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The COVID-19 pandemic has created an urgent situation throughout the globe. Therefore,
it is necessary to identify the differentially expressed genes (DEGs) in COVID-19 patients to
understand disease pathogenesis and the genetic factor(s) responsible for inter-individual
variability. The DEGs will help understand the disease’s potential underlying molecular
mechanisms and genetic characteristics, including the regulatory genes associated with
immune response elements and protective immunity. This study aimed to determine the
DEGs in mild and severe COVID-19 patients versus healthy controls. The Agilent-085982
Arraystar human lncRNA V5 microarray GEO dataset (GSE164805 dataset) was used for
this study. We used statistical tools to identify the DEGs. Our 15 human samples dataset
was divided into three groups: mild, severe COVID-19 patients and healthy control
volunteers. We compared our result with three other published gene expression studies
of COVID-19 patients. Along with significant DEGs, we developed an interactome map, a
protein-protein interaction (PPI) pattern, a cluster analysis of the PPI network, and
pathway enrichment analysis. We also performed the same analyses with the top-
ranked genes from the three other COVID-19 gene expression studies. We also
identified differentially expressed lncRNA genes and constructed protein-coding DEG-
lncRNA co-expression networks. We attempted to identify the regulatory genes related to
immune response elements and protective immunity. We prioritized the most significant
29 protein-coding DEGs. Our analyses showed that several DEGs were involved in
forming interactome maps, PPI networks, and cluster formation, similar to the results
obtained using data from the protein-coding genes from other investigations. Interestingly
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we found six lncRNAs (TALAM1, DLEU2, and UICLM CASC18, SNHG20, and GNAS)
involved in the protein-coding DEG-lncRNA network; which might be served as potential
biomarkers for COVID-19 patients. We also identified three regulatory genes from our
study and 44 regulatory genes from the other investigations related to immune response
elements and protective immunity. We were able to map the regulatory genes associated
with immune elements and identify the virogenomic responses involved in protective
immunity against SARS-CoV-2 infection during COVID-19 development.
Keywords: COVID-19, differentially expressed genes, transcriptome profiling, interactome mapping,
protective immunity
INTRODUCTION

The COVID-19 pandemic is one of the most devastating infectious
diseases in recent times, spreading rapidly to more than 188
countries. As of November 20, 2021, over 256.5 million confirmed
cases were reported and nearly 5.15million deaths (1, 2). COVID-19
has also been reported in waves globally. The second wave caused an
increased number of confirmed cases andmortality in different parts
of theworld (3–5). COVID-19 infection can be categorized intomild
and severe conditions in humans (6). In the second wave, most
patients showed mild to severe symptoms. However, 15% of the
COVID-19 patients progressed towards acute or severe disease,
requiring hospitalization (7). Studies have been performed to
understand the differences between mild infections versus severe
infections in patients. In one study, viral dynamics were investigated
in 76 patients whose clinical presentation was classified as mild or
severe (8). In that study, 61% of patients (46 patients) were
categorized as mild, and the remaining 39% of patients (30
patients) were classified as severe. Patients with mild infection
cleared the virus very early, while patients with severe infection
had an extended virus-shedding phase with a high viral load (8).
Velavan and Meyer attempted to understand the host markers
associated with mild and severe infection (9). The C-reactive
protein (CRP) levels in patients with mild and severe infection
were also studied to develop a predictive marker (10). Numerous
other studies have also been performed to understand the molecular
biological aspects, immunological impact, and pathogenicity of this
infectious virus (11–13). Many efforts have beenmade to design and
develop effective diagnostics, therapeutics, and vaccines against the
virus (14–18). It is essential to understand the differences in gene
expression in patients with different levels of severity of infection to
help develop therapies against the virus.

To understand complex diseases, gene expression studies and
network analyses are of immense importance (19, 20). It aids in
understanding the underlying mechanism and genetic
vulnerability to complex diseases (21). Gene expression studies
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can also help understand the transcriptomic landscape of cells
(22). Identifying the gene regulatory networks and host immune
response dynamics can help to develop therapeutics, as the
transcriptomic profiling of cells during virus infection helps to
understand host gene regulatory networks and the host immune
response (23–25). Recently, Xiong et al. studied the
transcriptomic pattern of COVID-19 patients using peripheral
blood mononuclear cells (PBMCs) and various body fluids (26).
Ziegler et al. determined a gene expression profile in interferon-
stimulated airway epithelial cells infected by SARS-CoV-2 in
humans and non-human primates (27). In another study, Jain
et al. evaluated transcriptomic profiling of COVID-19 patients
with mild, moderate, and severe infections (28). The
differentially expressed genes were evaluated using microarray
technology in patients with different severities of the disease.
Microarray technology is a robust procedure that is commonly
used to study differentially expressed genes to understand gene
mapping, association, linkage, and expression (29, 30). However,
the number of studies comparing the whole genome
transcriptome of PBMCs isolated from COVID-19 patients
with mild and severe infections versus healthy controls is limited.

The mapping of genes related to the activation of immune
cells, immune system-related components, and protective
immunity may help understand the genomic landscape and the
modulator genes or proteins of any disease. It will also provide a
better understanding of the immunology of the disease (31). The
immune-mediated approach may aid in developing an
immunotherapeutic for the treatment of COVID-19 (32, 33).
In this study, we attempted to understand the expression of genes
related to the activation of immune cells, immune system-related
components, and protective immunity in COVID-19 patients.

This study aimed to identify the DEGs in COVID-19 patients
with mild and severe symptoms versus healthy controls. With the
information on significantly upregulated DEGs, we developed an
interactome map, a protein-protein interaction (PPI) pattern, a
cluster analysis of the PPI network, and performed pathway
enrichment analysis. We also developed a transcriptome network
profile, a PPI pattern, a cluster analysis of the PPI network, and a
pathway enrichment analysis of top-ranked genes from three other
COVID-19 gene expression studies performed by (26–28), and
compared the results with those obtained from our gene expression
study. Additionally, we identified the differentially expressed
lncRNA genes of COVID-19 patients and constructed DEG-
December 2021 | Volume 12 | Article 724936
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lncRNA co-expression networks. Finally, an attempt was made to
identify the regulatory genes related to immune response elements
and protective immunity combining the analyses from the three
previous COVID-19 gene expression studies and this study.
MATERIALS AND METHODS

Array Data Acquisition
The GEO database, an NCBI resource, was used for data
acquisition; the GSE164805 dataset was used in this study. In
this dataset, gene expression was profiled through the array. GEO
is the database where gene expression profiles are stored, and
users can download a dataset of gene expression profiles from
this database (34). We used different keywords “COVID-19”,
“Homo sapiens”, and “Microarray” to search GEO datasets. All
selected expression datasets were log-transformed expression
(log2 transformed) and then standardized. The outline of gene
expression and transcriptome landscape data analysis of patients
with COVID-19 are shown in Figure 1A.

