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Herpes simplex virus type 2 (HSV-2) infection is one of the most prevalent sexually
transmitted infections that disproportionately impacts women worldwide. Currently, there
are no vaccines or curative treatments, resulting in life-long infection. The mucosal
environment of the female reproductive tract (FRT) is home to a complex array of local
immune defenses that must be carefully coordinated to protect against genital HSV-2
infection, while preventing excessive inflammation to prevent disease symptoms. Crucial
to the defense against HSV-2 infection in the FRT are three classes of highly related and
integrated cytokines, type I, II, and III interferons (IFN). These three classes of cytokines
control HSV-2 infection and reduce tissue damage through a combination of directly
inhibiting viral replication, as well as regulating the function of resident immune cells. In this
review, we will examine how interferons are induced and their critical role in how they
shape the local immune response to HSV-2 infection in the FRT.

Keywords: HSV – 2, immune regulation, female reproductive tract (FRT), type I interferon (IFN), type II interferon,
type III interferons, genital mucosa
INTRODUCTION

Genital herpes simplex virus type 2 (HSV-2) infection remains one of the most prevalent sexually
transmitted infections, with an estimated 491.6 million cases worldwide (1). African cohorts
comprise of the majority of the cases, with 43.9% and 25.4% seropositivity in women and men
respectively, and HSV-2 disproportionately impacts women in African cohorts and globally (1).
Despite the prevalence of HSV-2 infection, no preventative or curative treatments have been
developed. Current treatments for HSV-2 infection only involve antivirals to suppress reactivation,
but HSV-2 remains a life-long infection. Unfortunately, resistance to antivirals such as acyclovir,
particularly in immunocompromised individuals, has been observed (2).

Genital HSV-2 infection in the vaginal mucosa begins at lytic replication in keratinocytes of the
epithelial lining, resulting in genital lesions (3). HSV-2 is also a neurotropic virus and can infect the
brain and result in fatal herpes simplex encephalitis in newborns or immunocompromised
individuals (4, 5). Largely, HSV-2 infections are self-limiting, and are often asymptomatic.
However, asymptomatic individuals still frequently shed the virus during reactivation periods (6–
8). Those that experience symptomatic infection will often experience reactivation of genital lesions
throughout their lifetime (9). While antivirals, such as acyclovir, can reduce the frequency of HSV
reactivation, they cannot eliminate or completely prevent viral shedding (9). Furthermore,
individuals with genital HSV-2 infection also hold a significantly increased risk of acquiring
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HIV-1 infection, partially through impaired integrity of the
vaginal mucosal barrier due to genital lesions (10, 11). Thus,
the inability to adequately address the HSV-2 epidemic has also
been driving the HIV epidemic.

Regulation of innate and adaptive immune responses in the
genital mucosa is critical in both the control of HSV-2 infection
and reactivation, as well as inhibiting the development of genital
and neural tissue pathology. Interferons (IFN), including classes
I, II, and III, are well known for their antiviral functions, but their
role in immune regulation is slowly coming to light. The critical
importance of IFNs is best evidenced by the multiple
mechanisms of evasion of IFN-induced responses by the HSV-
2 virion to evade IFN induction and signaling pathways (12).
Understanding how immunity to HSV-2 infections is regulated
by IFNs remains a crucial piece in developing better therapeutics
and an effective vaccine for genital herpes infections. In this
review, we will describe the various mechanisms of
IFN-mediated regulation of innate and adaptive immunity to
genital HSV-2 infection, emphasizing its ability to prevent the
development of pathogenic immunity.
INDUCTION AND REGULATION OF IFN
RESPONSES TO GENITAL
HSV-2 INFECTION

