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Forkhead box protein 3 (Foxp3+)-expressing regulatory T (Treg) cells are a unique CD4+T
cell subset that suppresses excessive immune responses. The epigenetic plasticity and
metabolic traits of Treg cells are crucial for the acquisition of their phenotypic and
functional characteristics. Therefore, alterations to the epigenetics and metabolism
affect Treg cell development and function. Recent evidence reveals that altering the
metabolic pathways and generation of metabolites can regulate the epigenetics of Treg
cells. Specifically, some intermediates of cell metabolism can directly act as substrates or
cofactors of epigenetic-modifying enzymes. Here, we describe the metabolic and
epigenetic features during Treg cell development, and discuss how metabolites can
contribute to epigenetic alterations of Treg cells, which affects Treg cell activation,
differentiation, and function.
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INTRODUCTION

Forkhead box protein 3 (Foxp3+)-expressing regulatory T (Treg) cells are a subset of CD4+ T cells
that are essential for maintaining immune tolerance (1). In non-lymphoid tissues, they can also
modulate non-immunological processes, such as wound healing and tissue repair (2). To acquire
their phenotypic and functional hallmarks, Treg cells must generate a specific epigenetic signature
(3) and rely on their unique metabolic requirements (4). The alteration of either of these features
can lead to Treg cell instability and functional disruption. Increasingly, research has focused on the
interplay between epigenetic and metabolic features, with the recognition that cellular metabolism
can regulate epigenetic states when the intermediary metabolism generates substrates or cofactors
for chromatin regulation (5, 6). Although integrated analysis of the complex interactions between
epigenetics and the cellular metabolism that reprograms Treg cells is a relatively new area, such a
conceptual understanding will be important for the design of effective strategies aimed at
manipulating Treg cells in cancer and autoimmune diseases.

It is becoming increasingly clear that Treg cells have their own metabolic preferences at different
stages of activation to support their energetic and biosynthetic demands (4). Importantly, some
intermediates can also regulate the epigenetics of Treg cells and, as a consequence, influence cell
differentiation and function (7). There are several universal principles regarding the role of the
metabolism-epigenetics axis that facilitate epigenetic dynamics under metabolic changes (8).
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For example, S-adenosylmethionine (SAM) is the methyl donor
for DNA and histone methylation, acetyl-coenzyme A (acetyl-
CoA) is the acetyl donor for histone acetylation; tricarboxylic
acid (TCA) metabolites related to a-ketoglutarate (a-KG) are
important for demethylases, and NAD+ availability regulates the
function of the sirtuin (SIRT) family of enzymes (9). Thus, it is
not difficult to speculate that fluctuations in metabolite levels
could modulate the activities of epigenetic enzymes and therefore
influence the epigenetic state during Treg cell development.

From this perspective, we summarize the current knowledge
of metabolic reprogramming and epigenetic features in Treg cells
within different contexts. We then discuss how metabolism
controls epigenetic modification and evaluate the functional
molecular consequences of these modifications for Treg cell
activation, differentiation, and function.
AN OVERVIEW OF METABOLIC
REPROGRAMMING IN TREG CELLS

Treg cells require energy for survival and function; nutrient
processing through distinct metabolic pathways produces
adenosine triphosphate (ATP) to meet these energy
requirements (4). The metabolic pathways of Treg cells are
Frontiers in Immunology | www.frontiersin.org 2
affected by the availability of nutrients such as glucose, fatty
acids, and amino acids (Figure 1).

Glucose is involved in both glycolysis and oxidative
phosphorylation (OXPHOS). Glycolysis is a relatively
inefficient pathway for the generation of cellular ATP (only
two molecules); however, it can be rapidly activated via the
induction of enzymes involved in this pathway (10). Potentially
more important than rapid ATP generation, however, is the
ability of glycolysis to produce various intermediates to support
anabolic reactions in cells (11). For these reasons, although
mouse Treg cells differentiated from naive T cells is not
characterized by increased glycolysis (12, 13), glycolysis is
observed in proliferating, migrating and effector Treg cells (14,
15). Proliferative Treg cells activate mTORC1 and glucose uptake
(16), but high-glucose conditions impair suppressive function
and long-term stability in vitro (17). Surprisingly, unlike mouse
Treg cells, the requirement of glycolysis seem to differ in human
Treg cells (18, 19). Freshly-isolated human Treg cells are
glycolytic, and glycolysis is necessary for the proliferation,
differentiation and suppressive function in vitro (18, 19).
Consequently, inhibition of glycolysis impairs the generation
and functions of human Treg cells, accompanied with reduced
the expression of Foxp3 and other Treg cell markers (18, 19).