Patients With COVID-19
All the patient data was derived from the GEO database, which is
an open database from NCBI. We divided our dataset into three:
COVID-19 patients with a mild infection, COVID-19 patients
with severe infection, and healthy control. Our dataset contains
15 human samples: five COVID-19 patients with mild infection,
five COVID-19 patients with severe infection, and five healthy
Frontiers in Immunology | www.frontiersin.org 3
control samples. Among the healthy controls, four were males,
and one was female. Four males and one female were selected for
the COVID-19 patient group with mild infection. All the patients
with severe COVID-19 infection were males (Table 1).

Data Preprocessing, Identification, and
Analysis of DEGs
To analyze raw gene expression data, we used the statistical tool
GEO2R, and this tool further uses the R/Bioconductor and
limma package (34, 35). We developed different types of
statistical plots using RStudio. The statistical plots are volcano
plots, mean difference (MD) plots, uniform manifold
approximation and projection (UMAP) plot, venn diagram,
box plot, expression density plot, adjusted p-value histogram,
moderated t-statistic quantile-quantile (q-q) plot, and mean-
variance trend plot. These plots were used to identify and analyze
DEGs using PBMCs from the different groups: COVID-19
patients with a mild infection, COVID-19 patients with severe
infection, and healthy controls (36–38). The dataset’s principal
standards were set to | log (fold change) | > 1 and p < 0.05 to
analyze and acquire significant DEGs.

Acquisition of Gene Expression Data
From Other Studies
We acquired the top-ranking genes from other studies to compare
gene expression and transcriptome profiling. We generated top-
ranking genes from various studies conducted by (26–28). Xiong
et al. performed a gene expression study using bronchoalveolar
A B

FIGURE 1 | Outline of the workflow and diverse sample types of our entire study. (A) A brief workflow of our bioinformatics study. (B) Different diverse sample types
of our complete study.
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lavage fluid and peripheral blood mononuclear cell samples. The
researchers used RNA sequencing library construct for RNA
library construction and high-throughput RNA sequencing for
gene expression studies (26). Ziegler et al. performed a gene
expression study using lung lobe, nasal polyps, ethmoid sinus
surgical tissue, and ileum samples; they used a single-cell RNA-
sequencing assay for gene expression studies (27). Jain et al.
analyzed gene expression profiles using nasopharyngeal swab
samples; they used shotgun transcriptome sequencing of RNA
for their gene expression profiling study (28). The acquired top-
ranking expressed genes of COVID-19 patients from the different
studies are shown in Table 2. Our study mapped gene expression
from the diverse sample types (Figure 1B).

The Protein Interactome—Construction
and Comparison With Other Studies
To understand the associations between the DEGs from our
dataset, we constructed a protein interactome using HuRI (39). A
protein interactome was generated through binary protein
interactions using approximately 53,000 high-quality PPIs. We
also developed a transcriptome network by acquiring data from
the other three studies (26–28).
Frontiers in Immunology | www.frontiersin.org 4
Development of PPI Networks and
Comparison With Other Experiments
To understand the associations between protein-coding DEGs, we
constructed a PPI network using the web-based tool STRING (40,
41). The cut-off criteria were fixed with a confidence interaction
score ≥ of 0.4 to obtain consistency from the dataset for the PPI
interactions. The PPI network analysis outcome was represented
by Cytoscape from STRING to better understand and
conceptualize the PPI interactions among the highly DEGs (42,
43). STRING can integrate data from several resources:
ConsensusPathDB, HitPredict, IMP, IMID, VisANT,
GeneMANIA, and I2D.

Simultaneously, we have generated a PPI network that
acquired top-ranking expressed genes of COVID-19 patients
from the other studies (26–28). We compared all PPI networks.

Development of Enrichment Cluster
Analysis of PPI Network and Comparison
With Other Studies
For cluster analysis, we generated similarities between intra-
cluster and inter-cluster. We transformed the outcomes from
Metascape (44) using the Cytoscape software.
TABLE 1 | The summary of 15 human subjects (control and COVID-19 patients) datasets and study characteristics.

Group Accession Source name Cell type Disease Gender Age

Control GSM5019817 PBMC, HC peripheral blood mononuclear cells (PBMCs) healthy male 62
Control GSM5019818 PBMC, HC peripheral blood mononuclear cells (PBMCs) healthy male 56
Control GSM5019819 PBMC, HC peripheral blood mononuclear cells (PBMCs) healthy male 54
Control GSM5019820 PBMC, HC peripheral blood mononuclear cells (PBMCs) healthy male 71
Control GSM5019821 PBMC, HC peripheral blood mononuclear cells (PBMCs) healthy female 56
Mild COVID-19 patient GSM5019822 PBMC, mild patient peripheral blood mononuclear cells (PBMCs) COVID-19 male 55
Mild COVID-19 patient GSM5019823 PBMC, mild patient peripheral blood mononuclear cells (PBMCs) COVID-19 male 44
Mild COVID-19 patient GSM5019824 PBMC, mild patient peripheral blood mononuclear cells (PBMCs) COVID-19 male 51
Mild COVID-19 patient GSM5019825 PBMC, mild patient peripheral blood mononuclear cells (PBMCs) COVID-19 male 54
Mild COVID-19 patient GSM5019826 PBMC, mild patient peripheral blood mononuclear cells (PBMCs) COVID-19 female 53
Severe COVID-19 patient GSM5019827 PBMC, severe patient peripheral blood mononuclear cells (PBMCs) COVID-19 male 54
Severe COVID-19 patient GSM5019828 PBMC, severe patient peripheral blood mononuclear cells (PBMCs) COVID-19 male 52
Severe COVID-19 patient GSM5019829 PBMC, severe patient peripheral blood mononuclear cells (PBMCs) COVID-19 male 73
Severe COVID-19 patient GSM5019830 PBMC, severe patient peripheral blood mononuclear cells (PBMCs) COVID-19 male 51
Severe COVID-19 patient GSM5019831 PBMC, severe patient peripheral blood mononuclear cells (PBMCs) COVID-19 male 60
December
 2021 | Volume 1
2 | Article 72
TABLE 2 | List of top ranking expressed genes of COVID-19 patients from the different experiments.

