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Objectives: Patients with Rheumatoid Arthritis (RA) are increasingly achieving stable
disease remission, yet the mechanisms that govern ongoing clinical disease and
subsequent risk of future flare are not well understood. We sought to identify serum
proteomic alterations that dictate clinically important features of stable RA, and couple
broad-based proteomics with machine learning to predict future flare.

Methods: We studied baseline serum samples from a cohort of stable RA patients
(RETRO, n = 130) in clinical remission (DAS28<2.6) and quantified 1307 serum proteins
using the SOMAscan platform. Unsupervised hierarchical clustering and supervised
classification were applied to identify proteomic-driven clusters and model biomarkers
that were associated with future disease flare after 12 months of follow-up and RA
medication withdrawal. Network analysis was used to define pathways that were enriched
in proteomic datasets.

Results: We defined 4 proteomic clusters, with one cluster (Cluster 4) displaying a lower
mean DAS28 score (p = 0.03), with DAS28 associating with humoral immune responses
and complement activation. Clustering did not clearly predict future risk of flare, however
an XGboost machine learning algorithm classified patients who relapsed with an AUC
(area under the receiver operating characteristic curve) of 0.80 using only baseline serum
proteomics.

Conclusions: The serum proteome provides a rich dataset to understand stable RA and
its clinical heterogeneity. Combining proteomics and machine learning may enable
prediction of future RA disease flare in patients with RA who aim to withdrawal therapy.
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HIGHLIGHTS

• Serum proteomics defines clinically relevant clusters within a
cohort of stable RA patients

• Machine learning and proteomics may identify individuals at
highest risk for future disease flare

• Despite meeting criteria for remission, clinically detectable
disease is associated with a serum proteomic signature in
stable RA
INTRODUCTION

Rheumatoid Arthritis (RA) is a systemic autoimmune disease
that is characterized by inflammation of synovial joints (1).
Modern RA therapy is initiated early and escalated aggressively
using a treat-to-target approach to try an obtain disease
remission (2). The development of both targeted treatments
and combination regimens continues to improve expected
outcomes for patients. Encouragingly, clinical remission,
defined by multiple measures of disease activity (3), has
become a realistic expectation for most patients with RA.
Recent registry data of RA cohorts consistently show that
DAS28 (Disease Activity Score) remission is achieved in about
50% of patients (4), a number that may be increasing over
time (5).

Patients with RA who are able to achieve disease remission
using standard therapy are not well studied, given their lack of
disease activity and need for treatment changes. The main issue
facing these patients is whether or not to remain on their
treatment, or risk withdrawal and the potential for disease flare.
There are many prospective studies that have demonstrated
successful Disease Modifying Anti-Rheumatic Drugs (DMARD)
withdrawal in patients in clinical remission (6–9) but the
determinants of maintaining remission status after medication
withdrawal are poorly defined (10). Unfortunately, given the
limited understanding of the pathological mechanisms that drive
subclinical disease, clinicians are left to guess which of their
patients might sustain remission using less aggressive therapy.

Technological advances in high-throughput proteomics have
allowed for an improved understanding of disease processes and
biomarker discovery (11). Although mass spectrometry tends to
dominate this evolving field, broad-based targeted proteomics
has its own advantages, including simplified sample preparation
and user-friendly output data (12). Our group has previously
defined protein sets that are associated with future disease flare
from pre-clinical RA by coupling machine learning with
proteomic approaches (13). Indeed, leveraging omics
approaches to resolve heterogeneity in common diseases
remains a distinct challenge in clinical medicine (14), though
this has not been systematically undertaken in a stable
RA cohort.

The RETRO (15) (Reducing therapy in rheumatoid arthritis
patients in ongoing remission) study is a prospective randomized
trial which enrolled patients who had achieved disease remission
Frontiers in Immunology | www.frontiersin.org 2
with conventional RA therapy. One of the aims of this study is to
define disease recurrence in patients with RA when either
continuing or reducing their medications. It was previously
shown in this trial that positive anti-citrullinated antibody
(ACPA), and other biomarkers (16, 17) are associated with an
increased likelihood of disease relapse. In spite of these studies,
there is little understanding of the underlying biological
mechanisms that are active in stable RA. If differences within
RA patients in remission can be more clearly defined, there may
be an enhanced understanding of the spectrum of RA
pathogenesis, along with improved personalized clinical
approaches surrounding the withdrawal of therapy. We
hypothesized that high-throughput proteomics (18) would help
identify underlying biological heterogeneity that might provide
insights into mechanisms underpinning future disease flare. Our
aim was to explore how the serum proteome shapes the
underlying clinical experiences of stable RA patients.
METHODS