Type I IFNs are a class of signaling molecules that include most
notably IFN-a and its subtypes, IFN-b, as well as lesser
understood IFN-ϵ, IFN-w, and IFN-k (13). The induction of
type I IFNs during genital HSV-2 infection contributes
significantly to resistance to infection, through both directly
suppressing viral replication and facilitating antiviral immune
responses (14, 15). Type I IFNs signal through their dimeric
interferon a/b receptor (IFNAR) to induce a JAK/STAT
signaling cascade that includes the transcription of interferon-
stimulated genes (ISGs) to inhibit viral replication (13).
Induction of type I IFN occurs through DNA sensing pattern
recognition receptors, including endosomal toll like receptor 9
(TLR9), and cytosolic sensors IFI16 and cyclic GMP-AMP
synthase (cGAS) stimulating the STING adaptor protein (16,
17). Interestingly, Eriksson et al. demonstrated that polymorphisms
in IFI16 impacting expression levels correlated with both IFN-b
production and susceptibility to genital HSV-2 infection (18). The
administration of both TLR agonists and STING agonists in mice
have demonstrated to protect against genital herpes infection and
potently induce type I IFNs (14, 19). Recognition of replication
intermediate dsRNA has been shown by retinoic acid-inducible
gene-like receptors (RLRs) RIG-I and MDA5 (16, 17). IFN-ϵ,
produced at canonically low levels in the reproductive mucosa, is
not induced through typical TLR or RIG-I signaling pathways (20).

IFN-a/b is primarily produced by circulating plasmacytoid
dendritic cells (pDCs) through recognition by TLR9 during
genital HSV-2 infection (16, 21, 22). Genital lesions in
recurrent HSV-2 patients display pDC infiltration, suggesting a
role of type I IFNs in controlling HSV-2 reactivation (23).
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However, others have demonstrated that pDCs are only
involved in systemic infections in mice, and not local mucosal
infections (24). These studies have also credited classical CD8a
DCs as a major source of IFN production, independent of TLR9
signaling (22, 24). On the other hand, unlike IFN-a/b, IFN-ϵ was
found to be constitutively expressed by epithelial cells in the
uterus and ovaries of both mice and humans (20). Together,
these studies show that the production of type I IFNs is critical to
inducing protective innate and adaptive immune responses in
response to genital HSV-2 infections.

Type II IFNs consist only of one subtype, IFN-g.
The induction of IFN-g is strongly dependent on type I IFN
signaling. Type II IFNs are largely produced from NK cells and T
cells during genital HSV-2 infection, stimulated by type I IFN-
mediated IL-18 signaling (25). IFN-g signaling occurs through
the IFN-g receptor present on the majority of immune cells (13).
Several studies have identified a critical role of IFN-g in
mediating protection against genital HSV-2 infection. In vitro
HSV-2 infection of human PBMCs demonstrates IFN-g as the
predominant cytokine produced, and dysregulated IFN-g
production is associated with recurrent genital herpes in
humans (26, 27). This dysregulation has been associated with
genetic variations in the STAT4 gene, which regulates IFN-g
production (28). Individuals with recurrent disease also exhibit
impaired cellular responses to IFN-g signaling, as treatment of
HSV-2-infected macrophages from these individuals with IFN-g
enhanced viral replication (26). Likewise, several mouse models
have demonstrated that IFN-g is required for HSV-2 clearance
during primary and secondary challenge (28–33).

Type III IFNs have emerged as another family of IFNs with a
critical role in the induction of antiviral responses to HSV-2
infection. Type III IFNs, consisting of IFN-l1, 2, 3, and 4 in
humans, and functional IFN-l2 and 3 in mice, have already been
established as potent inhibitors of viral replication (34, 35). DCs
and pDCs are a primary producer of type III IFNs in response to
TLR7 ligands and HSV-2 infection (36–38). However, most cells
can produce type III IFNs, including mucosal epithelial cells.
Type III IFNs are similar to the type I IFN canonical signaling
pathway, but differ in their effector cells (35, 39). The expression
of the IFN-l heterodimeric receptor, IL-28Ra/IL-10Rb, is more
restricted than IFNAR, as it is highly expressed on mucosal
epithelial cells in the genital mucosa (40–43). Some evidence
suggests that the type III IFN receptor is not expressed on the
surfaces of immune cells, leading to its less inflammatory
responses (44); however, this has been increasingly challenged,
with emerging evidence suggesting type III IFNs may possess
direct immunoregulatory functions.

