 (71),
MACRO (72), TREM2 (73), and soluble mediators including
Interleukin (IL)-10 (74), TGFb (75) and PPARg (76) AMs
experience negative regulation. For instance, CD200 is expressed
on the luminal side of respiratory epithelial cells and binding to
CD200R on AMs leads to the suppression of pro-inflammatory
genes in AMs (69).

Upon lung injury or infection, AMs can mount inflammatory
responses (77). Destruction of airway epithelium can lead to a loss of
exposure to regulatory ligands, suchasCD200, resulting in a switch to
a pro-inflammatory program in AMs (69). Recognition of pathogen
associated molecular patterns (PAMP) of invading pathogens by
AMs via PRRs further enhances this activation. These activated
Frontiers in Immunology | www.frontiersin.org 3
AMs are characterized by enhanced phagocytic capacity, higher
oxidative burst and increased release of pro-inflammatory
cytokines and chemokines, which results in inflammation and
recruitment of other immune effector cells to the lung, including
neutrophils (78). Recruited cells also include monocytes, which can
differentiate intomacrophage andDC-like cells, thus often referred to
as monocyte-derived AMs (Mo-AMs) and DC (Mo-DC), upon
arrival in peripheral tissues and can further enhance inflammation
(79, 80). Their different ontogeny and functionality can influence
the outcome of infection and inflammation.

Importantly, prolonged, and dysregulated inflammation caused
by macrophages and monocytes can cause collateral tissue damage
(81). To prevent prolonged inflammation and to limit tissue
damage and fibrosis, AMs have evolved several strategies. These
include phagocytosis of dying cells, e.g. neutrophils (82) preventing
the release of their pro-inflammatory and toxic contents and
triggering the secretion of TGFb, IL-10, prostaglandin E2 and
platelet-activating factor from AMs (83).

Respiratory pathologies such as asthma, chronic obstructive
pulmonary disease (COPD), cystic fibrosis and idiopathic
pulmonary fibrosis (IPF) are characterized by defective AM
phagocytosis resulting in continuous inflammation (84–87).

Besides respiratory pathologies, cigarette smoking also
presents a major risk factor for impaired AM function. AMs of
smokers are expanded in numbers compared to non-smoking
controls but show less phagocytic activity, glucose oxidation rate
and cytokine production compared to non-smoking controls,
which increases the risk of severe disease progression upon
bacterial and viral infection (88–91).

After a successful inflammation, suppressive stimuli as described
above are restored and AMs shift to an anti-inflammatory, tissue
reparative phenotype restoring the homeostasis of the lung (65).
THE ROLE OF LUNG MACROPHAGES IN
VIRAL RESPIRATORY INFECTIONS

As described above, the lung is at permanent risk of infection by
several pathogens, amongst them viruses such as rhinovirus,
respiratory syncytial virus, influenza virus and coronavirus.
Despite their obvious relevance, investigation of human lung
MNPs during respiratory infections has been limited so far and
most of our knowledge comes from animal models. For instance,
Schneider et al. showed that AM-depleted WT mice infected
with influenza A virus had impaired gas exchange and fatal
hypoxia (92). Similar results were obtained in pigs which, after
AM depletion by dichloromethlyene diphosphonate, were
infected with seasonal human H1N1 influenza virus resulting
in 40% mortality rate and increased suffering from severe
respiratory signs, whereas infected control pigs showed less
severe symptoms with no mortality (93).

Notably, various viruses, including Influenza, Chikungunya,
human herpes and Zika virus, have been shown to utilize
monocytes and macrophages as vessels for virus replication,
dissemination, or long-term persistence within tissues. They enter
the cells through endocytosis, phagocytosis, macropinocytosis or
July 2021 | Volume 12 | Article 720109
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membrane fusion and induce elevated expression of
proinflammatory signaling and antiviral molecules (94–99).
Direct infection of macrophages with SARS-CoV has also been
shown, which, however, did not lead to dissemination or virus
amplification but rather to an impaired type I interferon (IFN)
response potentially worsening disease outcome (100).