Patients and Inclusion Criteria
RETRO is a multicentre, randomized, open, prospective,
controlled parallel-group study. Details of the study are
described in the original publication (15). The objective of the
study is to evaluate tapering or discontinuation of DMARDs in
patients with RA. All enrolled patients fulfilled the 2010
American College of Rheumatology (ACR) criteria for RA
(19). Patients had to have sustained clinical remission defined
by the Disease Activity score (DAS28 < 2.6) criteria for at least 6
months (20). Ethics committee of the Friedrich-Alexander-
University of Erlangen-Nuremberg approval was granted.

Treatment and Follow-up
Patients were randomized to one of three arms: Arm 1 continued
with existing DMARD regimen at full dose for 12 months, arm 2
reduced the dose of all DMARDs by 50%, while arm 3 reduced
the dose of all DMARDs by 50% in the first 6 months, then
discontinued all medications. Relapse of disease was defined as a
DAS28-ESR score greater than 2.6. Participants were assessed for
clinical disease activity every 3 months until month 12.

Assessment of Demographic and Disease-
Specific Parameters
Age and sex were recorded in all patients. Disease duration,
tender joint count (68), swollen joint count (66), patient visual
analogue scale (VAS) for pain and patient global were assessed
and recorded. C-reactive protein (CRP), ESR, Rheumatoid
Factor (RF), ACPA, DAS28-ESR and Health Assessment
Questionnaire (HAQ-DI) were recorded.

SOMAscan
SOMAscan is a proteomics assay that measures 1307 proteins
using an aptamer library. This high-throughput proteomics assay
has been used in recent publications to study the aging proteome
(21, 22) along with other human diseases (23). 130 baseline
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serum samples were available from the RETRO study. Briefly, a
library of aptamers were incubated with serum, and those that
bind are isolated and hybridized to DNA microarray for
detection. The identity and relative concentration of the
detected proteins are revealed by localization and fluorescence
intensity. Protein quantification is reported as relative
fluorescence units (RFU), an arbitrary value. In general,
agreement between aptamer and antibody-based assays is high
(24). Further details regarding the SOMAscan assay are
available (18).

Statistical Analysis
Descriptive results (Table 1) are stated in means and standard
deviation. SOMAmer protein expression RFU values for the
study patients were transformed into a log2 scale for
differential analysis (Supplemental File 2). Batch effect was
removed in our SOMAmer data using internal controls within
each plate to adjust proteomic intensity as per standard
SOMAscan protocols. Batch effect was assessed between plates
and determined to require no further correction. Data was
loaded and analyzed in the R (v3.5.3) environment unless
otherwise stated. Missing clinical data was imputed using
multiple imputation by chained equations (MICE) (25).
Differential analysis between groups was undertaken using
linear modeling with the package LIMMA (26). GO pathways
analysis was performed using clusterprofiler (27). Graphs were
generated using the ggplot2 package. Correlation analyses were
performed for select proteins using Pearson correlation. Multi-
dimensional scaling (MDS) was used for dimension reduction on
all SOMAscan proteins.

The 200 most variable proteins measured by coefficient of
variation were used to determine optimal number of clusters
ranging from k = 2 to 10 and identify sample clusters using the
R package Consensusclusterplus. We used 80% protein resampling
and 80% patient resampling and selected Pearson as our distance
function. Multinomial logistic regression implemented in
R package glmnet was used to identify clinical variables that are
independently associated with cluster assignment. Sliding
window analysis of DAS28 scores and protein expression was
Frontiers in Immunology | www.frontiersin.org 3
performed using a previously published algorithm, DE-SWAN
(28). Briefly, this algorithm analyzed serum protein expression
across quintiles of DAS28 scores using linear modeling, while
adjusting for baseline demographic factors, in this case age and
sex. A protein expression score was developed on proteins that
correlated with DAS28 which were identified by DE-SWAN. We
filtered the proteomic data on the 34 score members, scaled the
data by the mean and standard deviation, and multiplied by 1
(positively associated with DAS28) or -1 (negatively associated
with DAS28) for each protein. The final score was the mean
expression of all 34 proteins for each patient. We randomly
generated 5000 data sets with 34 randomly selected proteins in
each set to evaluate the significance of the association score.