Susceptibility to HSV-2 infection has been suggested to be
influenced by hormone-mediated alterations in IFN responses.
In mice, susceptibility to intravaginal HSV-2 infection is
dependent on treatment with progesterone contraceptive
hormones to induce diestrus, a state of low estrogen levels
(45). Estradiol treatment in women increased capacity to
produce type I IFN by pDCs following just one month of
treatment (46). IFN-ϵ is potentially even more strongly
regulated by hormone levels, with lowest levels during diestrus
August 2021 | Volume 12 | Article 724618
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and highest production during estrus, and IFN-ϵ deficient mice
display increased susceptibility to HSV-2 infection (20).
Meanwhile, progesterone signaling not only increases
susceptibility to mouse HSV-2 infection, but impedes type I IFN
responses (45, 47, 48). Depot medroxyprogesterone acetate
(DMPA) treatment impairs TLR9 ligand-mediated IFN-a
production by inhibiting IRF7 nuclear accumulation following
CpG stimulation in both human and mouse pDCs (47, 49). These
findings strongly emphasize the importance of understanding the
impact of hormones, from either biological factors or from
contraceptives, on the development of protective immunity to
HSV-2 infection, and its considerations on therapeutic
development. Moreover, this highlights the dependency on type I
IFNs for protection against HSV-2 infection.
THE ROLE OF INTERFERONS IN
REGULATION OF INNATE IMMUNITY
DURING HSV-2 INFECTION

Innate immunity in the genital mucosa plays a critical role in
initial viral infection and replication, however their dysregulation
can also be the cause of severe inflammation and tissue damage.
In this section, we will explore the innate immune responses
regulated by IFNs towards genital HSV-2 infection.

Monocytes/Macrophages
During HSV-2 infection, monocyte recruitment is crucial for
controlling viral infection and inducing antiviral immunity in the
vaginal mucosa (50). Monocytes/macrophages upregulate the
expression of Fas and FasL during infection (51). Although
typically involved in inducing the apoptosis of infected cells,
HSV-2 infected keratinocytes in a mouse model displayed
resistance to Fas/FasL-mediated apoptosis, but strong production
of inflammatory cytokines, including TNF-a, IL-1b, and CXCL1/2
(52). Infectedmonocytes inmice, while susceptible to Fas-mediated
apoptosis, also respond with the production of inflammatory
cytokines and CXCL9/10 T cell chemokines (51).

Evidence has suggested that type I IFN signaling may regulate
the protective effects of monocyte/macrophages during HSV-2
infection. Type I IFN has been demonstrated to induce FasL
expression during influenza infection in mice on immune cells
(53), though this has not been defined during HSV-2 genital
infection. Type I IFN regulation of Fas/FasL pathways during
HSV-2 infection would promote monocyte-mediated
inflammation and the induction and recruitment of adaptive
immune responses. Type I IFN-mediated recruitment of
inflammatory monocytes (IM) during infection has been clearly
defined inmurineHSV-1 andHSV-2 infection, promoting survival
and antiviral responses (50, 54). The immune stimulatory effect on
monocytes is dependent on type I IFN-mediated production of
CCL2 during HSV-2 infection that promotes recruitment to the
genital mucosa (25, 55). Therefore, type I IFN signaling during
HSV-2 infection promotes both the recruitment of inflammatory
monocytes to the genital mucosa, but also Fas/FasL-induced
inflammation in the clearance of infection.
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Type II IFNs produced by NK cells and T cells also promote
macrophage responses during HSV-2 infection. Macrophage nitric
oxide production is stimulated by IFN-g signaling, and HSV-2-
infected mouse macrophages exhibit enhanced nitric oxide release
upon IFN-g stimulation (56). IFN-g is a Th1 promoting cytokine
shown to promote macrophageM1 polarization and production of
pro-inflammatory cytokines, as well as upregulation of MHC class
II expression to facilitate effective adaptive immune responses in a
mousemodelofHSV-2 infection (57, 58).Overall, type I and II IFNs
facilitate the recruitment and activation of antiviral functions of
both IM and macrophages during HSV-2 infection.