Upon viral infection, AMs produce high levels of cellular
mediators, including IL-1b, CCL3, CCL7 and CCL2, also known
as monocyte chemotactic protein 1 (MCP1), which rapidly
recruits CCR2-expressing bone marrow-derived monocytes
into the lung. Furthermore, AMs are the main producers of
type I IFN to trigger an antiviral response in influenza infection
(101, 102). Of note, type I IFN production by AMs was higher
than by plasmacytoid DCs (pDCs), coined as the natural “IFN
producing cells”, in response to virus, indicating that pDCs may
play a subordinate role in the defense against viral infections in
the lung (102). Moreover, alveolar epithelial cells also did not
produce any type I IFN in response to influenza, further stressing
the key role of AMs (103). Type I IFNs can signal autocrine and
paracrine resulting in the activation of antiviral transcriptional
programs including the transcription of ISG such as ISG15, IFIT1
and STAT2, which can suppress viral replication (104, 105).
Interestingly, not all virus infections trigger an increased type I
IFN response. For instance, when human AMs were infected with
coronavirus strain 229E (HCoV-299E), they secreted increased
amounts of TNF, CCL5 and CCL4 (MIP-1b), causing
inflammation, but IFN-b levels remained unchanged (106).

Viral infection triggers the migration of circulating
monocytes to the lung guided by pro-inflammatory cytokines,
such as CCL2 and CCL3, increasing the number of defending
mononuclear phagocytes and enhancing inflammation (79). This
is a necessary defense response, since viruses such as influenza
can either reduce the numbers of resident AMs dramatically or
impair their phenotype. When BALB/c mice were infected with
influenza, 90% of resident AMs were lost in the first week after
infection (107). This, however, was strain specific, since C57B1/6
mice did not show loss of AMs but rather an impaired
phenotype. Nevertheless, both consequences were driven by
IFN-g and resulted in increased susceptibility to bacterial
superinfections leading to significant body weight loss and
mortality. Furthermore, a recent study by Neupane et al.
showed that crawling of AMs, which is critical for AM
function, was impaired after influenza infection. Again, this
impairment was mediated by the IFN-g pathway and resulted
in increased risk for bacterial superinfections (54).
THE ROLE OF MONOCYTES AND
ALVEOLAR MACROPHAGES IN COVID-19

The Involvement of Monocytes and
Macrophages in SARS-CoV-2 Induced
Hyperinflammation
COVID-19 is characterized by a systemic increase of numerous
cytokines, including IL-1a, IL-1b, IL-6, IL-7, tumor necrosis
Frontiers in Immunology | www.frontiersin.org 4
factor (TNF), type I and II IFN, and the inflammatory
chemokines CCL2, CCL3 and CXCL10 (40, 108, 109). Elevated
levels of CCL2 and CCL7, two chemokines potent at the
recruitment of CCR2+ monocytes, have also been found in
BALF from patients with severe COVID-19 (110).

The term “cytokine storm”, historically described as an
influenza-like syndrome that occurred after systemic infections
and immunotherapies (111), has quickly become widely used,
both in scientific publications and the media, to describe the
cytokine response in COVID-19 (39). Although the increased
systemic cytokine response in COVID-19 is undisputed, the term
“cytokine storm” in COVID-19 pathophysiology is a topic of
debate, as TNF, IL-6, and IL-8 concentrations in COVID-19 are
less strong compared to sepsis, acute respiratory distress
syndrome unrelated to COVID-19, trauma, cardiac arrest, and
cytokine release syndrome (CRS) (112–115). Moreover, COVID-
19 immune responses are highly dynamic as shown by time-
dependent alterations of the systemic levels of many cytokines
including IL-6 (40). Considering the co-occurrence of distinct
systemic pro-inflammatory cytokine waves with the emergence
of aberrant and immunosuppressive innate immune cells further
complicates the exact terminology of immunopathology in
severe COVID-19 and suggests a much more complex host-
pathogen interaction better described by the term viral sepsis
(28). In any case, the systemic cytokine profile observed in
patients suffering from severe COVID-19 does resemble those
observed in CRS, such as macrophage activation syndrome
(MAS), which led early on to the working hypothesis that
dysregulated activation of the MNP compartment contributes
to COVID-19-associated hyperinflammation (33, 113).