Furthermore, glucose metabolism of Treg cells differs
in the tumor microenvironment and autoimmune diseases.
FIGURE 1 | An overview of metabolic reprogramming in Treg cells. Glycolysis is engaged to fuel the proliferation and migration of Treg cells, but is associated with
reduced suppressive function and long-term instability in mice. Glycolysis is required for the proliferation, differentiation and suppressive function of human Treg cells.
Treg cells increase the reliance on OXPHOS and FAO. Under homeostatic conditions, Treg cells readily take up exogenous fatty acids for this purpose. Serine-driven
one-carbon metabolism and glutamine-driven glutaminolysis are not necessary for Treg cells because their absence promotes the differentiation and function of Treg
cells. Intratumoral Treg cells use lactic acid to feed the TCA cycle and generate PEP to fuel proliferation. These cells reprogram lipid metabolism by upregulating lipid
uptake and de novo lipid synthesis to support FAO-driven OXPHOS metabolism. In autoimmune diseases, inflammatory Treg cells exhibit a dysfunctional suppressive
function, which can be supported by high levels of glycolytic metabolism. Oleic acid counteracts this effect. The OXPHOS of lipids can also be promoted by the DNA-binding
inflammasome receptor AIM. FAO, fatty acid oxidation; OXPHOS, oxidative phosphorylation; PEP, phosphoenolpyruvate; TCA cycle, tricarboxylic acid cycle.
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Indeed, glucose uptake is upregulated in dysfunctional Treg cells
from autoimmune diseases (20), but is notably low in
intratumoral Treg cells (17). Studies in mice have revealed that
lower glucose uptake is a universal phenotype of intratumoral
Treg cells (17, 20). Intratumoral Treg cell avoidance of glucose
metabolism is functionally important and may be mediated by
CTLA-4 overexpression (21). By blocking CD28 signaling,
decreased glucose utilization can ensure the functional stability
of Treg cells (21). Intratumoral Treg cells then increase their
uptake of the glycolytic by-product, lactic acid (17). Treg cells use
lactic acid, not only to feed the TCA cycle, but also to generate
phosphoenolpyruvate (PEP), which is essential for fueling the
proliferation of Treg cells within tumors (17). Consequently,
treatment with lactate maintains the suppressive function of Treg
cells against the negative effects of high-glucose conditions (17).
Metabolic support by lactic acid reflects the metabolic flexibility
of using a carbon source in intratumoral Treg cells according to
the nutrient milieu. Thus, Treg cells display broad heterogeneity
in their metabolism of glucose within context-specific tissues and
diseases. As such, increased glucose uptake is considered a
hallmark functional change in Treg cells.

Lipid metabolism is important for Treg cell development (22).
It is now accepted that the fatty acid oxidation (FAO)-driven
OXPHOS metabolic reprogramming maintains its suppressive
phenotype, which is further promoted by the expression
of Foxp3 (13, 16, 23). Intriguing to know that fatty acids
produced by gut microbiota and the composition of
gut bile acid metabolites mediate enhancement of Treg
cell differentiation and cell homeostasis (24–26). Under
homeostatic conditions, mouse Treg cells do not depend on de
novo fatty acid synthesis, but readily take up exogenous fatty
acids for this purpose (27). Thus, inhibiting acetyl-CoA
carboxylase 1 (ACC1), an enzyme that initiates the generation
of long-chain fatty acids, does not affect Treg cell differentiation
and function (27). In contrast, intratumoral Treg cells rely on
both exogenous fatty acids and de novo fatty acids (14, 20, 28).
Specially, intratumoral Treg cells are highly expressed fatty acid
transporters CD36 (14, 28), which enhance lipid uptake and
activate PPAR-b pathways to support intratumoral Treg cell
survival and suppressive functions (28). Intratumoral Treg cells
also actively rewire transcription factor SREBP-dependent
de novo lipid biosynthesis, contributing to the TCR-induced
functional maturation and induction of PD-1 expression (20).
In the case of autoimmune disease, the OXPHOS of lipids is
promoted by the DNA-binding inflammasome receptor AIM,
which attenuates Akt phosphorylation, mTOR and Myc
signaling (29). Interestingly, more recent work using tissue-
resident Treg cells from patients with multiple sclerosis reveals
that oleic acid is necessary to counteract the negative effects of
upregulated glucose uptake (30). Oleic acid amplifies FAO-
driven OXPHOS metabolism, creating a positive feedback
mechanism that increases the expression of Foxp3 and the
phosphorylation of STAT5, thereby enhancing suppressive
function (30). It is now clear that context-dependent lipid
metabolic adaption engaged by Treg cells orchestrates signaling
pathways to support suppressive activity.
Frontiers in Immunology | www.frontiersin.org 3
Amino acid metabolism supports protein and nucleotide
synthesis needed for rapid cell growth (31). As such, subunits
of amino acid transporters, including SLC7A5, SLC43A2,
SLC7A1, especially SLC3A2 and SLC7A11, have been found
highly upregulated during Treg cell proliferation and activation
in human and mouse studies (32–34). Branched-chain amino
acids, including isoleucine, are required for in vivo maintenance
of the proliferative state of mouse Treg cells, which are reliant on
the amino acid transporter SLC3A2-dependent metabolic
reprogramming (33). In TCR-stimulated human Treg cells,
cystine/glutamate antiporter SLC7A11 acts as a key molecular
determinant in the control of Treg cell proliferation in normal
and pathological conditions (34). Consistent with these
observations, arginine and leucine are required to license Treg
cells’ response to TCR stimulation (32); whereas Treg cells from
mice fed with reduced isoleucine, leucine, or valine have
decreased the proliferation and suppressive ability (33). In
addition, amino acid metabolic enzymes and intermediates are
also an important factor in determining Treg cell induction. For
example, the activity of the amino acid-consuming enzyme
indoleamine 2,3-dioxygenase (IDO) can strongly promote Treg
cell differentiation in vitro (35). Tryptophan metabolites,
especially kynurenine, which is generated through IDO, can
bind the aryl hydrocarbon receptor on T cells and promote
Treg cell induction (36). However, there is also evidence
revealing that SLC1A5 and SLC7A5, which are responsible for
the uptake of glutamine and leucine, may not be necessary to
generate Treg cells (37, 38). Interestingly, in the setting of T cell
differentiation, glutamine deprivation even promotes the
generation and function of Treg cells while inhibiting Th1 cell
(39, 40); Limitation of serine availability preserves Foxp3
expression and Treg cell function (41). In this regard, such
reliance on different amino acids allows the opportunity for
metabolic selection in Treg cell development.