Sl.
No

Group
name

Sample type Assay Gene expression Reference

1. Xiong
et al.,
2020

Bronchoalveolar lavage
fluid

RNA library
construction, high-
throughput RNA
sequencing

CXCL1, CXCL2, CXCL6, CXCL8, IL 33, CXCL10/IP-10, CCL2/MCP-1,CCL3/MIP-1A,
CCL4/MIP1B

(26)

2. Xiong
et al.,
2020

Peripheral blood
mononuclear cells

RNA library
construction, high-
throughput RNA
sequencing

CXCL10, TNFSF10, TIMP1, C5, IL18, AREG, NRG1, IL10, ADA2, HK1, GAT1, PGD,
PLA2G15, CTSD, GAA, LAIR1

(26)

3. Ziegler
et al.,
2020

Lung lobe, Nasal
polyps, ethmoid sinus
surgical tissue, Ileum

Single-cell RNA-
sequencing

IFNGR2, TRIM27, NT5DC1, ARL6IP1, IFNAR1, TMPRSS2, ACE2, TRIM28, APOA1,
FABP6, ENPEP, STAT1, IFI6, IFITM1, GBP2, FI35, XAF1

(27)

4. Jain
et al.,
2020

Nasopharyngeal swabs Shotgun transcriptome
sequencing of RNA

CXCL5, CXCL12, CCL2, CCL4, CXCL10, IFIH1, IFI44, IFIT1, IL6, IL10, CSF2, TNFSF11,
TNFRSF11B, IL18R1, BMP2, BMP7, PDGFA, IFIT1B, C4BPA, CCR6, CCR22, CCR25,
IL3RA, IL11, IL19, IL21RA, SERPINE1, SERPINF2

(28)
4936
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Metascape performed cluster analysis experiments using
different databases such as InWeb_IM (45), BioGrid (46), and
OmniPath (45), and the MCODE algorithm. In this study, the
relationships’ capture condition is a subset of enriched terms
selected and rendered as a network plot. In this case, the tool has
a condition with a similarity of > 0.3 connected by edges. The
terms of selection were set with the best p-values from each of the
20 clusters.

We also developed different clusters of PPI networks using top-
ranking expressed genes of COVID-19 patients from the studies
(26–28). We compared all the cluster analyses of the PPI network.

Functional Pathway Enrichment Analysis
and Comparison With Other Studies
Pathway enrichment analysis was performed using Metascape
analysis (45) with the 29 significantly expressed genes that use
different ontology sources: GO biological processes, KEGG
pathway, Reactome gene sets, and so on. The study used a
term with a p-value < 0.01, with a minimum count of 3. The
q-values were computed using a significant process, which
accounts for multiple tests. This process is called the
Benjamini-Hochberg procedure (47). Similar to the previous
analysis, we performed pathway enrichment analysis using top-
ranking expressed genes of COVID-19 patients from the
different studies (26–28). We compared all the results of the
pathway enrichment analysis.

Identification of Differentially Expressed
LncRNA Genes in COVID-19 Patients and
Cross-Verification of the Construction of
the LncRNA and the DEG-LncRNA
Co-Expression Networks
We mapped the top-ranking differentially expressed lncRNA
genes from the 250 DEGs. Using top-ranking differentially
expressed lncRNA genes and other DEGs, we constructed
DEG-lncRNA pairs networking using the Cytoscape software
(44). In this case, the Cytoscape MCODE plug-in was used (48).
Before network construction, we cross-verified the lncRNA
through a non-coding RNA sequence database, RNAcentral
(49), a database for subcellular localization of lncRNAs.

Gene Function Annotation and
Categorization of Regulated Genes
Related to Immune Response Elements
And Protective Immunity From DEGs
We attempted to map the genes from the DEGs with
immunomodulatory and protective immunity properties. We
used NCBI Genbank (50) and GeneCards (51, 52).

RESULTS

Data Acquisition of Patients With
COVID-19 and DEG Profiling
Our study analyzed the gene expression profiles and transcriptome
landscape of the GSE164805 dataset from the GEO database. The
Agilent-085982 Arraystar human lncRNAV5microarray platform
Frontiers in Immunology | www.frontiersin.org 5
was used for this expression analysis. In this study, PBMCs were
taken fromCOVID-19 patients withmild and severe infections and
healthy controls for gene expression analysis. Our dataset
containing 15 human samples in three groups (the two COVID-
19 patients groups and one healthy control group) (Table 1). The
volcano plot is a statistical plot, and it is a type of scatter plot that
shows p-value (statistical significance) against fold change
(magnitude of change). The top 250 DEGs were ranked in this
study (Tables S1–S3). Table S1 describes the ID, p-value, F, and
gene description of the top 250 DEGs. Table S2 describes the top
250 DEG sequences, andTable S3 represents the accession number
and chromosome of the top 250 DEGs. The developed volcano plot
of DEGs, and the significant genes showed the satisfactory value
which was created using the dataset (Figure 2). Using the cut-off
criteria (p < 0.05 and |log2 FC|>1), the upregulated DEGs were
acquired. We next developed the DEG volcano plot using the data
of control vs. COVID-19 patients with mild infection (Figure 2A).
Similarly, we also developed another DEG volcano plot using the
data of COVID-19 patients with severe infection vs. control healthy
volunteers (Figure 2B). At the same time, we illustrated the DEG
volcano plot comparing the data of COVID-19 patients with mild
vs. severe infections (Figure 2C). In all cases, DEGs of volcano plots
were adjusted with a p-value cut-off of 0.05. Red dots represent
the upregulated DEGs, and the blue dots represent the
downregulated DEGs.

For the visualization of the DEGs, we also developed an MD
plot. The plot helps to demonstrate the log2 fold change against
average log2 expression values, and here, the adjusted p-value
cut-off was 0.05. This study also depicted an MD plot to
understand the log2 fold change against average log2
expression values (Figure 3). Figure 3A shows the DEG MD
plot using the data of control vs. COVID-19 patients with mild
infection. Figure 3B depicts the DEG MD plot using COVID-19
patients with severe infection vs. control healthy volunteers.
Figure 3C depicts the DEG MD plot using the data of
COVID-19 patients with mild vs. severe infections. In all cases,
red dots represent the upregulated DEGs, and blue dots represent
the downregulated DEGs.