The induction of cytokine production in MNPs in COVID-19
can either be triggered via recognition of damage-associated
molecular patterns (DAMPS) released from epithelial cells
affected by SARS-CoV-2 by PRRs or by direct recognition of
viral pathogen-associated molecular patterns (PAMPs) via
specific Toll-like receptors, i.e. TLR2 and TLR4, the retinoic
acid-inducible gene I (RIG-I) or the melanoma differentiation
associated gene (MDA)-5 (116–119). Furthermore, C-type lectin
receptors, including DC-SIGN, L-SIGN, LSECtin, ASGR1,
CLEC4K (Langerin) and CLEC10A (MGL), as well as Tweety
family member 2 have been identified to interact with the SARS-
CoV-2 spike protein inducing proinflammatory responses, but
not allowing direct infection. Notably, however, these
interactions were shown to promote virus transfer to ACE+

cells (120, 121).
SARS-CoV-2 infection of lung-resident MNPs might result

either from phagocytosis of infected alveolar epithelial cells
followed by viral escape from the lysosome or by direct
infection. In vitro experiments with human monocyte-derived
DC and macrophages with SARS-CoV-2 have demonstrated that
both cell types are permissive to SARS-CoV-2 as measured by
quantification of SARS-CoV-2 nucleocapsid protein expression
after in vitro infection, but did not support productive viral
replication. Interestingly, expression of proinflammatory
cytokines and chemokines however was only triggered
in macrophages and not DC under these experimental
July 2021 | Volume 12 | Article 720109
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conditions (122). Additional independent infection experiments
confirmed the abortive SARS-CoV-2 infection in human
monocyte-derived DC and macrophages in vitro and
corroborated the induction of antiviral and proinflammatory
cytokines, including IFN-a/b, TNF, IL-1b, -6, and -10, as well
as CXCL10, leading to type I IFN–mediated host cell death (123).
Accordingly, investigation of cell tropism and immune activation
profiles of SARS-CoV-2 in ex vivo organ cultures of human lung
tissues revealed infection of type I and II pneumocytes as well as
AMs (124), confirmed by detection of SARS-CoV-2 in AMs in
autopsy samples from COVID-19 patients (125). Interestingly,
analysis of murine AMs derived from human (h)ACE2 transgenic
animals revealed different susceptibility to SARS-CoV-2 infection
depending on their cytokine-induced polarization as in vitro
treatment with IFN-g and LPS caused increased infection rates
compared to pre-treatment with IL-4 (126). Furthermore, in vitro
treatment of PMA-differentiated THP-1 human macrophages and
isolated CD14+ monocytes with SARS-CoV-2 spike protein after
LPS stimulation exposed a hyperresponsiveness to TLR signals by
suppression of IRAK-M (127). Moreover, antibody-dependent
mechanisms of infection present a conceivable alternative
pathway and have been described for SARS-CoV (128, 129).
Besides this body of evidence demonstrating the induction of
inflammatory pathways in monocytes and macrophages upon
recognition of SARS-CoV-2, metabolic alterations in these cells
have been reported. Ex vivo infected human monocytes shifted
their metabolism and became highly glycolytic leading to elevated
glucose levels promoting SARS-CoV-2 replication and cytokine
production (130). Moreover, monocytes derived from COVID-19
patients were shown to have increased lipid droplet accumulation,
which was explained by the modulation of lipid synthesis and
uptake investigated using in vitro infection models and again
favored virus replication and inflammatory mediator production
(131). Interestingly, the pharmacological inhibition of DGAT1, a
key enzyme in lipid droplet formation, inhibited SARS-CoV-2
replication and production of pro-inflammatory mediators
presenting a new opportunity for therapeutic intervention.

Corresponding to the systemic increase of cytokine and
chemokine levels, quantitative and qualitative changes in
immune cell populations, particularly in the myeloid
compartment, have been observed in blood and lungs of
patients with COVID-19 dependent on disease severity.