Machine Learning Classification Algorithm
We applied two supervised machine learning (ML) techniques to
develop algorithms to classify flare or remission based on serum
proteomics. The first approach we used is XGBoost (Extreme
Gradient Boosting), which employs a regularization term to
overcome the overfitting (29). The second approach is the
LASSO model (30), which was used as a baseline to compare
its performance with that of XGBoost. Data was loaded into
Python, and samples were randomly split into a training (n =
104, 80% of the samples) and test (n = 26) set. The training set
was used to train and tune the parameters in the two models and
the test set was used evaluate the models’ performance, which
were measured by the area under of the curve (AUC) of receiver
operating characteristic (ROC), accuracy, sensitivity and
specificity. To increase the interpretability of the XGBoost
model to predict the flare status of a given sample, we used
SHAP values (Shapley Additive Explanation) (31). A higher
SHAP value of a given feature in the model represents its
strong influence on the model output. The final model
parameters we used in the XGBoost are as follows:
learning_rate = 0.01, max_depth = 3, subsample = 0.6,
colsample_bytree = 0.7, n_estimators = 100, gamma = 0.0,
reg_alpha = 0.5, the parameters used in the LASSO model is as
follow: cost=1.17 and max_iterations = 5000. We used 5-fold
cross-validation to get the optimal hyperparameters.
TABLE 1 | Baseline characteristics of the patients, split by proteomic cluster.

Characteristics Total (n = 130) Cluster 1 (n = 34) Cluster 2 (n = 12) Cluster 3 (n = 46) Cluster 4 (n = 38)

Age 55.2 (13.1) 52.7 (14.6) 54.1 (13.7) 54.7 (11.7) 58.6 (13.1)
Females, % 56.2% 67.6% 66.7% 56.5% 42.1%
Disease Duration (years) 6.8 (7.0) 7.9 (6.5) 8.6 (9.3) 6.9 (6.3) 4.9 (7.3)
DAS-28 (ESR) 1.7 (0.68) 1.93 (0.60) 1.73 (0.74) 1.71 (0.65) 1.51 (0.71)
ACR/EULAR remission, % 76.6% 67.7% 66.6% 88.9% 72.9%
HAQ, units 0.12 (0.32) 0.11 (0.17) 0.08 (0.12) 0.16 (0.46) 0.09 (0.26)
Positive RF, % 56.2% 73.5% 50.0% 52.2% 47.3%
Positive ACPA, % 57.7% 67.6% 66.7% 55.6% 50.0%
*Biological DMARD use, % (N) 40.0% 38.2% 25.0% 47.8% 36.8%
Flare, % 37.7% 38.2% 16.7% 43.5% 36.8%
November 2021 | Volume 1
ACPA, anticitrullinated protein antibody; ACR, American College of Rheumatology; CRP, C-Reactive protein; DAS-28, disease activity score-28 (based on ESR); DMARDs, disease
modifying antirheumatic drugs; ESR, erythrocyte sedimentation rate; EULAR, European League Against Rheumatism; HAQ, Health Assessment Questionnaire; RF, Rheumatoid Factor;
VAS, Visual analogue scale.
*Tumor necrosis factor inhibitors and tocilizumab.
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Study Cohort
Baseline characteristics for 130 patients enrolled in the RETRO
study are found in Table 1. Overall, the group had maintained
clinical remission for 16.6 (16.2) months and mean disease
duration of over 6 years. 57.7% of the patients were ACPA
positive, while 40.0% required biologics to achieve remission.
76.6% of patients had achieved the most stringent definition of
remission [ACR/EULAR remission (32)]. After 12 months of
follow-up, 62.3% of the overall population remained in clinical
remission (50% in those undergoing withdrawal).
RESULTS

Hierarchical Clustering on Serum Proteins
Identifies Heterogeneity Amongst Stable
RA Patients
Given the paucity of data aimed at understanding subclinical
disease activity in RA patients who achieve remission, we sought
to explore underlying heterogeneity using serum proteomics in
this established cohort. We quantified over 1300 serum proteins
from 130 RETRO patients at their baseline visit, all of whom
were in stable clinical remission (DAS28 < 2.6). We hypothesized
that despite the clinical similarities amongst individuals within
this cohort, proteomic differences may provide important
insights by identifying sub-clusters of patients. We applied
consensus clustering to assign individuals to one of the
Frontiers in Immunology | www.frontiersin.org 4
4 clusters (Figure S1) and clustered scaled protein expression
by hierarchical clustering, which can be seen in Figure 1. MDS
analysis revealed separation of the hierarchical clusters
(Figure S2).