Neutrophils
Neutrophils can play a protective role in HSV-2 infection, but
their dysregulation can lead to damaging inflammatory
outcomes. Early neutrophil recruitment to the genital mucosa
can limit the establishment of HSV-2 infection in mice (59).
IL-36g production by mucosal epithelial cells in HSV-2 infection
suppressed viral replication through neutrophil recruitment and
expression of neutrophil chemokines CXCL1 and CXCL2 (60).
This in turn prevented viral dissemination, and importantly,
neuroinvasion. Interestingly, IL-36g induction has been
demonstrated to increase sensitivity to IFN-a/b during HSV-2
infection in mice through increased IFNAR expression on
keratinocytes, likely also playing a role in the protective
function of IL-36 (61).

However, despite the role of neutrophils in limiting early viral
replication, neutrophils have often been demonstrated to cause
damaging inflammatory immune responses and are implicated in
increasing disease severity during viral infection (62, 63). Similarly,
neutrophils have been described to drive liver damage in a murine
model for systemic HSV-2 infection (64). These pathogenic effects
of neutrophils are strongly regulated by type I IFN signaling.While
CXCL1 isupregulated invitro followingHSV-2 infection, type I IFN
signaling can suppress the expression of neutrophil chemokines by
IM and reduce their recruitment to the sensory ganglia during
mouse HSV-1 infection and other mucosal infections, such as IAV
(62, 65). This process of IFN-mediated regulation of neutrophils
would inhibit HSV-2 infection-induced neuronal damage.
Similarly, IFN-l has been shown to suppress neutrophil-
mediated damage in mice in the intestinal mucosa, though this
has yet to be confirmed in the genitalmucosa (66).On the contrary,
dysregulated and prolonged type I IFN signaling was recently
described to promote epithelial damage in response to mouse
HSV infection by neutrophils (67). Nonetheless, early type I IFN
signaling in this model is still important for viral control and
survival of HSV-2 infection (67). In conclusion, we observe that
regulated type I IFN responses during HSV-2 infection promotes
protective neutrophil functions while also suppressing pathogenic
immune activation in the central nervous system (CNS).

NK Cells
It has been well established that Natural Killer (NK) and NKT
cells are critically required for innate protection against HSV-2
infections, and cases of individuals with severe NK cell
deficiencies have been associated with recurrent HSV
infections (68). NK cell-deficient mouse models are highly
August 2021 | Volume 12 | Article 724618
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susceptible to HSV-2 infection, with greater viral load and
mortality (69). Likewise, loss of NK cell recruitment by
chemokines CXCL9 and CXCL10, or loss of the CCR5
receptor, increased susceptibility to intravaginal HSV-2
infection in mice (70, 71). Impairment of NK cell recruitment
increased viral load in both the genital mucosa and the central
nervous system, highlighting its critical role in suppressing local
viral replication as well as neuroinvasion (70, 71).