Together, Treg cells adopt a coordinated metabolic profile
with engagement of glycolysis, FAO-driven OXPHOS and amino
acid metabolism, which are not mutually exclusive during Treg
cell development. In addition, the specific metabolic
reprogramming of Treg cells determine their differentiation
and function in different contexts, with Treg cells able to alter
the metabolic phenotype to adapt to the environment, especially
in non-lymphoid tissues.
EPIGENETIC LANDSCAPE OF
TREG CELLS

The Treg cell-specific epigenetic landscape begins to be established
in early stages of thymic Treg cell generation before the expression
of Foxp3 and other Treg cell signature genes (42, 43). In non-
lymphoid tissues, Treg cells show a stepwise acquisition of
chromatin accessibility and reprogramming toward the non-
lymphoid tissue Treg cell phenotype (44). Treg cells from
different non-lymphoid tissues have a distinct chromatin
accessibility profiling (44), but exhibit a conserved tissue-repair
chromatin signature both in human and mice (45). As we discuss
August 2021 | Volume 12 | Article 728783
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here, epigenetic regulation in Treg cells mainly includes DNA
methylation, histone methylation and acetylation, which
influences gene expression patterns in a coordinated manner.

DNA methylation is the most important Treg-specific
epigenetic signature (42, 46–49), the process by which a methyl
(-CH3) group is added to the ϵ-amino group of amino acid
residues on DNA (50). DNA methylation is generally associated
with transcriptional repression; therefore, comparison of genome-
wide DNA methylation profiles between mouse Treg and
conventional T cells reveal that naturally occurring Treg
cells (nTreg cells) frequently display hypomethylation at Treg
cell-associated gene loci (such as Foxp3, Ctla4, Tnfrsf18, and
Ikzf2), which contributes to Treg cell suppressive activity and
lineage stability (47). Notably, much of our current understanding
of the role of methylation in Treg cells comes from a particular
region at the Foxp3 locus; specifically, the distal enhancer elements
known as conserved non-coding sequences (CNSs) (51, 52).
Demethylation of CNS2 in the Foxp3 gene enable the binding of
transcription factors such as RUNX1–CBFb, and Foxp3 itself (53).
Foxp3 cannot blind to fully methylated CNS2 in vitro (53). To
support this, Treg cells generated in vitro (iTreg cells) with unstable
Foxp3 expression possess a methylated or partially demethylated
CNS2 region (47, 51, 53, 54), while Treg cells with stable Treg cell-
specific DNA hypomethylation allow them to transfer in vivo and
effectively suppress the immune response (55). However,
inflammatory gene loci (such as Tbx1) appears to have methyl-
DNA marks mediated by the epigenetic regulator Uhrf1, which
represents a stable Treg cell identitiy by repressing effector T cell
transcriptional programs (56, 57). In this way, DNA methylation
regulation appears to be flexible, allowing for an open state at genes
required for Treg cell differentiation and function while maintaining
methyl-DNA marks at the inflammatory gene locus.