Baseline characteristics split by cluster are listed in Table 1. We
found no differences in sex, age, biologic use, or serological status
across our 4 proteomic clusters. Cluster 4 had significantly lower
DAS28 scores compared to the remaining clusters. With respects
to future flare, Cluster 2 trended toward lower rates relative to the
remaining clusters, however this did not reach statistical
significance (16.7% vs 39.8%, p = 0.21). To assess this
association by multinomial regression, we assigned Cluster 2 as
the reference cluster and found that that Cluster 3 had higher odds
of flare (OR 5.6, 0.97 to 33.06, p = 0.05), relative to Cluster 2 with
similar trends observed for Cluster 1 and Cluster 4 (Table S1).
Indeed, no clear distinction between individuals who developed
future flare was observed in the MDS plot (Figure S2). Overall,
these results suggest that global proteomic clusters within a
clinically homogenous cohort can be identified but are
associated with current clinical status rather than future outcomes.

Machine Learning Classifies Future Flare
Using Baseline Serum Proteomics
We next aimed to use the serum proteome to identify biomarkers
associated with future disease flare in stable RA, given that
clustering did not clearly associate with risk of flare. We
identified DEP’s between these groups (Table S2) and observed
FIGURE 1 | Heatmap and hierarchical clustering of 200 serum proteins in stable RA. Protein expression is scaled and colored by relative expression. Each column is
a protein and each row is a patient. Clustering is shown in both dimensions. Flare or remission is annotated in purple or grey to the left of the graph.
November 2021 | Volume 12 | Article 729681
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upregulation in Ectodysplasin A receptor (EDAR, FC = 1.20) and
Serine peptidase inhibitor (SPINT2, FC 1.1), and downregulation
of Fractalkine (CX3CL1, FC 0.95) and Ephrin type-B receptor 2
(EPHB2, FC 0.95) in individuals who eventually went on to flare
(Figure 2A). However, after adjustment for multiple comparisons,
none of the differentially expressed proteins reached statistical
significance. This suggests that although subtle differences exist in
Frontiers in Immunology | www.frontiersin.org 5
the serum proteome between individuals who experience future
flare, it’s unlikely that singular biomarkers accurately predict this
outcome in this population.

To test this hypothesis, we explored the use of two machine
learning algorithms, LASSO and XGBoost, to build predictive
models that classify future flare using baseline serum proteomics.
We generated two models, both of which were validated on a test
A B

C

D

FIGURE 2 | XGboost machine learning to identify flare or remission in stable RA patients. (A) Box plots of EDAR, SPINT2, CX3CL1 and EPHB2 split by individuals
who remained in Remission or Flare. (B) Receiver operator curves (ROC) of 2 machine learning models, XGboost and LASSO, trained on serum proteome to classify
flare or remission. AUC is representative of test set cohort parameters. (C) Bar plot of model features that impact risk of flare or remission in the XGboost model with
log2 expression and Uniprot ID annotated for each protein member. Feature importance is represented by relative size of bar. Values for different proteins represent
their original values in the dataset for that particular sample. The base value means the average of the prediction scores, and 0.5 is the cutoff threshold to select a
Flare status. (D) Gene concept plots derived from XGboost protein features. Each node represents a GO pathway with proteins connected by edges. EDAR,
Ectodysplasin A receptor; SPINT2, Serine peptidase inhibitor; CX3CL1, Fractalkine; EPHB2, Ephrin type-B receptor 2. SNCA, Synuclein alpha; PLAUR, Plasminogen
Activator; VEGFA, vascular endothelial growth factor A; MYC, Myc proto-oncogene protein; IL17F, Interleukin 17F; ROBO3, Roundabout homolog 3; CFB,
complement factor B.
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cohort (20% of total cohort). The LASSO model achieved 69.2%
accuracy, with an AUC of 0.58, along with sensitivity of 0.5 and
specificity of 0.78 based on the test cohort (Features in Table S3).
XGboost delivered a model with higher specificity (0.78) than
sensitivity (0.63) and an overall accuracy of 73.1% with an AUC
0.80. Therefore, we found that the XGboost model outperformed
the LASSO model by the metric area under the curve (Figure 2B,
AUC, 0.80 vs 0.58), accuracy (73.1% vs 69.2%) and sensitivity
(0.63 vs. 0.5).