Type I IFN production during infection is essential for NK
cell activation and has long been suggested to activate NK cells
(72–75). Furthermore, NK cell memory has been observed in
mouse HSV-2 infection, and type I IFN signaling promotes NK
cell expansion, protection against fratricide, and induction of NK
cell memory (76–78). However, we and others have shown that
type I IFNs induce NK cell activation through an indirect
mechanism. Loss of IFNAR in a mouse model of HSV-2
infection suppressed IFN-g production by NK cells, but not
NK cell recruitment to vaginal tissue at 2 days post-infection,
suggesting a role in NK cell activation but not recruitment (79).
In response to systemic and local infection, as well as TLR
stimulation, type I IFN signaling on DCs is known to induce
IL-15 trans-presentation to NK cells recruited to lymph nodes, as
well as increased IL-15Ra expression (79). However, absence of
type I IFN signaling in a mouse model of HSV-2 genital infection
resulted in enhanced IL-15 production, with no impacts on
IL-15Ra expression (25, 72). Thus, impaired NK cell activation
in the absence of type I IFN signaling is not mediated by reduced
IL-15 trans-presentation.

During HSV-2 infection, IMs are key mediators of NK cell
activation. Type I IFN signaling via IFNAR on IM induces the
production of the cytokine IL-18 typically capable of inducing
NK cell IFN-g production (25). IFN-l3 may also induce NK cell
activity through direct signaling on monocyte-macrophages and
their production of NK cell stimulatory cytokines, as seen in
influenza infection in mice (80). While IL-12 and IL-18 are
well-known to synergize for optimal NK cell IFN-g production,
IM production of IL-18 was critical for NK cell activation in the
context of HSV-2 infection (25, 81–83). In Ifnar-/- and Il-18-/-

mice, reduced IL-18 production resulted in a complete lack of
IFN-g production during early HSV-2 infection (25). This was
specifically due to a lack of NK cell activation, as NK cell
recruitment was not affected by IFNAR and IL-18 deficiency.
Overall, type I IFNs are critical mediators of indirect NK cell
activation and IFN-g production during mouse HSV-2 infection.

In addition to its role in the induction of adaptive immunity and
type II IFNproduction, type I IFNhas alsobeensuggested topossess
immunoregulatoryproperties forNKcells. Interestingly, direct type
I IFN signaling onbothhuman andmouseNKcells inhibitsNKcell
IFN-gproduction (84). Excessive IFN-gproductionhas been shown
to promote immune-mediated tissue damage. For example, high
production of IFN-g in the central nervous system can lead to
microglia-mediated demyelination and neurological sequelae in
mice (85, 86). Similarly, IFN-g production during mouse HSV-2
infection is tightly regulated by type I IFNs to prevent excessive
immune activation and immunopathology, peaking at 2 days
post-infection (dpi) and rapidly decreasing by 3 dpi (84). Thus,
Frontiers in Immunology | www.frontiersin.org 4
type I IFNsignalingduringHSV-2 infection critically regulates both
the inductionandcontrolofNKcell-mediated type II IFNsignaling.
THE ROLE OF INTERFERONS IN
REGULATION OF ADAPTIVE IMMUNITY
DURING HSV-2 INFECTION

As we have discussed, induction of effective and appropriate
innate immune responses is critical for early protection against
HSV-2 infection, as well as restricting immune-mediated
damage. However, IFNs are also necessary to direct an
appropriate adaptive immune response and develop immune
memory. This section will clarify the mechanisms through which
IFNs promote Th1 adaptive immune responses and vaccine-
induced memory while preventing harmful, suboptimal T and B
cell responses.

Dendritic Cells Mediate Innate/Adaptive
Crosstalk
To establish an appropriate adaptive immune response to HSV-2
infection, early antiviral responses via type I IFN signaling are
required. The FRT consists of various populations of antigen
presentating cells (APCs), including Langerhans cells in the
epithelium, submucosal DCs, and monocyte-derived DCs (87).
As previously described, IFNs are necessary for the recruitment
of IM to the vaginal tract. Iijima et al. demonstrated that type I
IFN signaling during HSV-2 infection in mice is required to
recruit IM via CCR2, and that IM-derived DCs play a distinct
role in restimulation of effector Th1 CD4+ T cells to produce
IFN-g (50). Type I IFNs have also been demonstrated to induce
DC maturation and DC-facilitated Th1 responses in mice (88).
Submucosal DCs migrating to the draining lymph node have
been shown to induce Th1 responses to genital HSV-2 infection
in mice (89). Furthermore, both monocyte-derived DCs and
submucosal lamina propria DCs stimulate the protective
responses of memory CD8+ T cells established by HSV-2
333 TK- immunization in mice (33, 50). Thus, type I IFNs
promote both local and systemic DC-facilitated Th1 immune
responses during HSV-2 infection.