For better visualization, we represented the DEG data using
several other statistical plots. First, we have developed an UMAP
plot (Figure 4A). It is a dimension reduction procedure useful
for visualizing samples that are related to each other. Our
analysis detected the control, mild, and severe samples. We
depicted one Venn diagram, which shows the common DEGs
among the three groups the “COVID-19 patient with severe
infection vs. control healthy volunteers” groups and the “control
vs. COVID-19 patients with mild infection” groups show the
10794 DEGs those significant genes that are common to both
contrasts (Figure 4B).

Similarly, 2338 DEGs were typical for both of our groups.
Therefore, we depicted a box plot from the dataset, which
informs us of the distribution of the selected samples’ values
for this study (Figure 4C). The data distribution indicated that
the data could be useful and suitable for the DEGs analysis. We
also analyzed our dataset and developed an expression density
plot of the distribution of values of the DEGs of the three groups
(Figure 4D). Another adjusted p-value histogram that was
December 2021 | Volume 12 | Article 724936
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developed showed that the p-value in the experiment
is identical to that of the top DEGs. In this histogram, the
p-values are relatively consistent (Figure 4E). We also illustrated
the moderated t-statistic q-q plot quantiles of our DEGs’
data sample against the theoretical quantiles of a Student’s
t-distribution (Figure 4F). In our study, values recline along
a straight line, which indicates that the investigation and
data of the DEGs are ideal. Therefore, the values for the
DEGs of our sample quantiles follow the distribution of
theoretical quantiles.

Finally, the mean-variance trend plot, which shows the mean-
variance relationship of the gene expression data has been shown
(Figure 4G). Each dot represents a gene, and the statistical plot is
described after fitting a linear model. The average log expression
line shows that the values of the early DEGs are highly dense. We
have listed the significant DEGs (both protein-coding genes and
long non-coding RNAs) from our studies in Table 3. From the
significant DEGs, we found several protein-coding genes and
Frontiers in Immunology | www.frontiersin.org 6
lncRNA. The percentage of significantly expressed protein-
coding genes and lncRNAs is depicted through a pie diagram
(Figure 5A). Table S4 describes all protein-coding genes from the
250 DEGs and their NCBI accession numbers and gene names.

Gene Expression Data of the Different
COVID-19 Patients From the Other Studies
The acquired top-ranking expressed genes of COVID-19 patients
from the various studies are shown in Table 2. The number of
protein-coding genes in our investigation is represented through
a bar diagram in Figure 5B. This figure also shows the total
numbers of top-ranking protein-coding genes from the
other studies.

Construction of the Protein Interactome
Map and Comparison With Other Studies
Protein interactions within a cell can be represented through a
protein interactome map, providing global insights into genome
A B C

FIGURE 3 | Visualization of identified DEGs using MD. (A) DEGMD plot using the data of control vs. mild COVID-19 patients. (B) DEGMD plot using the data of
severe COVID-19 patients vs. control healthy volunteers. (C) DEGMD plot using the data of mild COVID-19 patients vs. severe COVID-19 patients. In this figure, red
dots denote upregulated DEGs, and blue dots denote downregulated DEGs.
A B C

FIGURE 2 | Visualization of identified DEGs using volcano plots. (A) DEG volcano plot using the data of control vs. mild COVID-19 patients. (B) DEG volcano plot
using the data of severe COVID-19 patients vs. control healthy volunteers. (C) DEG volcano plot using the data of mild COVID-19 patients vs. severe COVID-19
patients. In this figure, red dots denote upregulated DEGs and blue dots denote downregulated DEGs.
December 2021 | Volume 12 | Article 724936
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function and cellular organization. It will provide a
comprehensive understanding of the interactome networks of
SARS-CoV-2-infected human cells. We developed a protein
interactome with protein-coding genes from the 250 DEGs in
our study (Figure 6A). We found that the number of interactions
was 2901 and the number of proteins that participated in the
interactions was 453, and the average node degree was 12.53.
Next, we depicted the protein interactome of the central cluster
from our previous study (Figure 6B). We also portrayed the
protein interactome using the data from the Xiong et al. study
where the samples were the bronchoalveolar lavage fluid
(Figure 6C). We found that the number of interactions was
76, the number of proteins that participated in the interactions
Frontiers in Immunology | www.frontiersin.org 7
was 35, and the average node degree was 4.06. We then
illustrated the protein interactome with the top-ranked genes
of the Xiong et al. study from the PBMC samples (Figure 6C).
Here, we found that the number of interactions was 103, the
number of proteins that participated in the interactions was 62,
and the average node degree was 3.11. Similarly, we represented
one protein interactome with data from the Ziegler et al. study
where the samples were collected from the lung lobe, nasal
polyps, ethmoid sinus surgical tissue, and ileum (Figure 6E).
We found that the number of interactions was 2613, the number
of proteins that participated in the interaction was 504, and the
average node degree was 10.15. Finally, we have illustrated the
protein interactome with the top-ranked genes of the Jain et al.
A B C

D E F

G

FIGURE 4 | Different types of statistical plots were developed from our study. (A) UMAP plot visualizing samples related to each other. (B) Venn diagram shows the
groups’ common genes. (C) The box plot shows the distribution of the selected samples’ values for this study. (D) The expression density plot shows the distribution
of values of the DEGs of the three groups. (E) The adjusted p-value histogram represents the p-value in the experiment (the top DEGs). (F) The moderated t-statistic
q-q plot shows our DEGs data sample against the theoretical quantiles a Student’s t distribution. (G) The mean-variance trend plot shows the mean-variance relationship
of the gene expression data.
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study that used nasopharyngeal swabs as samples (Figure 6F).
We found that the number of interactions was 437, the number
of proteins that participated in the interaction was 128, and the
average node degree was 6.56.

PPI Network Analysis and Comparison
With Other Studies
Integrative gene expression analysis and creating the PPI
networks from the DEGs coding proteins are essential to
understanding the diseases’ molecular pathology. The PPI
network analysis also showed the functional and physical
associations among DEGs’ coding proteins of other samples of
COVID-19. From this analysis we depicted a PPI using
significant protein-coding genes from the 250 DEGs in our
study (Figure 7A). At the same time, we have also developed a
PPI using the top-ranked genes of the Xiong et al. study that used
bronchoalveolar lavage fluid as samples (Figure 7B). Similarly,
we depicted a PPI using the top-ranked genes of the Xiong et al.
study using the PBMCs as samples (Figure 7C). Again our study
Frontiers in Immunology | www.frontiersin.org 8
illustrates a PPI using the top-ranked genes from the Ziegler et al.
study (Figure 7D). Finally, we depicted a PPI using the top-
ranked genes of the Jain et al. study (Figure 7E).