Unlike DNA methylation, histone methylation either
activates or represses gene expression depending on which
residue is modified and the number of methyl groups
incorporated (58). Global mapping reveals that nTreg cells
have the largest unique H3K4me3 and H3k27me3 islands,
compared to conventional T cells (59). Yet, enhanced
H3K4me3 modification in the Treg cell-associated genes is also
detected in iTreg and conventional T cells (47). It suggests that
the histone methylation may be not specific for the nTreg cell
lineage. However, when human Treg cells lose their Foxp3
signature, they exhibit decreased abundance of permissive
H3K4me3 within the downregulated Treg cell signature genes
(such as Foxp3 and Ctla4), and increased abundance of
H3K4me3 within the Th2-associated genes (such as Il-4 and
Il-5); the H3K27me3 profile, a repression-related histone
modification, does not change significantly (60). Consistent
with this, H3K4me3 modification, but not H3K27me3, is
found to accumulate in the majority of promoters of
transcriptional start site (TSS) clusters (61). Of note, Foxp3-
bound sites in activated Treg cells are specifically enriched
for H3K27me3, which are required for Foxp3-mediated
repressive chromatin under inflammatory conditions (62).
Adding complexity, Foxp3 itself at Treg cell specific-super
enhancers (SEs) region shows a stronger H3K4me1, and
Frontiers in Immunology | www.frontiersin.org 4
weaker H3K27me3 (42). Thus, further work is needed to
determine what role of specific histone methylation at specific
locus may have during Treg cell activation and development.

Histone acetylation is another important chromatin
modification in Treg cells, which acts on targeted regions of
chromatin to regulate specific gene transcription, or acts in a
more global manner (63). Acetylation neutralizes the positive
charge of lysine, leading to a more open chromatin configuration
that enables DNA binding, whereas histone deacetylation is
typically associated with condensed chromatin and transcriptional
repression (6). The importance of histone acetylation in the context
of Treg cells is exemplified by the effects of pan-histone deacetylase
(HDAC) inhibition in mice, which increases acetylated histone 3
and boosts thymic production of Treg cells with enhanced
suppression (64), highlighting the relevance of the overall
acetylation status for controlling the generation and functional
responses of Treg cells. Accordingly, Treg cell-specific
hypomethylation is accompanied by histone acetylation and an
open chromatin status to regulate the expression of Treg cell genes,
which mediates important influences on the susceptibility to
autoimmune disorders (65). Compared with conventional T cells,
H3K27ac deposition at the Foxp3 promoter occur exclusively in
Treg cells (66); conserved Foxp3 binding is associated with
decreased H3K27ac in both human and mouse Treg cells (67).
These data suggest that H3K27ac modification in specific locus is
important for Treg cell differentiation and function.

The recent technique of assay for transposase-accessible
chromatin with high-throughput sequencing (ATAC-seq) has
enabled the genome-wide identification of open chromatin
regions (68). Global changes in chromatin accessibility identify
3833 loci with sex-dependent differential accessibility in visceral
adipose tissue (VAT) Treg cells (69). These sites include male
VAT Treg cell signature such as Il1rl1, Il10, Pparg and Klrgl,
which shows increased accessibility (69). The application of
single cell ATAC-seq allows for investigation of heterogeneity
in non-lymphoid tissue Treg cells. For instance, single-cell
ATAC-seq identifies tissue-repair Treg cell chromatin
landscape, and this signature is likely induced by the
transcription factor BATF which is critical for tissue Treg cell
differentiation, recruitment, and maintenance (45, 70).

Collectively, these data indicate that epigenetics are important
for multiple aspects of Treg cell reprogramming. However, the
mechanism of Treg cell functional coordination through
regulation of the epigenetic landscape in the context of the
promoter, enhancer, and gene body of a specific gene requires
further investigation. Importantly, these data also suggest that
manipulation of the epigenetic landscape could provide an
important strategy for controlling Treg cells in a context-
dependent manner.
METABOLIC CONTROL OF EPIGENETICS
IN TREG CELLS

Immune cell metabolism studies have focused on understanding
how metabolites modulate their plasticity by affecting epigenetic
August 2021 | Volume 12 | Article 728783

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lu et al. Metabolic Control of Epigenetics in Treg Cells
reprogramming, as well as how the interplay between metabolic
pathways and epigenetic modification support their activation,
differentiation, and function. However, this is a relatively new
area of Treg cell biology. Thus, unraveling how metabolism and
epigenetics coordinate with each other to regulate cell plasticity
and/or function will be a key area of research for Treg cells.

In this section, we focus on the role of specific metabolites
that reprogram the transcriptional profile of Treg cells through
epigenetic changes, as achieved by changes in differentiation and
function. We also discuss whether the effects of metabolite-
conditioned epigenetic modifications are consistent with those
of the corresponding metabolic pathway. (Figure 2)

Methyltransferase Regulation in Treg Cells
by SAM as a Methyl Donor
DNA and histone methylation require DNA methyltransferases
(DNMTs) and histone methyltransferases (HMTs), which add
methyl groups to DNA or lysine/arginine residues of histones,
respectively. The activities of these enzymes influence the
methylation landscape, and therefore activate or repress target
gene expression. As demonstrated in Treg cells, the
pharmacological inhibition of DNMTs is sufficient to induce
Foxp3 expression in mature conventional CD4+ T cells and
potentiate suppressive function (71–74), suggesting the
importance of these enzymes in Treg cells.

