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The majority of asthma exacerbations in children are caused by Rhinovirus (RV), a positive
sense single stranded RNA virus of the Picornavirus family. The host has developed virus
defense mechanisms that are mediated by the upregulation of interferon-activated
signal ing. However, the vi rus evades the immune system by inducing
immunosuppressive cytokines and surface molecules like programmed cell death
protein 1 (PD-1) and its ligand (PD-L1) on immunocompetent cells. Initially, RV infects
epithelial cells, which constitute a physiologic mucosal barrier. Upon virus entrance, the
host cell immediately recognizes viral components like dsRNA, ssRNA, viral glycoproteins
or CpG-DNA by host pattern recognition receptors (PRRs). Activation of toll like receptors
(TLR) 3, 7 and 8 within the endosome and through MDA-5 and RIG-I in the cytosol leads
to the production of interferon (IFN) type I and other antiviral agents. Every cell type
expresses IFNAR1/IFNAR2 receptors thus allowing a generalized antiviral activity of IFN
type I resulting in the inhibition of viral replication in infected cells and preventing viral
spread to non-infected cells. Among immune evasion mechanisms of the virus, there is
downregulation of IFN type I and its receptor as well as induction of the
immunosuppressive cytokine TGF-b. TGF-b promotes viral replication and is associated
with induction of the immunosuppression signature markers LAP3, IDO and PD-L1. This
article reviews the recent advances on the regulation of interferon type I expression in
association with RV infection in asthmatics and the immunosuppression induced by
the virus.
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INTRODUCTION

Asthma is one of the most common chronic inflammatory diseases, affecting millions of people
worldwide. It was reported by World Health Organization (WHO) that asthma affected an
estimated 262 million people in 2019 and caused 461,000 deaths (1). The characteristic asthma
symptoms are wheeze, cough, and a tight chest caused by lung inflammation and airway narrowing.
Many risk factors have been revealed that directly or indirectly affect the development and
exacerbation of asthma, including genetic and environmental factors, such as allergens, airway
pollution, and viral infection. Human rhinovirus (RV) is a positive-sense single-stranded RNA virus
of the picornavirus family. In healthy individuals, it frequently triggers common colds, but has only
org October 2021 | Volume 12 | Article 7318461
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a slight effect on human health; however, it can contribute to
asthma development and exacerbation in children and adults (2,
3). Human rhinoviruses, identified as the common viral type in
asthmatic children, have been classified into RV-A, RV-B, and
RV-C species, while asthma exacerbations are driven mainly by
RV-A and RV-C (4–6).

Rhinovirus infects airway epithelial cells representing the first
line of defense, inducing innate and adaptive immune responses.
Initially, RV enters into host cell cytosol by receptor-mediated
endocytosis, where RV is uncoated and starts replication (7–9).
Within the cell RV components, such as dsRNA, ssRNA, viral
glycoproteins, or CpG-DNA, are recognized by pattern
recognition receptors (PRRs), including toll-like receptors
(TLRs), melanoma differentiation-associated protein 5 (MDA-5)
and RIG-1-like receptors (RLRs) (10–12), Upon virus entrance,
host epithelial cells release various chemokines (e.g., eotaxin,
rantes, CXCL10) and cytokines (e.g., IFNs, IL-6, IL-1, GM-CSF)
to eliminate virus replication and spread by orchestrating innate
and adaptive immune response (13–16). However, chemokine and
cytokine releasing patterns vary among people (17).

IFNs have been classified into interferon type I, II, and III based
on the structure of binding receptors and established as the most
critical antiviral cytokines. In this review, we highlight the role of
interferon type I in RV-associated asthma, especially the subtypes
IFN-a and IFN-b. Interferon type I are produced by most cell
types, while plasmacytoid dendritic cells (pDC) are the main
source (18, 19). IFNs’ downstream signaling drives the infected
cells into an antiviral status. Moreover, IFNs can also mediate NK
cells, dendritic cells, T cells, and B cells to clear viruses.

Although interferon type I works as an effective agent against
viruses, the RV also develops its own mechanism to evade the
host immune system. Rhinovirus activates TGF-b present in the
environment, which in turn promotes viral replication and
inhibit effective antiviral immune responses (20, 21).