Flow cytometric analyses of peripheral blood reported reduced
percentages of total monocytes in the blood of severe COVID-19
cases (38, 132, 133). Notably, this reduction was observed only
transiently in a longitudinal study of immune cells in severe cases
pointing to the highly time-sensitive immune response (134).

Beyond quantitative changes, striking disease-specific
differences in monocyte phenotypes in the blood and
monocyte–macrophage composition in the lung have been
consistently reported. A significant expansion of CD14+CD16+

monocytes featuring high expression of IL-6 in the blood
discriminated patients with COVID-19 admitted to ICUs from
those who did not require intensive care (132). Moreover,
significantly reduced numbers of non-classical and intermediate
monocytes are found in acute patients with symptoms of severe
Frontiers in Immunology | www.frontiersin.org 5
SARS-CoV-2 infection (135) and circulating classical monocytes
show clear signs of activation, including increased expression of
CD169 (135). In addition, experimentally infected monocytes and
those from patients with severe COVID-19 requiring intensive
care feature inflammasome activation and increased pyroptosis
associated with caspase-1 activation (136). Furthermore, increased
proliferation of monocytes derived from patients with severe
COVID-19 after in vitro challenge with lipopolysaccharide was
discussed as an indicator for a release of immature myeloid cells
from the bone marrow reminiscent of emergency myelopoiesis
(137) and contributing to innate immune dysfunction (138). Most
prominently and consistent across all studies, reduced HLA-DR
expression on monocytes – a well-established marker of immune
suppression – was reported in patients suffering from severe
COVID-19 (41, 42, 134, 139, 140). Decreased HLA-DR
expression appeared to be strongly associated with COVID-19
disease severity, exemplified by lower expression of HLA-DR by
monocytes in patients admitted to the ICU versus non-ICU patients
(140) and in non-survivors versus survivors (141). Furthermore, the
presence of HLA-DRlo monocytes in severe cases of COVID-19 was
found to be positively correlated with levels of the soluble
immunosuppressive factors IL-10, TGF-b, VEGFA, and AREG
(142). In addition, reduced HLA-DR and CD86 expression
together with elevated levels of IL-1b, IL-6, IL-8, IL-10, IL-17 and
IFN-g were observed in children with multisystem inflammatory
syndrome (MIS-C) associated with SARS-CoV-2 infection (143).
Downregulation of HLA-DR is a molecular feature often described
for monocytic myeloid-derived suppressor cells (MDSC) – a cellular
state of monocytes described to develop during chronic
inflammation, especially late-stage cancers, and defined by T cell
immunosuppressive functions (144). Functional assessment of
HLA-DR- monocytes derived from COVID-19 patients indeed
confirmed their capacity to suppress T cell proliferation, partly via
ARG-1, and thus supports the MDSC state beyond phenotypic
description (145). Interestingly, the HLA-DR- monocytes specific
for severe acute COVID-19 have furthermore been found to express
CPT1, an enzyme essential for fatty acid oxidation, again
highlighting the relevance of immunometabolic effects of SARS-
CoV-2 infection (146).

High-Resolution Single-Cell Omics
Characterization of Monocytes and
Macrophages in the Blood and Lungs
of COVID-19 Patients
Application of high-resolution omics technologies with single-cell
resolution, which were only developed and became widely applied
within the last decade, has confirmed their great potential to
rapidly decipher the immune response to an emerging pathogen
during the COVID-19 pandemic. The first transcriptomic
immune atlas of circulating peripheral blood mononuclear cells
(PBMC) from 10 COVID-19 patients demonstrated globally
decreased lymphocyte counts, while inflammatory myeloid cells
were found to be more abundant (147). By now, at least 16 other
studies have used scRNA-seq to characterize the immune
response to SARS-CoV-2 (31, 41, 42, 45, 108, 148–158). While
initial studies were based on low sample numbers limiting their
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explanatory power, latest reports comprised samples derived
from more than 100 individuals, included longitudinal samples
or profiled matched samples from multiple tissues. Single-cell
transcriptomic analysis of PBMC in 7 hospitalized COVID-19
patients revealed a depletion of CD16+ monocytes in peripheral
blood and the induction of an ISG signature in CD14+