Although structurally and functionally diverse, DNMTs and
HMTs share a similar reaction mechanism, i.e., the transfer of a
methyl group. SAM is one of the most thoroughly-described
methyl donors for methylation, which is generated in the one-
carbon metabolism pathway that encompasses both the folate
and methionine cycle (75). Several amino acids, such as
threonine, serine, and glycine, can initiate the one-carbon
metabolism pathways in the folate cycle, thereby promoting
the production of SAM in the methionine cycle (76, 77). The
downstream metabolite of SAM is S-adenosylhomocysteine
(SAH), which competitively inhibits DNMTs and HMTs (75).
In a variety of cellular systems, it has been proven that alterations
in the intracellular concentrations of SAM and SAH determine
the amount of DNA and histone methylation, thereby altering
gene transcription (78, 79). Given the complexity of SAM and
SAH metabolism, it implies that multiple metabolic inputs are
closely linked to methylation levels.

From a metabolic perspective, recycling homocysteine to
methionine induced by 1,25-Dihydroxyvitamin D3 is
associated with CD4+T cell DNA methylation and Treg cell
stability, which reverses autoimmune neurodegenerative disease
in mice (80). One-carbon units fed by serine metabolism are
synergistically integrated into the methionine cycle to fuel the
generation of SAM (75), which may increase histone and DNA
methylation; however, this needs to be formally demonstrated in
Treg cells. In this regard, increased serine metabolism can
enhance Treg cell proliferation but downregulate Foxp3
expression, whereas restriction of serine availability by
glutathione is required for the suppressive function of Treg
cells (41). In addition, all-trans retinoic acid (atRA), the major
vitamin Ametabolite, also increases histone acetylation on Foxp3
Frontiers in Immunology | www.frontiersin.org 5
gene promoter and CpG demethylation in the region of Foxp3
locus, stabilizing human nTreg cells under inflammatory
conditions (81, 82). Although little is known about how
metabolites synergistically orchestrate SAM availability in Treg
cells, there is no doubt that additional connections will unfold
after further investigation of metabolites and the metabolic
pathways that may modify methyltransferases.

Demethylase Regulation in Treg Cells
by a-KG, 2-Hydroxyglutarate (2-HG),
Succinate, and Fumarate
Active removal of histone and DNA methylation is mediated by
the Tet family of DNA demethylases (ten-eleven translocation
family members, Tets) and histone demethylases (HDMs).
Tet1/2 catalyzes the conversion of 5-methylcytosine (5mC) to
5-hydroxymethylcytosine (5hmC) in Foxp3 to establish a Treg
cell-specific hypomethylation pattern and stable Foxp3
expression in mouse lymphoid tissues (83). In contrast, Tet1/2
deletion leads to Foxp3 hypermethylation, impairs Treg cell
differentiation and function (83). With respect to HDMs,
deficiency in Jmjd3 alters H3K27me3 and H3K4me3 levels,
which inhibits mouse Treg cell differentiation (84). As
methylation levels are responsive to enzyme activity, the
regulation of these processes will undoubtedly become an
important field in Treg cell research.

From a metabolic perspective, the demethylation mechanism is
associated with a-KG, 2-HG, succinate, and fumarate, which are
key metabolites of the TCA cycle. Tets and HDMs belong to the
class of a-KG-dependent dioxygenases that use a-KG and oxygen
as substrates (85). Succinate, fumarate and 2-HG, which are
metabolism-derived structural analogs of a-KG, act as
competitive inhibitors of these a-KG-dependent dioxygenases
(85, 86). These metabolites can be derived from either glucose
or glutamine, and participate in both anabolism and catabolism
(87). Consequently, metabolic interventions that involve
alterations in these metabolites modulate the activity of Tets and
HDMs, which in turn regulate Treg cell activation, differentiation,
and function. For example, the deamination of glutamate to form
a-KG is the last step in glutamine catabolism, which allows
glutamine to fuel the TCA cycle, and is therefore crucial for
decreasing Foxp3 expression and inhibiting suppressive function
in Treg cells (39, 40). In addition, glutamine catabolism maintains
a high level of intracellular a-KG and a high intracellular a-KG/
succinate ratio, which is sufficient for regulating multiple
chromatin modifications, including H3K27me3 and Tet-
dependent DNA demethylation (88).