The mechanism of asthma exacerbation induced by RV and
IFNs involved in virus clearance is not entirely understood. In this
review,wesummarize the recentadvancesof the literature, expound
onsomeofour viewson the regulated expressionof interferon type I
and their receptor in association with RV infection in asthmatics
and the immunosuppression induced by the virus.
HUMAN RHINOVIRUS AND ITS
INTRACELLULAR SIGNALING

The Human Rhinovirus (RV) is the most prevalent respiratory
virus causing common colds and other upper airway infections
in children and adults. Furthermore, it was recently discovered
that it can also provoke lower respiratory tract infections, and
facilitate the entry of other respiratory pathogens.

RV-infected epithelial cells show a higher susceptibility to
respiratory bacteria, such as Staphylococcus aureus and
Streptococcus pneumonia. Epidemiological data show an
association between invasive Streptococcus pneumonia disease
and the seasonality of RV infection (22). In vitro studies have
shown that disruption of the epithelial barrier facilitates the
Frontiers in Immunology | www.frontiersin.org 2
transmission of bacteria and increases the adhesion and
internalization of pathogens (23–25).

Upper airway infections triggered by RV are equally frequent
and severe in asthmatics compared to control patients. However,
asthmatics are at a greater risk for more severe and long-lasting
lower respiratory tract infections (26). The virus can also trigger
exacerbations of chronic respiratory disease, such as asthma and
COPD. In asthma, around 80% of the exacerbation in children,
viruses are detectable and around half of them are associated
with the RV (27, 28). Studies show that rhinovirus infections in
early childhood can cause wheezing episodes, which are linked to
the subsequent development of asthma in the first place. This
indicates that rhinovirus infections in the early childhood might
be a potential risk factor for the disease development (3, 29–31).

TheRVisanenterovirus andpartof thepicornavirus family, and
there exist three different species: RV-A, RV-B, and RV-C. Like all
non-enveloped viruses, it consists of a capsid with the viral proteins
VP1, VP2, VP3 and VP4 and its genome, single-stranded positive-
sense RNA, coding for structural and non-structural proteins (32,
33). Depending on the different encoded surface antigens, the RV
can be distinguished into 160 serotypes. A possibility to further
categorize the different RV-A and RV-B subtypes, is into the minor
and the major group, depending on the receptor they use to enter
the host cells. While the major group uses the Inter-Cellular
Adhesion molecule 1 (ICAM-1, CD54) to enter their target cells,
the minor group utilizes the low-density lipoprotein-Receptor
(LDLR). The RV-C on the other hand enters the cell through
cadherin-related family member 3 (CDHR3) (Figure 1) (34, 35).

Those receptors are located apically on the respiratory tract
epithelium. Upon activation by the virus, they mediate its uptake
through endocytosis. Through structural rearrangement, the
uptaken virus can release its genome into the cytosol for
replication (7, 9, 35). In the cell, the virus is recognized by
pattern recognition receptors (PRR) in the endosome and the
cytosol. In the endosome, toll-like-receptor (TLR) 3 recognizes
dsRNA and TLR 7 and 8 ssRNA (which is part of the replication
cycle of the virus), activating the Myeloid differentiation primary
response 88 (MYD88) and TIR-domain-containing -adapter-
inducing interferon-b (TRIF) signaling pathways (32, 36, 37).
Viruses in the cytosol are recognized by retinoic acid-inducible
gene 1 (RIG-1) or melanoma differentiation-associated gene 5
(MDA-5), leading to the activation of the CARDIF signalling
pathway (37–39). The joint end of those pathways leads to the
translocation of Interferon regulatory factors and nuclear factor
‘kappa-light-chain-enhancer’ of activated B-cells (NF-kB) to the
nucleus and eventually to the transcription of antiviral genes
(Figure 1). Examples for the cytokines released include IL-1,
IL-6, IL-8, IL-11, TNF-a, RANTES and granulocyte-macrophage
colony-stimulating factor (GM-CSF) and IFN type I and III (13–
16). Many of those agents can have pro-inflammatory properties
and help the body to clear the virus from the airways, as well as
pro viral attributes by helping the virus remain in the tissue.

Besides the released antiviral agents, rhinoviruses also have
cytopathic effects on the cells, causing the disturbance of the
epithelial integrity and an increase of the epithelial permeability,
allowing aeroallergens and other pathogens to migrate into the
October 2021 | Volume 12 | Article 731846
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sub-epithelial tissue facilitating the interaction with the local
immune cells (23, 40).
INTERFERON TYPE I AND ITS SIGNALING