Enrichment Cluster Analysis of the
PPI Network and Comparison With
Other Studies
The enrichment network cluster shows the intra-cluster and inter-
cluster similarities from the input genes involved in different
biological processes, enzymatic functions, and protein
localization. It shows similarities of the other cluster proteins
from the DEGs as per their function. In this study, we have
developed a PPI network enrichment cluster using significant
protein-coding genes from the 250 DEGs (Figure 8A). At the
same time, our analysis represents the enrichment cluster of the PPI
network using the top-ranked genes of the Xiong et al. study where
bronchoalveolar lavage fluid was used as samples (Figure 8B).
Again, we depicted the enrichment cluster of the PPI network using
data from the Xiong et al. study that used the PBMC as samples
(Figure 8C). Similarly, we developed a PPI network enrichment
cluster using data from the Ziegler et al. study (Figure 8D). Finally,
the analysis depicted the enrichment cluster of the PPI networks
using data from the Jain et al. study (Figure 8E).

Functional Pathway Enrichment Analysis
and Comparison With Other Studies
This analysis helps researchers provide mechanistic insights into
the DEGs (gene list) generated from genome-scale (omics)
experiments. In this pathway enrichment analysis, gene list
enrichment was identified in the COVID-19 categories and
transcription factor targets.

At first, we have depicted the gene list enrichments in COVID-
19 categories from the 250 DEGs of our study (Figure 9A).
Subsequently, we developed the gene list enrichments in COVID-
19 categorieswith the top-ranked genes of the Xiong et al. study that
used bronchoalveolar lavage fluid as samples (Figure 9B). Similarly,
we illustrated the gene list enrichments in COVID-19 categories
with the top-ranked genes of the Xiong et al. study that used PBMC
samples (Figure 9C). Then, we have developed the gene list
TABLE 3 | Significantly upregulated protein-coding genes DEGs from three
experimental human groups of our dataset.

Sl. No. Gene name P-value F-value

1. CERKL 1.95e-10 135
2. EIF4G1/EIF3G/EIF3E 1.94e-09 97.9
3. RPL18A 2.14e-10 133.3
4. EXOSC2/EXOCS5 2.86e-09 92.7
5. STRN4 5.94e-10 115.7
6. RPL3L/RPL35/RPL1BA/RPL19 1.37e-10 141.8
7. RPS3/RPS16 2.14e-10 133.3
8. SMTN 2.03e-09 97.3
9. FGF1 3.73e-10 123.4
10. PPP1R12A 2.63e-09 93.8
11. CNNM2 9.07e-10 109
12. AP2M1 1.68e-09 100
13. EDN1 4.12e-10 121.7
14. ARHGEF1 2.21e-12 248.8
15. DUS1L 1.49e-09 101.7
16. RBM5 3.73e-10 123.4
17. MPHOSPH6 2.99e-09 92.2
18. SKIV2L2 2.86e-09 92.7
A B

FIGURE 5 | Significantly expressed genes from our experiments and other experiments. (A) The percentage of significantly expressed protein-coding genes and
lncRNAs. (B) Total no. of top-ranking protein-coding genes from our study and other studies.
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enrichments in COVID-19 categories with the top-ranked genes of
the Ziegler et al. study (Figure 9D). Finally, we have developed the
gene list enrichments in COVID-19 categories with the top-ranked
genes of the Jain et al. study (Figure 9E). We have developed the
gene list enrichment in transcription factor targets from the 250
DEGs of our study (Figure 10A). Our analysis illustrates the gene
Frontiers in Immunology | www.frontiersin.org 9
list enrichment in transcription factor targets of the top-ranked
genes of the Xiong et al. study that used bronchoalveolar lavagefluid
as samples (Figure 10B). Similarly, we have depicted the identified
gene list enrichment in transcription factor targets of the top-
ranked genes of the Xiong et al. study where the samples were
PBMCs (Figure 10C). At the same time, our analysis represents
A B C

D E

F

FIGURE 6 | The protein interactome map constructed using protein-coding DEGs from our study and other studies. (A) The protein interactome map with
protein-coding genes from the 250 DEGs in our research. (B) The protein interactome map of the central cluster from our study was identified from (A). (C) The
protein interactome map from Xiong et al. study where the samples were the bronchoalveolar lavage fluid. (D) The protein interactome map with the top-ranked
genes of the Xiong et al. study from the PBMC samples. (E) The protein interactome map with data from the Ziegler et al. study where the samples were collected
from the lung lobe, nasal polyps, ethmoid sinus surgical tissue, and ileum. (F) The protein interactome map with the top-ranked genes of the Jain et al. study that used
nasopharyngeal swab sample.
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FIGURE 7 | The PPI network constructed using protein-coding DEGs from our study and other studies. (A) The PPI network with significant protein-coding DEGs in
our research. (B) The PPI network from Xiong et al. study where the samples were the bronchoalveolar lavage fluid. (C) The PPI network with the top-ranked genes
of the Xiong et al. study from the PBMC samples. (D) The PPI network with data from the Ziegler et al. study and the gene expression data was collected from the
lung lobe, nasal polyps, ethmoid sinus surgical tissue, and ileum. (E) The PPI network with the top-ranked protein-coding genes used a nasopharyngeal swab sample
(the Jain et al. study).
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FIGURE 8 | The enrichment cluster analysis of the PPI network using protein-coding DEGs from our study and other studies. (A) The enrichment cluster analysis of
the PPI network with significant protein-coding DEGs in our research. (B) The enrichment cluster analysis of the PPI network from Xiong et al. study where the
samples were the bronchoalveolar lavage fluid. (C) The enrichment cluster analysis of the PPI network with the Xiong et al. study’s top-ranked genes from the PBMC
samples. (D) The enrichment cluster analysis of the PPI network with data from the Ziegler et al. study where the samples were collected from the lung lobe, nasal
polyps, ethmoid sinus surgical tissue, and ileum. (E) The enrichment cluster analysis of the PPI network with the top-ranked protein-coding genes of the Jain et al.
study that used nasopharyngeal swab sample.
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the gene list enrichment in transcription factor targets of the top-
ranked genes of Ziegler et al. study (Figure 10D). At last,
this analysis depicted the gene list enrichment in transcription
factor targets of the top-ranked genes of the Jain et al.
study (Figure 10E).