Similarly, IFN-g plays a critical role in stimulating APC
functions for the development of adaptive immunity.
Activation of macrophages and upregulation of epithelial MHC
class II expression by IFN-g signaling contributes to the
development of effective T cell immunity (57, 58). Similarly,
the kinetic differences in IFN-g production between genital
HSV-1 and HSV-2 infection in mice define their pathological
outcomes, as early NK cell-derived IFN-g production following
genital HSV-1 infection induced rapid DC maturation and
migration to the draining lymph node to protect against
neuroinvasion (90). However, genital HSV-2 infection in mice
did not elicit the same early burst of IFN-g production and
resulted in greater nervous system infection and more severe
disease (90). IFN-g signaling further promotes T cell responses
by regulating the expression of costimulatory molecule B7
August 2021 | Volume 12 | Article 724618
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isoforms on APCs (26). However, IFN-g treatment of human
PBMCs failed to enhance B7-1 or B7-2 expression on monocytes
from individuals with recurrent HSV-2 infection, which may
explain impaired T cell-mediated immunity and viral clearance
in these individuals (26). Overall, these studies demonstrate how
inducing a potent and early IFN-g response is critical in APC
function and mounting an effective and protective adaptive
immune response to HSV-2.

T Cells
CD8+ T cells provide fundamental antiviral protection by perforin
and granzyme-mediated lysis of infected cells as well as production
of the type II IFN, IFN-g (31). Additionally, IFN-g production by
T cells is an essential component of the memory response to HSV-
2 reinfection, as HSV-2 333TK—immunized CD4-/- mice cannot
clear genital HSV-2 infections and do not survive lethal HSV-2
challenge (32, 91). This protection during reinfection is mediated
by CD4+ T cell-derived IFN-g as well as their ability to orchestrate
enhanced NK cell activation and IFN-g production (92). Further
vaccination studies eliciting tissue resident memory CD8+ T cells
suggest IFN-g is required for vaccination-induced protection
against HSV-2 (33).

Type I IFNs promote T cell effector function indirectly via
APCs, as described in section 4.1. Additionally, type I IFNs have
been shown to directly act on mouse T cells to promote
expansion, memory formation, and effector functions that are
critical for HSV-2 clearance (93–96). However, type I IFNs may
also possess immunoregulatory functions to prevent excessive
T cell activation and subsequent tissue damage. High levels of
type I IFN signaling through Poly(I:C) and IFN-a/b treatment in
vivo has been seen to induce attrition or reduced proliferation of
CD8+ T cells (97–99). Thus, an appropriate type I IFN response
is critical to balance activation and regulation of T cell responses
during HSV-2 infection.