monocytes, but detected no substantial induction of pro-
inflammatory cytokine genes, such as TNF, IL6, IL1b, CCL3,
CCL4 or CXCL2 in these cells, suggesting that peripheral
monocytes are no major contributors to the cytokine response
in COVID-19 (155). The lack of expression of inflammatory
cytokines in innate immune cells in the periphery of COVID-19
patients was confirmed by multiplex plasma cytokine analysis,
mass cytometry, and scRNA-seq in a cohort of 76 COVID-19
patients and 69 healthy individuals from two cohorts. Despite
significantly upregulated levels of inflammatory molecules in the
plasma of COVID-19 patients and transiently induced expression
of ISGs in peripheral immune cells, an impaired cytokine
response in blood myeloid cells and pDCs, with markedly
reduced expression of IL-6, TNF and IL-1b upon TLR
stimulation, was observed emphasizing a tissue origin of the
plasma cytokines (108). Interestingly, the lack of ISG-expressing
cells associated with mild disease was linked to severe disease-
specific production of antibodies suppressing cellular interferon
responses (159). In a dual-center, two-cohort study, we combined
scRNA-seq and single-cell proteomics of whole-blood and PBMC
and determined changes in the immune cell composition and
activation in mild versus severe COVID-19 over time.While non-
classical monocyte numbers were diminished in COVID-19,
HLA-DRhiCD11chi inflammatory monocytes with an ISG
signature were elevated in mild COVID-19 and monocytes in
severe COVID-19 featured strongly reduced HLA-DR expression,
high expression levels of genes with anti-inflammatory and
immature properties, including SELL (CD62L), CD163, MPO
and PLAC8, as well as increased expression of S100A family
members, e.g. S100A12 (42). Loss of non-classical monocytes,
reduced HLA-DR expression in monocytes and massive release of
S100A family members was observed in severe cases of COVID-
19 in multiple additional studies (41, 151, 156, 157), albeit disease
stratification into mild, moderate, severe and critical disease
showed slight differences. In addition, calprotectin (S100A8/
S100A9) plasma levels and decreased frequencies of non-
classical monocytes were found to discriminate patients who
develop a severe form of COVID-19 (41).