Identification of Differentially Expressed
LncRNA Genes In COVID-19 Patients and
Cross-Verification of the Construction of
the LncRNA and DEG-lncRNA
Co-Expression Networks
Table S5 describes differentially expressed lncRNA genes
from the 250 DEGs and their NCBI accession number and
gene name. Table 4 represents the significantly upregulated
Frontiers in Immunology | www.frontiersin.org 12
DEGs lncRNA genes from the three patients groups in our
dataset, and GEO2R was used to identify it. Furthermore, we
cross-verified lncRNAs and identified 24 significant lncRNA
genes, which are recorded in Table 4. We developed the co-
expression networks of the protein expression genes of DEG and
lncRNA (Figure 11).

Gene Function Annotation and
Categorization of Regulated Genes Related
to Immune Response Elements and the
Protective Immunity From the DEGs
Our gene function annotation and categorization show the genes
associated with the immune response elements and protective
immunity from DEGs (Figure 12). The genes we identified for
A B

C D

E

FIGURE 9 | The functional pathway enrichment analysis in COVID categories using protein-coding DEGs from our study and other studies. (A) Functional pathway
enrichment analysis in COVID-19 categories from the 250 DEGs of our study. (B) Functional pathway enrichment analysis in COVID-19 categories with the top-
ranked genes of the Xiong et al. study that used bronchoalveolar lavage fluid sample. (C) Functional pathway enrichment analysis in COVID-19 categories with the
top-ranked genes of the Xiong et al. study that used PBMC samples. (D) Functional pathway enrichment analysis in COVID-19 types with the Ziegler et al. study.
(E) Functional pathway enrichment analysis in COVID-19 categories with the Jain et al. study.
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the activation of immune cells and components, and protective
immunity correlate with the other networks (Table 5).
DISCUSSION

Main Findings of the Study
High-throughput technologies such as DNA microarrays and
next-generation sequencing are beneficial for discoveries in the
biomedical field. Gene expression profiling using microarray is a
promising way to gain insight into the intrinsic molecular
pathways, which helps to understand the complex machinery
of biological systems (98, 99). We used these gene expression
profiling methods to identify genes that are differently expressed
in the PBMCs of COVID-19 patients with mild or severe
infections compared with healthy volunteers. Zhang and Diao
submitted the dataset in the GEO database. They have illustrated
Frontiers in Immunology | www.frontiersin.org 13
the antiviral and inflammation mechanisms related to the
immune response associated with severe COVID-19 patients
(100). However, using their dataset, we have analyzed the dataset
differently. Our study investigated the DEGs in PBMCS of five
patients having mild COVID-19, five patients with severe
COVID-19, and five healthy volunteers using the GSE164805
dataset. We opine that our findings will help better understand
the pathogenesis of SARS-CoV-2 and the host gene response
during infection.

Here we have performed a comprehensive analysis of the
DEGs and comparison of three groups of human subjects using
advanced methods and statistical techniques. We extracted the
250 top-ranked DEGs using GEO2R and further evaluated them.
Our study listed the significant DEGs (both protein-coding genes
and long non-coding RNAs), and some of the significant DEGs,
CERKL, RPL18A, STRN4, RPL3L/RPL35/RPL1BA/RPL19,
RPS3/RPS16, AP2M1, EDN1, ARHGEF1, DUS1L, RBM5, etc.
A B
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FIGURE 10 | The functional pathway enrichment analysis in transcription factor targets using protein-coding DEGs from our study and other studies. (A) Functional
pathway enrichment analysis in transcription factor targets from the 250 DEGs of our study. (B) Functional pathway enrichment analysis in transcription factor targets
with the top-ranked genes of the Xiong et al. study that used bronchoalveolar lavage fluid sample. (C) Functional pathway enrichment analysis in transcription factor
targets with the top-ranked genes of the Xiong et al. study that used PBMC samples. (D) Functional pathway enrichment analysis in transcription factor targets with the
top-ranked genes of the Ziegler et al. study. (E) Functional pathway enrichment analysis in transcription factor targets with the top-ranked genes of the Jain et al. study.
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At the same time, our study also fetched the significant genes
with three other COVID-19 gene expression studies [(Xiong
et al. (26), Ziegler et al. (27), and Jain et al. (28)] and compared
with their expressed genes. The analysis showed the significant
Frontiers in Immunology | www.frontiersin.org 14
genes expressed in other studies are CXCL1, CXCL6, CXCL8,
IL33, TIMP1, IL18, IFNGR2, TRIM27, TRIM28, IFI6, XAF1,
CXCL5, IFIT1, IL6, IL10, and CSF2, etc. The analysis will help to
understand the DEGs in mild and severe COVID-19 patients.

Our protein interactome map analysis found that the number
of interactions was 2901, the number of proteins that
participated in the interactions was 453, and the average node
degree was 12.53. Also, we developed a protein interactome from
Xiong et al.’s study using bronchoalveolar lavage fluid. We found
that the number of interactions was 76, the number of proteins
that participated in the interactions was 35, and the average node
degree was 4.06. Similarly, the study from the same authors but
with different samples (from the PBMC samples) was used to
develop a protein interactome map. The analysis revealed that
the number of interactions was 103, and the number of proteins
that participated in the interactions was 62. The average number
of proteins that participated in the interactions node degree
was 3.11.

Similarly, the developed protein interactome from the study
of Ziegler et al. informed us the interaction proteins that the
number of interactions was 2613, the number of proteins that
participated in the interaction was 504, and the average node
degree was 10.15. Finally, we developed a protein interactome
from the study of Jain et al. We found that the number of
interactions was 437, the number of proteins that participated in
the interaction was 128, and the average node degree was 6.56.
The analysis provides global insights into genome function and
cellular organization in COVID-19 patients, indicating
interactome networks in COVID-19 patients.
TABLE 4 | Significantly upregulated lncRNA genes from DEGs between three
experimental human groups of our dataset.