The effect of the glutamate-dependent metabolic pathway on
the development of Treg cells through epigenetic modification
has been directly validated in mice (89). Inhibition of
the conversion of glutamate to a-KG prevents the production
of 2-HG, reduces methylation of the Foxp3 gene locus, and
increases Foxp3 expression (89). This is because 2-HG markedly
increases the methylation levels of the Foxp3 promoter in
differentiating Treg cells (89). In line with this, the knockdown
of isocitrate dehydrogenase (IDH) 1 and IDH2, which catalyzes
the reduction of a-KG to 2-HG by NADPH, reduces methylation
August 2021 | Volume 12 | Article 728783
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levels at the Foxp3 promoter and CNS2 regions (89). Intriguingly,
increased conversion of glutamate to a-KG leads to much greater
accumulation of 2-HG in Th17 cells than in Treg cells, which
correlates with hypermethylation of the Foxp3 gene locus and
reduces the mRNA and protein levels of Foxp3 in fully
differentiated Th17 cells (89). These results suggest that different
cell types may exhibit differential sensitivity to 2-HG levels; thus,
manipulating a single step in a glutamate metabolic pathway could
regulate the Th17/Treg balance by affecting the methylation state
of Foxp3 (89).

Mitochondrial respiratory capacity is critical for the
engagement of metabolites in the mitochondrial TCA cycle;
mitochondrial perturbation also contributes to the changes of
metabolites (e.g., a-KG, succinate, and fumarate), which leads to
alterations in epigenetic modifications depending on cell type
and conditions (87). Mitochondrial Transcription Factor A
(Tfam) is essential for mitochondrial respiration and controls
transcription and replication of mitochondrial genome (90).
Ablation of Tfam impairs Treg cell maintenance in non-
lymphoid tissues and tumor microenvironment, but does not
affect Treg cells in the steady state in lymphoid organs (91).
Mechanistically, Tfam-deficient Treg cell switch OXPHOS
toward glycolysis, a metabolic pathway that impairs the
function and stability of Treg cells (91). Consistently, Tfam-
deficient Treg cells exhibit increased DNA methylation,
specifically at the Treg-specific demethylation region of the
Foxp3 locus (91). Of note, it is unclear which mitochondrial
metabolism metabolites influence DNAmethylation in Treg cells
during mitochondrial perturbation induced by Tfam deficiency.
However, in erythroid cells, Tfam deletion results in aberrant
histone acetylation and an increase in the abundance of the
metabolite b-hydroxybutyrate, which is known to inhibit histone
deacetylases (92). These data support cell-specific activities of
Tfam in regulating epigenetic modifications.

Studies have pinpointed a metabolic-epigenetic role for
mitochondrial respiratory chain complex III in mouse Treg
cells (93). Loss of complex III in Treg cells results in global
DNA hypermethylation without affecting the methylation status
of canonical Treg cell genes (93). This effect is dependent on the
increase of the metabolites 2-HG and succinate, which inhibits
the Tet family of DNA demethylases (93). Although mice lacking
the mitochondrial complex III in Treg cells do not alter Treg cell
proliferation and survival, Treg cells display a loss of suppression
capacity, which leads to the development of fatal inflammatory
disease early in life (93). These data point to the crucial role of
mitochondrial function in the regulation of Treg cell
development via modification of DNA methylation; however,
it is currently unclear why the mitochondrial respiratory capacity
is directed to methylation at specific genomic locations under
different contexts.

Histone Acetyltransferase (HAT)
Regulation in Treg Cells by acetyl-CoA
Histone acetylation involves the transfer of an acetyl group to the
ϵ-amino group of a histone lysine residue, which is catalyzed by
multiple families of HATs. In addition to regulating chromatin
Frontiers in Immunology | www.frontiersin.org 7
accessibility by acetylating lysine residues within histone protein,
HATs play important roles in regulating the acetylation and
function of many non-histone proteins (94). Indeed, in
comparison to HAT-mediated Foxp3 acetylation, the role of
HATs on histone acetylation in Treg cells is less well understood
(95–97). Only one study profiles CBP/p300-meidated H3K27
acetylation, which regulates transcriptional network and drives
differentiation of human Treg cells (98). Nevertheless, epigenetic
changes modified by HATs can be an important driver of Treg
cell function.

HATs-mediated histone acetylation requires the availability
of acetyl-CoA, while the product CoA-SH inhibits
acetyltransferase activity (99). In addition, other acyl-CoA also
influences the activity of HATs. For example, palmitoyl-CoA is a
potent inhibitor of HAT activity (100); Crotonyl-CoA,
conversely, is used as an alternative substrate for the
acetyltransferase p300-catalyzed histone crotonylation (101). It
suggests that optimal acetyltransferase activity requires an
increased local acetyl-CoA to CoA-SH ratio, and appropriately
relative concentration of acyl-CoA and acetyl-CoA, which
determines the catalytic activity and substrate specificity of
HAT enzymes (102–104). Therefore, metabolic pathways
leading to the production or consumption of acetyl-CoA, such
as fatty acid oxidation (105) and glucose metabolism (103, 106),
are thus able to shape the histone acetylation landscape by
modulating the activity of HATs. Several enzymes involved in
the production of acetyl-CoA also regulate the deposition of
acetylation marks, including acetate-dependent acetyl-CoA
synthetase 2 (ACSS2) and citrate-dependent ATP-citrate lyase
(ACL) (107). However, the details of these metabolic pathways
and the enzymes involved in histone acetylation have not been
analyzed in the context of Treg cell development.