Interferon type I consists of various subtypes, especially including
IFN-a and –b. For IFN-a there exist 13 subtypes and it is expressed
mainly by plasmacytoid dendritic cells (pDC), but also by
macrophages, monocytes and other virus-infected cells (18, 41).
Cellular signalingpathwaysare activateduponbindingof IFNtype I
to IFN-a/b receptor (IFNAR)which is expressed onmost cell types
and consists of the IFNAR1 and IFNAR2 subunit. IFNARs are
coupled to the Janus kinase 1 (Jak1) and the Tyrosine kinase 2
(Tyk2) and after activation, they phosphorylate signal transducer
and activator of transcription (STAT) 1 and 2. The downstream
signaling leads to the formation of STAT homodimers and the
Interferon-stimulated gene factor (ISGF) 3 complex and their
translocation to the nucleus, where they induce the transcription
of interferon-stimulated genes (ISG). This induction drives the cells
Frontiers in Immunology | www.frontiersin.org 3
into an antiviral status. ISG include among others OAS1 (2’,5’-
oligoadenylate synthetase) and RNase L, both enzymes able to
degenerate viral mRNA, PKR, a double-stranded RNA-activates
kinase and Mx proteins, a GTPase (Figure 2) (42–45). Besides the
transcription of antiviral and regulatory genes, the IFN also recruit
other cell types that are involved in the defense against viral
infections, such as NK cells, dendritic cells, T cells and B cells.
Interferon type I monitor the immune system in a real-time and
quantitative way. In other words, in host protection the level of
IFN type I expression depends on the time after the infection and
the amount of RV infecting the host. 24- 48h hours after the
infection is the highest peak of viral RNA detectable, while the
viral titer was the highest after 24- 72 hours (46).
CELLULAR IMMUNITY TO RV INFECTION
IN ASTHMA

Asthma, a complex disorder, is characterized into Type-2 high
and Type 2-low asthma subtypes according to Th2 and ILC2
FIGURE 1 | RV activates receptors located apically on the target cell surface. RV-A and –B from the major and minor group activate the ICAM-1 or LDLR,
respectively. RV-C enter the cells through CDHR3. Within the cells the virus genome activates pattern recognition receptors in the endosome and the cytosol
including TLR3, TLR7, TLR8, MDA-5 and RIG-I leading to the downstream signaling and the translocation of transcription factors into the nucleus. NF-kB and IRF 3/
7 bind to specific genes enhances the transcription of proinflammatory cytokines, chemokines and IFN type I genes. IFN, interferon; RV, Rhinovirus; ICAM-1,
Intercellular Adhesion Molecule 1; LDLR, Low-Density-Lipoprotein-Receptor; CDHR3, Cadherin Related Family Member 3; dsRNA, double stranded RNA; ssRNA,
single stranded RNA; TLR, toll-like-receptor; TRIFF, TIR-domain-containing adapter-inducing interferon-b; MyD88, Myeloid differentiation primary response 88; NF-
kB, nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells; IRF, Interferon regulatory factor; MDA-5, melanoma differentiation-associated protein 5; RIG-1,
retinoic acid inducible gene I; MAVS, Mitochondrial antiviral-signaling protein.
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response levels. Here we update the knowledge about the
immunological mechanism of Th2 high asthma and the
correlation with RV infection with recent literature. Either
hyperactivity of innate or adaptive response can induce Type
2- high asthma. Generally, Type-2 high asthma is accompanied
by local accumulation of eosinophils in the airway and hyper-
produced IgE, resulting in lung inflammation and airway
hyperresponsiveness (AHR) (Figure 3) (41).