Sl. No. Gene name P- value F -value

1. LOC101929613 2.60e-15 612.8
2. LOC105370401 6.88e-15 538.5
3. TMEM252-DT 2.91e-11 175.4
4. HOXC13-AS 3.12e-11 173.7
5. SEMA3B-AS 4.59e-11 164.8
6. MIR210HG 5.25e-11 161.8
7. DLEU2 5.71e-11 159.9
8. MEF2C-AS2 6.53e-11 157
9. LINC01639 3.58e-10 124.1
10. SNHG20 6.75e-10 113.6
11. SLC25A48-AS1 3.86e-10 122.8
12. TALAM1 3.88e-10 122.8
13. LOC105370619 4.66e-10 119.6
14. UICLM 4.96e-10 118.6
15. NRSN2-AS1 5.49e-10 116.9
16. GNAS 7.29e-10 112.4
17. LINC02612 1.32e-09 103.5
18. LINC02582 1.46e-09 102
19. LINC02000 1.47e-09 101.9
20. LINC01393 1.48e-09 101.7
21. LINC01191 2.19e-09 96.3
22. N4BP2L2 2.71e-09 93.4
23. LINC01920 2.78e-09 93.1
24. CASC18 3.14e-09 91.5
FIGURE 11 | The co-expression networks of the protein expression genes of DEG and lncRNA.
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The enrichment cluster analysis of the PPI network showed
that the MPHOSPH6, RPL19, EIF3G, EIF3E, RPL1BA, EXOCS5,
EXOSC2, RPL3L, RPS3, RPS16, RPL35, EIF4G1, SKIV2L2 firmly
formed the central cluster of this PPI network. However, some
side clusters were noted associated with the proteins like
SKIV2L2, EIF3G, EXOSC2, and RPS16. At the same time, our
analysis identified 24 significant lncRNA genes, which will help
understand the differentially expressed lncRNA genes and help
understand future researchers more about the SARS-CoV-2-
infected human cells. Moreover, we found six lncRNAs
(TALAM1, DLEU2, and UICLM CASC18, SNHG20, and
GNAS) involved in the protein-coding DEG-lncRNA network.
This finding is significant for the next-generation biomarker
detection point of view.

Finally, the analysis of gene function annotation and
categorization of regulated genes related to immune response
elements found that several genes are directly or indirectly
associated with the inter immunity defense mechanism such as
EDN1 MPHOSPH6, RPL19. EDN1 gene is associated with TLR4
response (54). At the same time, RPL19 might be related to the
TLR3 receptor-associated signaling and endorses cytokine
Frontiers in Immunology | www.frontiersin.org 15
secretion (101). However, our analysis (our gene and the genes
from the other study) found that genes are associated with
cytokine up-regulation.

Findings and Their Direct Implications
The study generated an interactome map, a PPI pattern, a cluster
analysis of the PPI network, a pathway enrichment analysis from
our research, and other experimental investigations to
understand the gene expression and transcriptome profiling of
SARS-CoV-2-infected human cells in mild and severe COVID-
19 patients. We identified the differentially expressed lncRNA
genes of COVID-19 patients and constructed the DEG-lncRNA
co-expression networks. We also found six lncRNAs that are
involved in the protein-coding DEG-lncRNA network
generation. The attempt will help to understand the lncRNA
expression in mild and severe COVID-19 patients. These
lncRNAs might serve as next-generation potential biomarkers
for COVID-19 patients. Presently, one significant objective
worldwide is to understand the dysregulation of immune
response and inflammation, immunity, and intervention in
COVID‐19 patients. We attempted to understand the gene
FIGURE 12 | The genes associated with the immune response elements and protective immunity from DEGs.
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regulation of immune cells and their components and the
protective immunity genes using our DEGs data and other
COVID-19 studies done in different parts of the world.

Context of this Study and Other
Studies in the Field
Previously, to understand the host transcriptional responses of
SARS-CoV-2, an interactome study was performed and was
reported by Messina et al. (102). Their study suggested that the
Frontiers in Immunology | www.frontiersin.org 16
host interactome is linked to the S-glycoprotein of the virus mainly
via the innate immunitymachinery, such as cytokines, chemokines,
and TLRs. We, too, found in our interactome study that several
proteins from COVID-19 patients are linked to innate immunity
and the regulation of protective immunity. However, our report is
more detailed and unique because our analysis of protein-coding
DEGs considers data not only from our group but from many
interactome studies from around the globe, and the patient samples
from which the data were obtained were diverse. Recently, Gordon
TABLE 5 | Annotated genes related to the activation of immune cells and components as well as for protective immunity function from our analysis and other experiments.

Sl. No. Gene name Remark Ref.

Protein coding gene (our bioinformatics study)
19. RPL18A Activation role of T cell proliferation (53)
20. EDN1 Involve in TLR4 responses (54)
21. ARHGEF1 Antigen-specific antibody production/humoral immune response (55)
Protein coding gene [study from (26)]
1. CXCL1 Regulation of IL-1b level within tissue (56)
2. CXCL2 Self-regulated neutrophil recruitment and function (57)
3. CXCL6 Act as potent pro-inflammatory neutrophil chemoattractant and activator component (58)
4. CXCL8 Synthesis of IL-8 and important role in systemic inflammatory response syndrome (59)
5. IL33 Synthesis of intracellular IL-33 may play role in pro-inflammatory signaling (60)
6. CXCL10 Regulator of the interferon response, specially attracts activated T lymphocytes (61)
7. MCP-1 Activation and migration of leukocytes (62)
8. IP-10 Secretion of cytokines (63)
9. CCL3 Induction of antigen-specific T cell responses (64)
10. CCL4 Activation of antigen-presenting cells and B cells (65)
11. TNFSF10 Role in adaptive immune system (66)
12. TIMP1 Stimulates the immune response in lung cells (67)
13. C5 Protease function as membrane attack complex (MAC) (68)
14. IL18 Regulating the T helper responses and stimulating interferon gamma production (69)
15. NRG1 Regulatory role in neuroinflammation (70)
16. IL10 Enhance the B cell survival, proliferation, and antibody production (71)
17. ADA2 Regulation of immune cells (neutrophils, monocytes, NK cells and B cells) activation and survival (72)
18. GAT1 Decreases T cell proliferation (73)
19. LAIR1 Regulates the inhibition of NK cell–mediated cytotoxicity (74)
Protein coding gene [study from (27)]
1. IFNGR2 Regulation of NK cell activity and B cell function (75)
2. TRIM27 Lowering the function of IFN and pathogen-recognition receptors (76)
3. TMPRSS2 Neutralizing antibodies by protease activity (77)
4. TRIM28 Regulation of IFN-b, IFN-g and cytokine expression in infected lung cells (78)
5. APOA1 Involved in inflammatory and immune response regulation (79)
6. STAT1 Maturation, stability of cytotoxic and helper T cells (80)
7. IFI6 It delays type I interferon-induced apoptosis in cells (81)
8. IFITM1 Regulate the CD4+ T helper cell differentiation (82)
9. GBP2 Innate immune functions against intracellular pathogens (83)
10. XAF1 Helps in IFN-b-induced apoptosis (83)
Protein coding gene [study from (28)]
25. CXCL5 Encodes receptor protein to recruit neutrophils (84)
26. CXCL12 Coded protein paly role in immune surveillance, inflammation response. (85)
27. CCL2 Activation and migration of leukocytes (86)
28. CCL4 Activation of antigen-presenting cells and B cells (65)
29. IFIH1 Involved in immune response and antiviral activity (87)
30. IFIT1 Encoded protein may inhibit viral replication and translational initiation (88)
31. IL6 Encoded cytokines functions in inflammation and the maturation of B cells (89)
32. IL10 It lowering the expression of Th1 cytokines, MHC class II Ags, and costimulatory effects on macrophages (90)
33. CSF2 It controls the production, differentiation, and function of granulocytes and macrophages (91)
34. TNFSF11 Regulation of T cell dependent immune response (92)
35. BMP2 It regulate thymic T cell development, maintain TR cell (93)
36. C4BPA It controls the activation of the complement cascade (94)
37. CCR6 Regulate the migration and recruitment of dendritic and T cells (95)
38. IL11 Stimulate the T-cell-dependent development of immunoglobulin producing B cells (96)
39. IL19 Encoded cytokine induces the expression of IL6 and TNF-alpha and helps in inflammatory responses (97)
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et al. prepared an interactome map to understand the protein-
protein interactions between human proteins and this virus (103).
Simultaneously, Bojkova et al. performed proteomics analysis of
host cells infected with SARS-CoV-2. This study revealed new drug
targets that could be helpful for drug repurposing to combat this
disease (104). The investigation also unfolds new therapeutic targets
and will be beneficial for discovering therapeutic.