The availability of glucose and glycolytic activity influence
global levels of histone acetylation through the generation of
acetyl-CoA (103, 106). Lactate dehydrogenase A (LDHA), an
enzyme that supports aerobic glycolysis in T cells, maintains high
levels of acetyl-CoA to enhance histone acetylation (108).
Ablation of LDHA diminishes H3K9ac in Ifng promoter, but
does not affect the number of thymic Treg cells (108). However,
as we discussed above, glycolysis itself negatively affects
suppressive function of Treg cells. Thus, the glucose-driven
generation of acetyl-CoA and histone acetylation fail to explain
the observation that glucose uptake is associated with
dysfunctional Treg cells.

Indeed, the possible metabolic association between histone
acetylation and Treg cell function is that the major source of
carbon for histone acetylation is lipid-derived acetyl-CoA (105).
By repressing both glucose and glutamine metabolism, fatty acid
oxidation reprograms the cellular metabolism, leading to
increased lipid-derived acetyl-CoA, which is reflected in
increased acetate, citrate, and histone acetylation (105). Thus,
these data imply that lipid metabolism on acetyl-CoA may
specifically lead to a state of acetylation, which is an important
feature of Treg cell stability. However, this hypothesis has not
been directly tested in Treg cells, but there is evidence that some
metabolites can feed intracellular acetyl-CoA pool to enhance
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histone acetylation. The bile acid metabolite isoalloLCA
increases recruitment of the HAT p300 and H3K27ac levels at
the Foxp3 promoter region, and promotes the differentiation of
Treg cells (109). Although lacking the ability to generate Treg
cells, acetate has been shown to influence levels of histone
acetylation and chromatin accessibility (110). However, further
investigation is required to ascertain the relative contributions of
different acetyl-CoA sources to the acetylation of Treg cells.

HDACs Regulation in Treg Cell by
Lactate and Butyrate
In addition to metabolic regulation of HATs, metabolic products
such as lactate and butyrate have been identified as inhibitors of
HDACs, specifically class I and class II HDACs which are zinc-
dependent enzymes. Butyrate, a product of bacterial anaerobic
fermentation, enhances histone H3 acetylation in the promoter
and CNS regions of the Foxp3 locus, and eventually facilitates
Foxp3 expression in naïve T cell (7, 110). Butyrate can induce the
differentiation of peripheral Treg cells (7, 110); in particular,
butyrate-induced Treg cells have ability to alleviate chronic
intestinal inflammation (7). Lactate, the end product of glucose
metabolism, can also inhibit HDACs activity (111), and maintain
the suppressive function and proliferation of intratumoral Treg
cells (17). In addition, the ketone body b-hydroxybutyrate,
closely related to the structure of butyrate, is an endogenous
inhibitor of class I HDACs (112). In mouse CD+8 memory T
cells, b-hydroxybutyrate epigenetically modifies H3K9 of Foxo1
and Ppargc1a (encodes PGC-1a), which upregulate their target
gene Pck1, thereby directing the carbon flow along the
gluconeogenic pathway to glycogen and the pentose phosphate
pathway (113). This study reveals b-hydroxybutyrate acts as an
unusual metabolite linking epigenetic modification and immune
cell metabolism, but this effect has not been studied in Treg cells.

Sirtuin Regulation in Treg Cells by NAD+

Sirtuins (SIRT1-7) belongs to the class III HDAC family, which
collectively deacetylates a broad range of histone and non-histone
proteins (114). Sirtuins can directlymediate deacetylation of Foxp3
protein, and act as a negative regulator of Treg cell function (115–
117). Importantly, sirtuins, specifically SIRT1 and SIRT7 involve in
OX40-mediated inhibition of Foxp3 expression and Treg cell
induction (118). OX40 upregulates BATF3 and BATF; then they
bind to the Foxp3 locus and recruit the histone deacetylases SIRT1
and SIRT7, which produce a closed chromatin configuration to
repress Foxp3 expression (118).

Metabolically, sirtuins are dependent on NAD+ availability as a
cofactor and are regulated by the NAD+/NADH ratio (119).
Reduced NAD+ levels due to increased glycolytic metabolism
have been shown to reduce NAD+-dependent HDAC activity
(120). A decreased NAD+/NADH ratio has been observed in Treg
cells that are deficient in complex III, which display a
loss of suppressive capacity with a concomitant increase in
glycolytic flux (93). These data support the hypothesis that, as a
consequence of the increased glycolysis, NAD+ exerts a negative
influence on Treg cells, at least at some stage. In support of this
notion,NAD+directly promotes in vitroTreg conversion intoTh17
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cells (121). However, establishing the mechanistic links between
NAD+ involved in glycolyticmetabolism and variations in sirtuins-
regulated acetylation is critical for identifying the role of
metabolism-epigenetics in Treg cell development.