Innate Immune Response in Asthma
Innate Lymphoid Cells (ILC2)
Type 2 innate lymphoid cells (ILC2) are the main contributors to
the innate immunity of Type 2 asthma. When encountering
environmental factors, like RV, allergen and pollutants, airway
epithelial cells are damaged or dead and as a result they release
chemokines (e.g., CCR9, CXCL16) and cytokines (e.g., TSLP,
IL33, IL25) also known as alarmins resulting in the recruitment
of ILC precursors (ILCP) and drive ILCP differentiation into
ILC2 after upregulation of markers like GATA3, retinoic acid
receptor–related orphan receptor a (RORa), and T-cell factor 1
(TCF-1) (47). In the murine model of asthma, CXCL16 was
demonstrated as the only chemokine triggering ILC2 migration
directly, but not the CCL25, a ligand of CCR9 receptor expressed
on ILC2 (48). Dependent on IL-33 or IL-25 stimulation, ILCP
differentiates into natural ILC2 (nILC2) or inflammatory ILC2
(ILC2), respectively. In asthma, ILC2 producing type 2 cytokine
IL-4, IL-5, IL-13, and IL-9 are predominantly induced (49–51).
Frontiers in Immunology | www.frontiersin.org 4
These pro-inflammatory cytokines activate eosinophils and mast
cells, and promote IgE class switching on B cells. As a result,
ILC2 contributes to asthmatic symptoms in patients with high
AHR, damaged lung tissue, and worse lung function. When the
alarmin IL-33 is released, it binds ST2 on the ILC2. ST2 is
encoded by IL-1RL1 which can undergo alternative splicing
generating the soluble decoy receptor (sST2). It has been
recently demonstrated that 25(OH)-Vitamin D3 enhances the
production of the soluble form sST2. In addition because sST2
neutralizes IL-33 it is considered an anti-inflammatory factor for
asthma (52, 53). Moreover, we recently reported that ST2 mRNA
was upregulated in the blood cells of asthmatic children with low
serum levels of 25(OH)-VitD3. Furthermore, in blood cells from
control children and in asthmatic children with RV detected in
the airways, the anti-inflammatory isoform sST2 was found to be
reduced especially in asthmatic children with low serum levels of
25 (OH)-VitD3. In these control children low levels of 25(OH)-
VitD3 correlated with the presence of RV in their airways and
with a low IFN-b production in serum (54). Thus these data
indicate a counter-regulatory role of 25(OH)-VitD3 on RV
induced downregulation of the anti-inflammatory sST2 which
can be relevant for future antiviral therapies. A recent study has
shown that asthma exacerbations that require corticosteroid
treatment can be reduced by vitamin D supplementation in
patients with deficient vitamin D levels (55).

Murine studies showed that IFN-g and IL-1b inhibit ILC2
expansion in RV- induced asthma in baby mice. These data
FIGURE 2 | IFN type I activates in an autocrine or paracrine manner the cells through the IFNAR, consisting of IFNARI and IFNARII. This activation of the JAK-STAT
pathway leads to the phosphorylation of STAT and its translocation to the nucleus where it binds to promoters and activates the transcription of IFN stimulated
genes. IFN, Interferon; IFNARI, Interferon-a/b receptor subunit I; IFNARII, Interferon-a/b receptor subunit II; Tyk2, tyrosine kinase 2; Jak1, Janus kinase 1; Stat, signal
transducer and activator of transcription; IRF, Interferon regulatory factor; P, phosphorylated; ISRE, interferon-stimulated response elements; GAS, gamma activating
sequences; Mx, Interferon-induced GTP-binding protein Mx1; OAS, 2’-5’-oligoadenylate synthetase.
October 2021 | Volume 12 | Article 731846
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indicate that in RV-induced asthma exacerbation, IL-1b and
IFN-g are two potential therapeutic agents of asthma targeting
ILC2 (26, 56). However, further human clinical studies are
required to confirm these results in humans.

Dendritic Cells
In addition to ILC2, dendritic cells (DC) are another important
cell type involved in innate immunity during RV infection. It is
well known that DC is a professional antigen presenting cell
connecting innate and adaptive immunity. In asthma, DCs drive
T cell priming by presenting antigens in the environment (e.g.,
allergen, virus, air pollution, and so on) to naïve T cells. Based on
the function and ontogeny, DCs have been classified into
classical dendritic cells (cDC), myeloid dendritic cells (mDCs)
and the plasmacytoid dendritic cells (pDCs) subset (57).

Each subtype plays a specific role in innate immunity and
affects T cell fate. cDCs derived from a common DC precursor
(CDP) are sub-classified into cDC1 (XCR1+CLEC9A+) and
cDC2 (CD11b+SIRPa+). Recent studies consider that cDC1
promotes CD8+ T cell priming in mice and Th1 differentiation
(57–60). Uniquely producing TLR3, cDC1 might also be
involved in antiviral responses (57, 61). cDC2 prime CD4+ T
cells and initiate Th2 response. It suggests that cDC2 could be the
Frontiers in Immunology | www.frontiersin.org 5
main dendritic cell subset in asthma (57, 62–64). Similarly,
contributing to inflammation, mDCs (CD11b+CCR2+LY6C
+CD115+) might be increased in lung in asthma (57, 63).
However, more experimental and clinical evidence is required
to confirm these findings.