The construction of the PPI network from patient samples
has an immense advantage, which will help to understand disease
mechanisms (105–107). Zhang et al. recently developed the
SARS-CoV-2 virus-human PPI network using the random
walk model to understand pathological biomarkers (108). We
have developed a human PPI network from independent studies
utilizing samples collected from COVID-19 patients presenting
mild and severe symptoms. It comprehensively comprises
upregulated protein-coding genes and PPIs in COVID-19
patients from an entire proteome landscape. Enrichment
cluster analysis shows densely interlinked regions of proteins
as intra-cluster and inter-cluster, which helps us understand
densely interlinked regions of proteins in the global proteome
landscape and the proteome related to innate immunity and
protective immunity in response to SARS-CoV-2 infection. We
used the MCODE plug-in from Cytoscape to construct the PPI
network and enrichment cluster analysis.

We performed functional pathway enrichment analysis to
understand both the COVID-19 regulated genes and the target
genes. We report several genes that are regulated in COVID-19
and target genes related to immune cell activation, such as the T-
and B-cell-activating protein-coding genes (109). Other
researchers have also performed pathway enrichment analysis
to understand the lncRNA prognostic signature of ovarian
cancer (110). Our functional pathway enrichment analysis may
inform us about the significant immune marker genes in
COVID-19 patients. Our results also corroborate with the
study of Wu et al., who performed functional enrichment
analysis to understand the possible role of naïve B cells from
the lungs of patients with severe immune responses in COVID-
19 patients (111). Our protein-coding DEG-lncRNA co-
expression network pattern revealed the prospective function
of differentially expressed lncRNAs in the context of COVID-19.
Recently, Hu et al. developed co-expression network
construction using DEG-lncRNA pairs to understand lncRNAs
and proteins in hypertrophic cardiomyopathy (112). Our
analysis of protein-coding DEG-lncRNA pairs revealed that six
lncRNA have participated in the protein-coding DEG-lncRNA
network (TALAM1, DLEU2, UICLM, CASC18, SNHG20, and
GNAS). These essential lncRNAs may serve as potential
biomarkers for COVID-19. However, further functional studies
in a larger cohort of patients need to be investigated.

It is critical to understand the dysregulation of immune
response and inflammation, immunity, and intervention in
COVID‐19 patients (113) . Recently, Zhou et al. mapped DEGs
involved in innate immunity from COVID-19 patients (25). We
have annotated and categorized the function of genes related to
the regulation of immune elements and protective immunity by
the analysis of DEGs in COVID‐19; a list of the immune system’s
Frontiers in Immunology | www.frontiersin.org 17
regulatory genes and regulation of immune-related transcripts in
COVID-19 is presented.

Potential Interpretations of the Study
The potential interpretations of the study can be understood in
the following points. Firstly, we know the gene expression and
transcriptome profiling of mild and severe COVID-19 patients.
Secondly, our analysis of the noted six essential lncRNAs might
serve as nest generation biomarkers for COVID-19. However,
further functional studies in a larger cohort of patients need to be
investigated. Finally, the study prepared a detailed list of the
immune system’s regulatory genes and immune-related
transcripts in COVID-19, which has immense implications for
understanding the COVID-19 dysregulation of immune
response and interference in COVID‐19 patients.

Limitations of the Study
The study suffers from the limitation that the sample size is
relatively small due to the available datasets. The dataset we
have used for the study (GSE164805) contains fifteen human
subjects (five control, five mild COVID-19 patients, and five
severe COVID-19 patients). The dataset was submitted by other
researchers (100). The data set is limited, as it has been collected
only from peripheral blood mononuclear cells (PBMC) samples
from three groups of human subjects (control, mild COVID-19
patients, and severe COVID-19 patients). A similar dataset is not
available in the database that uses the PBMC for their analysis
fromCOVID-19 patients and compares with control. It was noted
that this dataset was the only first dataset in the GEO database
which captured the gene expression data from three groups of
human subjects and informed differential gene expression of both
three groups of patients. The gene expression data was analyzed
using amicroarray platform. The dataset was initially submitted in
the database early (January 2021) when no gene expression data
were available from both three groups of COVID-19 patients. In
this point of view, it is a very significant dataset. However, as the
sample size was small, we compared our result with three other
COVID-19 gene expression studies, which were performed by
Xiong et al. (26), Ziegler et al. (27), and Jain et al. (28).
CONCLUSION

Here, we report the DEG data from COVID-19 patients that will
help to understand global gene expression in COVID-19 patients.
The data provide valuable information about the immune
response in patients infected with SARS-CoV-2, highlighting the
molecular genetic mechanisms related to immune elements and
protective immunity against COVID-19. We understand that a
limited number of patient datasets were analyzed to map the
DEGs. However, in the future, we will plan to perform a scRNA-
seq study in this direction, whichwill help better to understand the
underlying gene expression mechanism of severe COVID-19
patients compared to mild patients. We believe that similar
studies with more patient datasets from other parts of the world
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will significantly augment our understanding of this complex
host-virus interaction during COVID-19 disease progression
and will help to map the genes involved in protective immunity.
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