RNA Methylation
RNA methylation forming N6-methyladenosine (m6A) in
mRNA has emerged as a new layer of post-transcriptional gene
regulation. The deposition of m6A is catalyzed by METTL3–
METTL14 complexes, which are SAM-dependent RNA
methyltransferase (122). The removal of m6A is achieved by
the RNA demethylases FTO and ALKBH5, whose activity
depends on a-KG (123, 124). RNA methylation mediated by
the RNA methyltransferases METTL3 and METTL14 has been
characterized in Treg cells (125–127). METTL14 maintains their
differentiation and function (125), whereas METTL3 only affects
Treg cell stability but not differentiation (126, 127). Specifically,
the depletion of METTL3 in Treg cells leads to increased SOCS
mRNA levels, which suppresses the IL-2-STAT5 signaling
pathway, resulting in Treg cell dysfunction (127). Moreover,
METTL14-deficient Treg cells exhibit decreased RORgt
expression, which contributes to their decreased suppressive
capacity in colitis (125). It is evident that RNA methylation
plays an important role in the gene expression that controls
Treg cells. However, it is still unclear how specific RNA
methylation sites are differentially regulated by different RNA
methyltransferases in Treg cells. In addition, the contribution of
metabolite changes to RNA methylation within Treg cells has
received relatively little research attention, given the presumed
relationship between metabolites and RNA methyltransferases/
demethylases. Thus, it is necessary to determine the full scope of
involvement of RNA methylation in the differential gene
expression of Treg cells and how metabolic alterations are
involved in this process.

O-GlcNAcylation
O-GlcNAcylation is a post-translational modification that
reversibly attaches b-N-acetylglucosamine (O-GlcNAc) at the
hydroxyl group of serine or threonine residues (128). This
process is catalyzed by O-GlcNAc transferase (OGT) and
reversed by O-linked GlcNAc hydrolase (OGA) (129). The by-
product of the hexosamine biosynthetic pathway, i.e., UDP-
GlcNAc, is required as a substrate, which offers a link between
metabolic processes and O-GlcNAcylation. In activated T cells,
glucose andglutamine areused to fuelO-GlcNAcylation toproduce
high concentrations of UDP-GlcNAc (130). This process is
regulated by c-Myc (130), which maintains Treg cell homeostasis
by promoting OXPHOS (131), suggesting that O-GlcNAcylation
may therefore influence Treg cell stability. Indeed, a correlation has
been revealed between O-GlcNAcylation abundance and Treg cell
function, as O-GlcNAcylation can stabilize Foxp3 and activate
STAT5 (132). The selective ablation of OGT in Treg cells leads to
aggressiveautoimmunesyndrome inmice as a resultofdeficiencyof
Treg cells (132). However, high glucose levels can also enhance
cellular O-GlcNAcylation of transcriptional factors such as c-Rel,
whichnegatively regulates Foxp3 expression (133). It seems that the
effects ofO-GlcNAcylationonFoxp3 are not sufficient to explain all
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the functions of O-GlcNAcylation in Treg cells. Thus, it is important
todeepenourunderstandingof globalO-GlcNAcylation inTreg cells
and their association with metabolic reprogramming.
CONCLUSION

In summary, there is an intimate link between the metabolism of
Treg cells and their epigenetic reprogramming, which in turn plays
a coordinated role in their activation, differentiation, and
suppressive function. However, as a relatively new area of
research, it is not surprising that the studies discussed here have
only scratched the surface of themetabolic control of epigenetics in
Treg cells. Many questions need to be answered in the future. First,
each epigeneticmodification can be influenced bymetabolites from
multiple metabolic pathways, and metabolites from the same
pathway can competitively serve as substrates for enzymes or
inhibit substrate utilization. To date, studies have focused on only
single metabolites. Thus, understanding the relative contributions
ofmetabolites and how the epigeneticmodification responds to the
status of the entire metabolic network represents important future
work. Second, Treg cells are always attuned to local environmental
cues that allow the production of intermediates necessary for cell
survival or growth. As described above, Treg cells display broad
heterogeneity in themetabolismofglucoseand lipidswithin various
contextual features. For example, to avoid a negative effect of
glycolysis on suppressive function, tumor-infiltrating Treg cells
instead upregulate pathways involved in the metabolism of
the glycolytic by-product, lactic acid, to maintain suppressive
function and proliferation (17). Such metabolism plasticity may
Frontiers in Immunology | www.frontiersin.org 9
be an important consideration in assessing how metabolism
reprograms the epigenetic features of Treg cells, especially in non-
lymphoid tissues during non-homeostatic states. Finally, no studies
reveal only the magnitude of metabolic effects on epigenetic
enzymes, independently of other effects, such as transcriptional
programs. As a complex relationship certainly exists between
metabolism and epigenetics with regards to maintaining Treg cell
activation, differentiation, and function, this relationship should be
elucidated in future research.
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