In contrast, pDCs (CD317+SIGLECH+B220+) induce
tolerance and maintain lung hemostasis. pDCs produce large
amounts of interferon type I against viral infection. pDCs also
induce regulatory T cells (Treg) by secreting TGF-b and IL-10,
which inhibit Th2 hyperactivity in asthma (65–68). However, in
allergic asthma, pDC antiviral responses are reduced by FcϵRI
cross-linking with IgE. After exposure to influenza virus, the
pDCs from patients with allergic asthma have higher FcϵRIa
expression but reduced TLR7 expression and less IFN-a
production (69). A subsequent study showed that reduced
IFN-a and IFN-l production correlated with FcϵRI cross-
linking (70). Reduced IFN-a and IFN-l were also found in the
allergic asthmatic children exposed to RV compared to control
groups (70). Consistently, it was further demonstrated that the
interferon-induced antiviral responses via pDCs in allergic
asthmatic patients could be restored by omalizumab treatment
(71). These data suggest that allergen induced FcϵRIa cross-
linking impairs interferon responses, promoting RV-induced
FIGURE 3 | Innate and adaptive immunity in response to rhinovirus (RV) infection in asthma. Innate immunity: Upon RV infection, epithelial cells produce cytokine
IL-25, IL-33, TSLP, which promote ILC2 expansion and activation. Type 2 cytokines (i.e., IL-4, IL-5, IL-9, IL-13) are released by activated ILC2, resulting in
eosinophils activation and degranulation. Infected epithelium cells, DCs, and DC-activated natural killer cells (NK) produce IFN type I induce anti-viral responses.
Adaptive immunity: Activated DCs drive naive CD4+ T cells to differentiate into effector T cells (Teff), such as Th1, Th2, Th9, Th17, Treg. T cells can eliminate viruses
from the host by releasing anti-viral cytokines or promoting antibody class switching on B cells. IgE causes mast cell activation, and IgG causes viral clearance.
Some of the displayed cells were provided by Smart Servier Medical Art (https://smart.servier.com/).
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asthma exacerbation. However, the mechanism of FcϵRI cross-
linking induced reduction of interferons on pDC is
poorly understood.

NK Cells
Also important for the innate immune response and activated by
DCs, IL-2, IL-12, IL-15, IL-18, IFN-a and IFN-b are natural
killer cells (NK cells). They make up the first line of defense
against intracellular pathogens and viruses. They recognize an
imbalance of the surface receptors on their target cells, thus
detect, and subsequently clear infected cells through their
cytotoxic granules containing Granzyme B and through the
release of IFN-g (72). Previous studies showed that the
infection with RV16 activates NK cell and modulates their
function. This is partly regulated by IFN type I signaling:
When IFN type I signaling is blocked, the NK cell
degranulation due to RV infection is reduced, as well as the
number of activated NK cells (CD107a+) (73).

Adaptive Immune Response in Asthma
T-Cells
CD4+ naïve T cells activated by DCs differentiate into various T
cell subsets. These T cells can be grouped into pro-inflammatory
and immunosuppressive types. Th2 cells expressing
transcription factor GATA3 are thought to be the essential
characteristic in asthma. Like ILC2, Th2 cells also produce
pro-inflammatory cytokine IL-4, IL-5, IL-9, and IL-13, to
promote self-differentiation, activate eosinophils, mast cells,
induce airway mucus production and contribute to AHR. Th9
cells are the primary source of IL-9, which maintains mast cell
survival and increases mucus production. Th1 cells expressing
transcription factor T-box expressed in T-cells (Tbet) are
thought of as a friendly cell type in Type 2-high asthma
because they inhibit Th2 responses. However, IFN-g produced
by Th1 can induce neutrophils, thus Th1 cells also engage in
asthma exacerbation which frequently correlates with Type 2-
low phenotype with prominent neutrophils in the lung. Th17
cells producing IL-17A also contribute to lung inflammation in
asthma with accumulated neutrophils (74–76). In our study we
demonstrated that IL-17A is the target of the RV as the host
immune system, during rhinovirus infection, induced IL-17A
which inhibits RV infection by downregulating low-density
lipoprotein receptor (LDL-R) expression on epithelial cells.
Furthermore, in the cohort of preschool children Predicta
(Post-infectious immune reprogramming and its association
with persistence and chronicity of respiratory allergic diseases)
we reported that, in asthmatic children with RV in their upper
airways have reduced levels of IL-17A in the supernatants and
reduced 2’-5- oligoadenylate synthetase (OAS 1) gene expression
in their PBMCs. Of relevance, OAS genes are the first anti-viral
defense of the host cells which is activated by interferon type I
and it cleave the viral RNA via activation of the latent
ribonuclease l (RNase L). We also demonstrated that targeted
deletion of IL-17A in T cells impaired OAS1 genes downstream
of IFN-beta and RV inhibited IL-17A in CD4+ T cells in a setting
of asthma. In conclusion our group identified IL-17A as a potent
Frontiers in Immunology | www.frontiersin.org 6
inhibitor of RV1b infection by inducing genes downstream of
Interferon type I pathway (77).