As we have previously outlined, type I IFNs critically regulate
NK cell and T cell-derived production of IFN-g. The development
of effective T cell responses to HSV-2 infection is also dependent
on IFN-g. IFN-g stimulates chemokine production for the
recruitment of immune cells, as mouse HSV-2 vaccination has
been associated with induction of local IFN-g-dependent RANTES
production (100). Similarly, HSV-2 vaccination in mice can also
facilitate retention of vaginal tissue resident memory CD4+ T cells
by IFN-g-dependent macrophage production of CCL5 and
CXCL9 (101). As seen above, IFN-g promotes APC maturation
and facilitation of Th1 responses to HSV-2 infection. In contrast,
dysregulation or deficiency of IFN-g in HSV-2-infected
individuals and mice has been observed to promote a Th2
cytokine response through IL-10 in humans and IL-4 in mice,
which is unable to facilitate viral clearance (26, 91). Th2 cytokine
driven immune responses to vaginal HSV-2 infection in mice have
also been described as pathogenic (102). Thus, type II IFNs are
critical mediators of T cell-mediated viral clearance, and prevent
pathogenic Th2 immunity during primary and secondary HSV-2
infection. An effective vaccine against HSV-2 must elicit potent T
cell-mediated IFN-g release for optimal protection against
HSV-2 infection.
Frontiers in Immunology | www.frontiersin.org 5
B Cells
A role for B cell-mediated innate protection against HSV-2 infection
has been described, as B cell-deficient mice exhibited transient
infection and inflammation, while T cell-deficient mice did not
exhibit infection-induced inflammation (32). Passive transfer of
serum from uninfected mice reduced vaginal HSV-2 titers,
suggesting innate protection by natural antibodies. Thus, the
sheer presence of antibodies in the vaginal mucosa contributes to
innate-like protection against HSV-2 infection. Further, naïve B cells
and antibody-secreting cells have recently been identified in
recurrent HSV-2 lesions alongside CD4+ T cells, suggesting a role
for B cells in the resolution of reactivated HSV-2 lesions (103).

B cells also contribute to protective memory responses against
HSV-2 reinfection following immunization with HSV-2 333 TK-

and live-attenuated 0DNLS strains of HSV-2 (104, 105). Several
studies have shown that type I IFNs directly and indirectly regulate
B cell proliferation, plasma cell differentiation, and isotype switching
(93, 106–109). Thus, type I IFN signaling promotes induction of
memory B cell development and vaccine efficacy. Likewise, type II
IFN responses are fundamental for B cell recruitment, priming, and
function during primary and secondary HSV-2 infection. Upon
secondary challenge, IFN-gwas shown to mediate the production of
chemokines, such as CXCL9 and CXCL10, that recruit memory B
cells that are capable of rapid antibody secretion (110). CD4+ T cell
IFN-g production following immunization also plays an important
role in antibody access to neuronal tissues to enable viral control
(111). In another study, IFN-g deficiency did not impact overall
serum IgG levels in TK– immunized mice (91). Instead, they found
that IgG1 antibodies were enriched in IFN-g-/- mice, whereas IgG2
was favoured in WT mice. Although this did not significantly
influence early protection against HSV-2, these IgG1 antibodies
were less effective in preventing HSV-2 spread to the nervous
system (91). This suggests that dysregulation of IFN-g, as
observed in individuals with recurrent HSV-2 infection (26, 28),
may support viral entry into the CNS and the establishment of
latent infection via altered isotype switching. Thus, IFN-g is critically
required to recruit and promote optimal B cell responses, while
preventing suboptimal isotype switching, to protect against
HSV-2 infection.

The Role of IFNs in HSV-2 Vaccine
Development
Mouse models of HSV-2 vaccination have largely demonstrated
potent memory T cell and neutralizing antibody responses capable
of protection following subsequent HSV-2 challenge (29, 32, 33, 91,
92, 100, 111). However, these preclinical results have not translated
to vaccine efficacy in humans during clinical trials. Several candidate
vaccines have exhibited poor efficacy in clinical trials with varying
induction of neutralizing antibody or cellular responses (112–117).
Although vaccination models in mice demonstrate the requirement
formemory CD4+ T cell-derived IFN-g for optimal protection, most
clinical studies in humans focus on neutralizing antibody titer and
provide little to no examination of CD4+ T cell specificity or IFN-g
production (113, 116–118).