To interpret this XGBoost model, we explored the impact of
essential features in terms of SHAP values on the classifier’s
output for a single prediction which are shown in Figure 2C. We
identified Interleukin 17F (IL17F) and Myc proto-oncogene
protein (MYC) expression as indicators of future flare, while
Roundabout homolog 3 (ROBO3), Synuclein alpha (SNCA),
complement factor B (CFB) and vascular endothelial growth
factor A (VEGF-A) expression were indicators of sustained
remission (Figure 2C and Figure S3). Given the small number
of proteins that derived our boosted model, we next explored
whether there were any functional links between these proteins.
We developed gene concept plots to identify potential protein
interactions and found that SNCA, MYC, VEGFA and PLAUR
were connected by a single pathway, endopeptidase mediated
apoptosis. We then analyzed IL17F restricted networks, given its
conflicting role in RA (33–36), and that its expression was
associated with future flare in our model. We found that IL17F
interacted with VEGFA though growth factor function, and with
SNCA through common effects on the inflammatory response
(Figure 2D). IL17F independently regulated GM-CSF production,
a key driver of RA disease activity through the recruitment of
neutrophils (37). Overall, this network analysis suggests that
cellular apoptosis and GM-CSF production may be associated
with future disease flares in RA patients who are otherwise stable.
Frontiers in Immunology | www.frontiersin.org 6
Disease Activity in Stable RA Is Reflected
in the Serum Proteome
In our hierarchical clustering, we observed a lower mean DAS28
score in Cluster 4 compared to the remaining 3 clusters
(Figure 3A). RA patients who achieve DAS28 defined
remission often have residual disease activity, however, since
this population is not typically the focus of translational studies,
little is known regarding biomarkers that are reflective of
ongoing disease activity. Indeed, we found that several protein
members correlated with DAS28 score (Figure S4), including
Integrin alpha 2B (ITGA2B), Bactericidal permeability-
increasing protein (BPI) and chemokine ligand 2 (CXCL2,
Pearson R, all p value < 0.01). Further, complement proteins
(C3, C4A, C1S) were all negatively associated with DAS28 score,
suggesting activation and consumption of complement proteins
(Figure 3B) were indicators of disease. There was no indication
that these parameters varied based on ACPA status (Figure S5).

To further explore the relationship between disease activity
and serum biomarkers, we developed a sliding window model
(SWAN) which examined protein variability across DAS28
quintiles, after controlling for Age and Sex. Across DAS28 a
total of 34 proteins varied significantly with disease activity
(Figure 4A). We used these 34 protein members to annotate a
meta-protein expression score (the mean expression profiles of
the 34 proteins), which correlated with DAS28 (R = 0.45, p <
0.001, Figure S6). To test the robustness of this finding, we
sampled 5000 random sets with 34 proteins in each set and
correlated their mean expression with DAS28 scores. We found a
range of -0.37 – 0.27, associated with a low probability (0) that
the correlation of 0.45 would occur by chance (Figure S7). This
protein disease activity score was significantly lower in Cluster 4
compared to the remaining 3 clusters (Figure 4B), concordant
with their lower DAS28 scores. Gene concept plots revealed that
A B

FIGURE 3 | Serum proteins are associated with DAS28 in stable RA. (A) Box plots of DAS28 disease scores in patients, split by cluster assignment (p = 0.03).
(B) Correlation plots of DAS28 and serum protein expression of ITGA2B, BPI, CXCL2, C3, C4A, C1S. *p < 0.05.
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these 34 proteins interacted through nodes that included
humoral immunity, apoptosis, and complement activation
(Figure 4C). Overall, these data suggest that stable RA disease
activity is marked by complement consumption and humoral
immune responses, which is reflected in a serum protein
signature that is detectable in patients with stable RA.
DISCUSSION