Treg
Regulatory T cells (Tregs) with transcription factor FOXP3 play
an important role in immunotolerance induction in asthma.
FOXP3+Treg derive from CD4+ thymocytes (FOXP3+nTreg) or
naïve CD4+ cells in the periphery (FOXP3+iTreg) (78). FOXP3
+Tregs produce anti-inflammatory cytokines like IL-10 and
TGF-b to inhibit hyper Th1 and Th2 responses. Type I
regulatory T cells (Tr1) is a subtype of Treg. Although Tr1
does not express FOXP3, it is the main source of IL-10, and can
prevent DC maturation via CTLA4-CD80/CD86 and LAG3-
MHC-II cell contacts, thus results in immunosupressiveness and
T cell unresponsiveness (79–82). These data show that FOXP3
+Treg cells and Tr1 are crucial inhibitory T cells in maintaining
lung homeostasis in asthma.

Clinical studies found that healthy controls have more Treg
cells versus asthmatic patients. Additionally, FOXP3+Tregs were
induced after glucocorticoid (83, 84) treatment in asthmatic
patients, suggesting a crucial role of FOXP3+ Treg cells in
asthma development and therapy. Moreover, Treg cells are also
involved in RV-associated asthma exacerbation. After RV16
infection, Tregs were induced both in healthy control and
asthmatic subjects with upregulated anti-viral gene expression,
such as IFI44L, MX1, ISG15, IRF and STAT1. Whereas the Treg
cells from asthmatic patients have reduced suppressive capacity
against RV-induced lung inflammation and they downregulate
gene expression, such as CTLA4, CD69, NR4A1-3 (85). However,
today the studies on the regulatory mechanism of Tregs in
response to RV infection are still limited. We don’t know how
RV infection impairs the immunosuppressive function of Tregs
in asthma, how Tregs mediate the balance between IFNs
response and anti-inflammatory responses, and whether there
are functionally specific Treg subtypes involved in RV promoting
asthma exacerbation.

B-Cells
It is well known that the Th2 responses trigger B cell activation
and IgE immunoglobulin class switching on B cells in asthma.
During the second allergen encounter, IgE binds to its high-
affinity receptor FcϵRI on mast cells, basophils resulting in lung
inflammation and tissue injury (86).

In addition to T cell-dependent mechanism, B cells act as
antigen-presenting cells (APC), and they can be directly activated
by taking up allergen. In a house dust mite (HDM) induced murine
model, allergen triggered B cell promoted Th2 responses after a
second allergen encounter in the lung, but not only in the sensitized
of mice (87). However, the underlying mechanism of B cells
promoting Th2 expansion is poorly understood at the moment,
and studies about RV-infected B cells are largely missing.

B cell also have an effect on innate cells and Th1 cells. As
noted above, in addition to mast cells and basophils, FcϵRI is also
expressed on DCs and monocytes. It was reported that allergic
IgE reduces the antiviral capacity of patients by cross-linking to
FcϵRI on pDC, and this reduced antiviral capacity can be
restored by omalizumab (69–71, 88). In addition, another
October 2021 | Volume 12 | Article 731846
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study showed that IgE cross-linking also inhibits monocyte
maturation and influenza virus-driven Th1 responses, while
did not affect Th2 responses (47). These data suggest an effect
of B cells on DCs, monocytes and T cell differentiation. However,
the underlying mechanisms of IgE cross-linking inhibiting
interferon production by pDCs, monocyte maturation and
regulating T cell differentiation need further investigations.
IMMUNE DEFENSE AGAINST RV
INFECTIONS AND ITS IMMUNE EVASION
IN ASTHMA AND CONTROL

Many viruses modulate the immune response in order to survive in
their host cells, to be able to replicate further and to infect more cells.
To achieve an efficient viral replication the virus must evade the
immune system. The different types of viruses have developed
various strategies to undergo the body’s defense mechanisms,
including variation in their antigen expression as well as a
disturbance of the immune response. In the following chapters,
we want to describe the advances in the literature regarding the
effects and regulation of a number of cytokines and how the RV
might interfere or deregulate them. We concentrate especially on
the differences known between healthy and asthmatic patients.

Interferon Type I
A worsening of the respiratory symptoms occurs during asthma
exacerbations that can be triggered by respiratory viruses,
causing the release of IFN type I. Whether or not the released
levels and the course over time differ in asthmatics compared to
control patients is currently still a matter of discussion.