Although type I IFNs may not be required for vaccine-
induced memory responses in mice (119), HSV-2 evasion of
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type I IFN signaling, demonstrated by a lack of type I IFN in
human lesion biopsies compared to mice, may reduce the
efficacy of vaccine-induced memory responses (120). As
evidenced by multiple clinical trial failures despite successful
pre-clinical models, the factors behind the development of
protective adaptive immunity to genital HSV-2 infection differ
between human and animal models. In addition, vaccination
studies in mice do not consider the role of type I IFN in regard
to the longevity of the established protective immunity, with
studies administering secondary challenge under a month
post-vaccination (119). The role of type III IFNs should also be
carefully considered, as the use of IFN-l3 as an adjuvant in a
mouse vaccination model enhanced both humoral and cellular
immune responses, resulting in improved vaccine efficacy (121).
Thus, a lack of type I, II, and III IFN induction by HSV-2
vaccination in humans may prevent the development of
Frontiers in Immunology | www.frontiersin.org 6
protective adaptive immunity and should be carefully
considered in future vaccine development.
CONCLUDING REMARKS

The development of novel preventative and prophylactic
treatments to sexually transmitted HSV-2 has been hindered
by an inability to induce a strong, protective immune response in
the genital mucosa. As summarized in Figure 1, the role of IFNs
extends beyond suppressing viral replication, but also in the
development of local protective innate and adaptive immune
responses to viral infection. Type I and II IFN signaling directly,
and indirectly through the induction of innate immunity,
regulates the development of immune memory and adaptive
responses to viral infection. Similarly, type III IFNs also play a
FIGURE 1 | IFNs regulating innate and adaptive immunity to genital HSV-2 infection. Type I and III IFNs directly suppress HSV-2 replication in the genital mucosa.
Concurrently, type I IFN signaling promotes IM recruitment and production of IL-18. This in turns stimulates NK cell IFN-g production. Type I IFNs stimulate adaptive
immunity both directly and indirectly through IM differentiation into APCs, maturation of DCs, and inducing CD4+ T cell expansion. Type I IFNs can both promote
neutrophil function, and negatively regulate innate immune responses to prevent immune-mediated pathology by suppressing neutrophil recruitment and limiting
IFN-g production by NK cells. IFN-g production, highly dependent on type I IFN signaling, promotes IgG2 antibody production, M1 macrophage polarisation and DC
maturation, which will promote CD4+ memory T cell retention via production of CCL4 and CXCL9. Type III IFNs, similar to type I IFNs, have also been shown to
suppress neutrophil activity and monocyte-mediated NK cell activation, but this is not yet demonstrated in the vaginal mucosa.
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critical role in controlling viral replication, and likely have many
additional unexplored functions in regulating innate immune
responses in the genital mucosa. Impaired type I IFN signaling
during genital herpes infection will consequently impair type II
IFN responses, which aid in the development of adaptive
immunity and are critical for HSV-2 clearance. As previously
described, dysregulated responses to IFN-g are observed in
recurrent HSV-2-infected individuals (26). Future treatments
or vaccines must restore responsiveness to IFN-g signaling and
elicit potent CD4+ T cell-derived IFN-g production due to its
multifaceted role in immune regulation and antiviral immunity.

As exemplified by this review, proper induction of type I, II,
and III IFNs is critical for the development of immunity and
protective memory against genital HSV-2 infections. The use of
IFNs as a therapeutic strategy against HSV-2 could provide a
promising avenue. In addition, a greater research focus on the
role of type III IFNs should be placed, including both their
immunoregulatory functions and their potential as a treatment
against shedding and reactivation. While type I IFNs offer
invaluable protection during the early stages of infection, their
presence can also promote pathogenic immune responses during
mucosal infection (67, 122). Type III IFN treatment of various
other viral infections, such as with SARS-CoV-2 patients and an
Frontiers in Immunology | www.frontiersin.org 7
IAV mouse model, have demonstrated it to be both safe and
effective (123, 124). Overall, both the antiviral and regulatory
functions of IFNs in vaginal HSV-2 infection must be carefully
and seriously considered in the development of novel
therapeutics, prophylactic treatments, and vaccines.
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