Although the analysis of blood was extremely instructive
particularly when assessing systemic effects of COVID-19, the
lung presents the primary site of infection for SARS-CoV-2 and
investigating the local immune system response is key to
understanding the pathology. Activated monocytes of the
blood have been shown to infiltrate the lungs in patients with
COVID-19 and in animal models of SARS-CoV-2 infection (160,
161). In their seminal study, Liao et al. characterized BALF from
patients with varying severity of COVID-19 and healthy
individuals using scRNA-seq and reported striking shifts in
cellular composition with increased proportions of
macrophages and neutrophils and lower proportions of DCs
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and T cells in samples from severe/critical COVID-19 compared
to those from moderate disease and healthy individuals. Within
the MNP compartment, they observed a depletion of tissue-
resident AMs and a replacement by inflammatory monocyte-
derived macrophages in patients with severe disease. Notably,
cytokine and chemokine expression levels differed dependent on
disease severity. While CXCL9, CXCL10 and CXCL11
expression levels were increased both in moderate and severe
disease compared to healthy levels, IL1b, IL6, TNF as well as
CCL2, CCL3, CCL4 and CCL7 were expressed at higher levels in
lung macrophages from patients with severe COVID-19.
CXCL16, which interacts with the chemokine receptor CXCR6
and attracts subsets of T cells, was specifically induced in patients
with moderate disease. These distinct expression profiles suggest
that lung macrophages in patients with severe COVID-19 may
promote tissue infiltration of inflammatory monocytes
enhancing local inflammation, whereas macrophages in
patients with moderate COVID-19 preferentially attract T cells.
Furthermore, macrophage subpopulations specific for severe
disease presented with immunoregulatory features but also
expression of the profibrotic genes TREM2, TGFB2, and SPP1
(45). In agreement with this study, scRNA-seq data of
nasopharyngeal and bronchial samples from 19 COVID-19
patients revealed the presence of inflammatory non-tissue
resident and monocyte-derived macrophages expressing
various cytokines, including IL1, TNF, CCL2 and CCL3, as
well as enhanced interactions between epithelial and immune
cells as determined by ligand–receptor expression profiling, in
critical compared to moderate disease (31). Interestingly,
comparing macrophages from the lower to the upper airways
demonstrated increased expression of inflammatory cytokines
and chemokines in the bronchia. Furthermore, monocyte-to-
macrophage trajectory analysis in scRNA-seq of BALF samples
from COVID-19 patients exposed enrichment of chronic
hyperinflammatory monocytes in critical COVID-19
presenting with elevated expression levels of inflammasome-
related genes (NLRP3, IL1-b, IL10RA) and genes associated
with fibrosis (FGL2, TGFB1, COTL1) potentially contributing
to tissue damage in severe COVID-19 (154). Single-nucleus
(sn)RNA-seq on lung autopsies from 19 COVID-19 decedents
confirmed the lungs to be highly inflamed with dense infiltration
of aberrantly activated monocyte-derived macrophages and
alveolar macrophages in the tissue (153). Another cross-
sectional scRNA-seq of 780,000 PBMC sampled from 130
patients collected across three medical centers in the UK
revealed the presence of a non-classical monocyte population
characterized by the expression of complement transcripts
C1QA/B/C in COVID-19. The complement system is a key
host-defense mechanism with capacity to exacerbate tissue
injury through its proinflammatory effects. Notably, integration
of these PBMC transcriptomes with data derived from
BALF samples (45) followed by partition-based graph
abstraction (PAGA) analysis demonstrated transcriptional
similarity between the circulating C1QA/B/C+CD16+ monocytes
and alveolar macrophages in COVID-19 emphasizing the altered
composition of the lung MNP compartment (150). The consistent
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reports of aberrant CD163hi and HLA-DRlo monocyte populations
expressing the chemokine receptor CCR2 in the blood and
hyperactivated airway monocytes and macrophages producing
pro-inflammatory chemokines, including CCL2 and CCL3, were
furthermore confirmed by high-dimensional phenotypic,
transcriptomic, and functional profiling of immune cells from
paired airway and blood samples obtained longitudinally from
patients with severe COVID-19 (149).

Taken together, these data strongly suggest a model of a
vicious cycle of pro-inflammatory cytokine release by
hyperactivated lung MNPs resulting in erratic infiltration of
pro-inflammatory effector cells, including dysregulated
monocytes and cytotoxic T cells, which in turn exacerbates
tissue damage and fuels macrophage activation (Figure 1).
Detection of SARS-CoV-2 RNA in
Single-Cell RNA Profiles of Monocytes
and Macrophages
Since SARS-CoV-2 exploits the host cell transcriptional
machinery to express viral genes, viral transcripts can be
detected alongside human mRNA transcripts in scRNA-seq
data, thereby allowing for identification of infected cells and
their unique properties at single-cell resolution. Bost et al.
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developed a new computational pipeline, called Viral-Track, to
quantify viral RNA in single-cell transcriptomic data. Application
of their approach to scRNA-seq data of BALF from the
aforementioned study by Liao et al. revealed the presence of
viral reads in samples derived from patients with severe, but not
mild disease, suggestive of a differential viral load in the lung
(162). The highest levels of viral RNA were observed in ciliated
and epithelial progenitor cells. However, viral RNA was also
detected in a subset of macrophages characterized by expression
of SPP1. Whether these transcripts resulted from direct infection
of and viral replication within the myeloid cells or whether the
cells phagocytosed cellular material carrying viral RNA could not
be clarified by this approach. However, the results of the single-
cell specific viral RNA quantification allowed for differential gene
expression in infected vs bystander SPP1+ macrophages, which
revealed increased expression of chemokines (CCL7, CCL8, and
CCL18) and APOE in virus-positive cells. The approach was
further advanced by Wauters et al. who stratified SARS-CoV-2
infected cells in scRNA-seq data from BALF samples derived
from patients with mild and critical COVID-19 by the presence of
viral transcripts from distinct viral open reading frames (ORF).
Detection of spike protein (S) specific transcripts in epithelial cells
and consequentially reduced expression of ISGs suggests that S+