Many studies have shown that there are deficiencies in the
production of IFN in asthmatic patients, which leaves themwith an
inadequate immune response to infections. The human bronchial
epithelium constitutes the first barrier towards the environment.
The two main types of interferons secreted by these cells are IFN-b
and IFN-l. It was found that in asthmatic patients compared to
control patients the IFN type I production was delayed (46) or
deficient (89). However in those studies the antiviral and
proinflammatory immune response remained intact. Sykes et al.
(2012) showed that the IFN-a and IFN-b production by cells of the
bronchoalveolar lavage (BAL) of asthmatics is decreased compared
to control patients. The IFN responses also correlated with the
airway hyperresponsiveness and positive skin prick tests (38). An
immunohistochemical study on bronchialmucosa biopsies showed
similar results (90). The deficient IFN-a and IFN-b production by
epithelial cells from asthmatic patients at baseline corresponded to
worse symptoms.Therewasno significant correlationbetween sub-
epithelial cells expressing IFN-a and an improved clinical outcome.
However, in acute infection sub-epithelial cells expressing IFN-a
correlated significantly with the viral load in the BAL and increased
asthma symptoms. Studies analyzing samples from airway
epithelial brushings, cultured with RV infection, described
consistent results (91). Consistently, a in IFN type I production
was observed in patients in which RV was detected in vivo
compared to patients without RV in their airways. For the latter
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group the IFN-adetectionwas significantly lower (19). Inpreschool
asthmatic children, the same deficiency was found during a non-
symptomatic phase, however during HRV-induced exacerbations
there is a delayed, but sufficient IFN-a production measurable (90,
92). This shown attenuated interferon response was found not only
in mild and moderate asthma, but in severe, therapy resistant
asthma as well (93). An in-vivo examination was provided
through experimental intranasal challenge of asthmatic patients
with HRV16. Those patients showed a temporal upregulation of
IFN-a and IFN-g levels, which also correlated with the clinical
parameters assessed by Cold Symptoms Score (CSS) (94). In pDCs
as well as in PBMCs it has been shown that TLR-7/8-agonists, for
example Resiquimod, and RV infection lead to an upregulation of
IFN type I, however in asthmatic patients, this upregulation was
found to be deficient (19, 95). In infants deficiency in IFN type I
production in the first place, also caused increased susceptibility to
RV infections and thereby to a higher risk of subsequent asthma
development (96).

On the other hand, a study comparing rhinovirus-induced type I
IFN production in patients with well-controlled asthma did not
detect the aforementioned deficiency compared to control patients
(97). Also, epithelial cells from asthmatic subjects infected with RSV
show a preserved interferon response (98). Studies measuring a
range of alternative cytokines including IFN-l do not show a
difference in rhinovirus response between healthy and asthmatic
children (99, 100). Finally, patients with non-allergic asthma may
show increased type 1 interferon levels (101).

Taken together, the different studies suggest that the results
measurable are highly dependent on the subtype of rhinovirus used
for the experiment, the asthma disease endotype, the control status
of the disease and the time when the samples are taken. This might
explain the different results obtained in the recent years (46).

RV Influences the Release of
Various Cytokines
As noted above, in response to rhinovirus infection, other
cytokines besides type 1 interferons are released as well,
including the pro-inflammatory IL-1b, IL-6, IL-8, IL-11, and
IL-12 (99, 100). As a way to evade the immune system, RV
inhibits or modulates their release. IL-1b is produced by
mononuclear phagocytes as a response to RV and promotes
remodeling of the lung and the proinflammatory host response
to the virus (42, 102). When it is inhibited by specific antibodies,
there is less airway remodeling and smooth muscle proliferation
(103, 104). IL-6 was shown to be induced by RV and it works
synergistic with TGF-b to induce Th17 differentiation (20, 91).
Also inhibited by the RV14 is the release of the Th1-activator
IL-12 from mononuclear phagocytes and thereby the usual
induction by IFN-g or LPS is impaired (42, 105).

On the other hand, immunosuppressive cytokines such as
IL-10 are released as well. The production and release by
mononuclear phagocytes is strongly induced by RV14. This
downregulation was also shown in the sputum from virus-
induced asthmatics. This leads to an inhibition of the
production of cytokines like IL-1, IL-6, IL-12 and TNF-a (42,
105, 106).
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IL-17A
IL-17A is released by active T-cells and is involved in the induction
of neutrophilic inflammation. It was shown that the cytokine
modulates the respiratory epithelial response to RV16 infection,
synergistically inducing IL-8 and b-defensin production. The effects
were not due to alterations of viral uptake and replication. This
modulation might support the epithelium in the recruitment of
neutrophils, immature dendritic cells and memory T-cells (107).