With the advent of multiple targeted therapies, alone and in
combination, most RA patients should reasonably expect to
achieve low disease activity or clinical remission status. To
date, few studies have sought to understand the heterogeneity
of the biological pathways underpinning clinical remission in
this rapidly expanding population of RA patients. When, and in
whom to attempt withdrawal of therapy has become a
compelling clinical question. On the one hand, there is
justifiable concern regarding reactivation of systemic and
articular inflammation. On the other hand, ongoing use of
DMARDs and/or biologics is associated with increased risk of
infectious complications (38), malignancy (39) and cost (40).
Strategies for successful taper however remain ill-defined and,
importantly, lack precision (6, 41, 42). The RETRO clinical trial
has previously generated predictive models that were based on
clinical parameters and serum studies (16, 17). ACPA
seropositivity appears to be an important indicator for
Frontiers in Immunology | www.frontiersin.org 7
increased risk of future relapse (17), while clinical parameters
have modest predictive value even when combined with
advanced machine learning techniques (43). It remains unclear
if these indicators are clinically applicable and generalizable to a
wide range of RA patient populations. The focus of this study was
to use a broad-based serum proteomic approach to better
understand the underlying heterogeneity amongst RA patients
who are in sustained clinical remission, prior to their
participation in a clinical trial of therapy withdrawal. Our
results identify proteomic signatures reflecting biological
mechanisms that are associated with ongoing disease stability
off therapy, or alternatively, the risk of future disease relapse.

Our XGboost model suggested that individual circulating
serum biomarkers are unlikely, on their own, to be predictive
of future stability or relapse after therapy withdrawal. In spite of
this, combinations of proteomic biomarkers identified by the
machine learning achieved relatively high AUC and accuracy in
predicting outcomes. Indeed, this is a testament to the power of
rapidly evolving machine learning algorithms that are being
developed for many clinical problems (44). Network analysis of
proteins derived from machine learning suggested that
inflammatory forms of cellular death was an indicator for risk
future disease flare. Indeed, apoptosis is escaped by pathogenic
fibroblast-like synoviocytes and likely contributes to their
aggressive and hyperplastic phenotype in RA (45) and this
may point to systemic FLS as a potential source of these
proteins (46). Hierarchical clustering identified proteomic
A B C

FIGURE 4 | A serum proteomic signature is associated with DAS28 in stable RA. (A) Sliding window analysis of disease activity (Quintiles x-axis) and 34 proteins
that vary with DAS score after controlling for Age and Sex. Heatmap is colored on coefficient relationship to DAS score (B) Box plots of disease activity protein score
split by cluster assignment. (C) Gene concept plots derived from disease activity protein score. Each node represents a GO pathway with proteins connected by
edges. ITGA2B, Integrin alpha 2B; BPI, Bactericidal permeability-increasing protein; CXCL2, Chemokine ligand 2; C3, Complement C3; C4A, Complement 4A; C1S,
Complement 1S. ****p < 0.00001.
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clusters which were defined, in part, by clinical characteristics.
Cluster 4 represented a patient group with lower DAS28 scores
amongst the remaining patient cohort. Our disease activity
signature, found to be lower in Cluster 4, suggested that
elements of humoral immunity and complement activation
might facilitate disease activity in otherwise stable RA patients.
This suggests that activating pathways differentially regulate
disease activity in this subset of RA patients, as many of the
well-known disease activity markers in RA suggest that innate
immune responses associate with DAS28 scores (47–49).

The analyses we undertook utilized the SOMAscan aptamer-
based technology to interrogate 1307 distinct serum proteins.
Although this provided us with a robust array of biomarkers, it
is well recognized that these represent only a fraction of the human
proteome, and that larger arrays that span a larger proportion of
the circulating proteome may help generate even more accurate
predictive algorithms. Moreover, there remains an incomplete
understanding of how aptamer-based detection of each
individual analyte correlates with other detection methodologies
such as those that are antibody based (24). Due to our modest
sample size, we observed strongly statistically significant
association although R values related to DAS28 scores were all
below 0.3. However, we expect the R values may increase using a
larger sample size while the significant association will be still held.
Finally, SOMA proteins may bias over-representation analysis
based on the selected proteins which are included in the set.
Notably, network analysis was used in this study to connect
proteins of interest through biological nodes. These results
would not be impacted by inherent bias in the SOMA protein set.

In conclusion, we applied an unsupervised, high-throughput
proteomics assay to delineate biomarkers and pathways that
reflect the biological heterogeneity present in RA patients who
are collectively deemed to be in stable clinical remission. Based
on this, we used supervised machine learning to develop robust
models that predicted ongoing disease stability after therapy
withdrawal as opposed to future disease flare. Although it is
premature to try and define the potential clinical utility of these
models, they do provide an important impetus for further studies
that aim to further define a biological definition of remission in
RA patients that can ultimately guide clinical decision making.
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