epithelial cells have actively been infected. In contrast, transcripts
FIGURE 1 | Monocytes and Macrophages in COVID-19. Graphical overview of the compositional and molecular alterations in monocyte and alveolar macrophage
populations in COVID-19 created with BioRender.com. Distinct monocyte and macrophage phenotypes were identified in the peripheral blood of patients with severe
COVID-19 including immature cells indicating emergency myelopoiesis, dysfunctional HLA-DRlo classical monocytes and complement gene expressing non-classical
monocytes. These cells are attracted to the lung by pro-inflammatory chemokines resulting in a continuous accumulation of hyperactivated MNPs producing more
pro-inflammatory mediators recruiting more inflammatory cells, including cytotoxic T cells and neutrophils, thus further exacerbating inflammation and tissue damage.
SARS-CoV-2 infected macrophages in the lung may act as trojan horses propagating SARS-CoV-2 infection and spreading hyperinflammation across the lung.
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of the nucleocapsid protein (N) and the ORF10 and ORF1a were
detected in myeloid and lymphoid cells at much higher levels than
in epithelial cells. Comparing N+ vs N- alveolar and monocyte-
derived macrophages determined genes involved in MHC class-II
expression and ISG to be upregulated in response to the virus.
Grant et al. followed an alternative approach to answer whether
SARS-CoV-2 productively infects myeloid cells. Adding the
negative-strand SARS-CoV-2 transcripts, which are transiently
formed during viral replication, to the reference genome during
alignment and quantification of their single-cell and bulk BALF
transcriptome data allowed for evaluation of replicating SARS-
CoV-2 in AMs. Besides the expected detection of positive and
negative strand transcripts in epithelial cells, viral reads were also
detected in subsets of macrophages suggesting that AMs harbor
SARS-CoV-2 and allow viral replication in vivo (158), challenging
the results on abortive infection gained from in vitro experiments.
Interestingly, immunostaining of post-mortem tissue from
patients who had died from COVID-19 revealed the presence
of SARS-CoV-2 nucleoprotein in and the expression of ACE2 on
populations of CD169+ macrophages in lymph nodes and the
spleen (20). Given the increasing body of evidence in support of
active infection of and the indication of productive viral replication
in AMs by SARS-CoV-2, Grant et al. have come up with the
hypothesis that AMs may act as a Trojan horse, transferring the
virus to adjacent lung regions, thereby slowly propagating
SARS-CoV-2 infection and spreading hyperinflammation across
the lung (Figure 1).
OUTLOOK AND OPEN QUESTIONS

After more than a year into the pandemic, it is rather clear that
the innate immune system and in particular monocytes and
macrophages are linked to the heterogeneity of the COVID-19
disease courses. For example, HLA-DRhi monocytes are typically
seen in mild cases, while HLA-DRlo S100+ cells dominate in
severe COVID-19. Future work needs to untangle which
Frontiers in Immunology | www.frontiersin.org 8
molecular mechanisms are responsible for these different
cellular responses. For example, are certain signals from the
microenvironment normally increasing the induction of HLA-
DR molecules missing in patients with severe disease course?
Are elevated levels of inhibitory factors such as certain
prostaglandins or TGFb responsible for the molecular
phenotype of MNPs in severe COVID-19. Furthermore, is
there a direct link between fibrotic lung disease as a result of
severe COVID-19 with ARDS and changes in the MNP
compartment or other immune cells like NK cells. And if this
is the case, are the anti-fibrotic molecular programs of
monocytes and macrophages not working or do these cells
suddenly gain pro-fibrotic functionality. Are molecular changes
seen in these cells early during the disease predictive for disease
courses leading to irreversible tissue damage as it is proposed for
some patients with Long COVID-19? Even if the pandemic will
be under control due to world-wide vaccination programs and
other medical measures, the sequelae of Long COVID-19 and its
potential burden on long-term health requires further studies
into the role of the immune system, in particular the innate
immune system with monocytes, macrophages and granulocytes
requiring special attention.
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