IFN type I induced JAK-STAT signaling is also modulated by
IL-17A. IL-17A amplifies the transduction of the signaling
pathway as well as the mucus secretion from goblet cells and
thus helps clearing the virus from the airways. It was shown to
inhibit RV-A1B replication, while the virus in return also leads to
an inhibited transcription of IL-17A in Th17 cells. When less IL-
17A is present, the expression of antiviral agents such as OAS1 is
reduced leading to better conditions for the survival of the virus
(77). In preschool asthmatic children there was shown to be a
defect of IL-17A and the downstream signaling of IFN-b. After
RV1b infection of PBMC the independency between the IL-17A
and IFN-b pathway was shown, since IFN-b was increased, while
IL-17A and OAS1 were reduced. Nevertheless, there are hints
that IL-17A favors the expression of IFN-b (77).

TGF-b
Transforming growth factor beta (TGF-b) is an important cytokine
involved in the regulation of airway remodeling and inflammation
through its downstream signaling leading to the induction of
FOXP3 and RORg (20). Its functions include the induction of
Th17 cells, the recruitment of neutrophils and monocytes and the
induction of Tregs (108). Elevated levels of TGF-b2 are associated
with severe asthma and during RV infections, it plays an important
role for the induction of the viral replication. Blocking of exogenous
TGF-b lead to significantly reduced replication of RV-A1B in
primary airway epithelial cells (20). At the same time, a decreased
expression of Suppressor of Cytokine Signaling (SOCS) 1 and SOCS
3 was found, as well as an increased IFN-b and -l production.
Possibly, because asthmatics have more endogenous TGF-b, the
effects measurable were greater (108). Bielor et al. (20) found an
upregulation of TGF-b receptor II mRNA levels, as well as the
mRNA levels of downstream transcription factors like Foxp3 and
RORg in PBMC challenged with RV. Additionally, the TGF-b in the
supernatant was not elevated, while the TGF-b mRNA expression
didn’t change, suggesting that RV infection promoted the consume
of TGF-b. Furthermore, the expression of the inhibitor latency-
associated protein (LAP) and latent TGF-b binding protein (LTBP),
two proteins intracellularly interacting with TGF-b, were induced in
PBMC from asthmatic children after RV challenge. This suggests
that RV in asthmatics leads to the induction of more endogenous
TGF-ß and more binding of TGF-b to its receptor on the cell
surfaces, thus upregulated TGF-b signaling (20).

After RV infection, TGF-ß promotes viral replication and
inhibits IFN-g-producing Th1 cells (108–110). Therefore, TGF-ß
involved in RV-induced asthma exacerbation might enhance
viral replication, as well as an inhibition of Th1- mediated
antiviral responses. In addition, TGF-b2 not only plays an
important role in virus associated asthma exacerbations, but
might also be involved in the development of childhood asthma
Frontiers in Immunology | www.frontiersin.org 8
in the first play. TGF-b2 gene polymorphisms are potentially
increasing the susceptibility for developing asthma (111).

PD-L1
Rhinovirus infection regulates IFN-b/PD-L1 axis in childhood
asthma. In a human cohort study, it was recently described that
preschoolers suffering from rhinovirus-induces asthma and with
reduced forced expiratory volume in 1 second (FEV1) and high
serum levels of C-reactive protein (CRP) show increased level of
PD-L1 mRNA in total blood cells. In the same cohort was found
that the released levels of IFN-b from PBMCs were associated with
an induction of PD-L1, however only in the control group (112). In
the asthma group, the asthmatic patients with higher IFN-ß level
have less PD-L1 expression in total blood cells and better lung
function (112). This finding suggests that IFN-ß suppresses PD-L1
expression in asthma, and the improvement of IFN type I
expression in PBMCs in pediatric asthma may ameliorate asthma
exacerbation. However, the underlying mechanism of the inhibition
of PD-L1 by IFN-ß needs to be further investigated in the future.
CONCLUSION

In this review, we address the immunity of asthma associated with
RV infection and the recent findings from mouse models as well as
in clinical data. IFN type I is considered an effective cytokine against
viral infection by inducing antiviral gene expression such as ISG and
GAS. There are several cells that produce IFN type I and the IFN
type I receptor is expressed ubiquitously. Recent studies have
already reported the differing patterns of cell activation, function,
differentiation, and cytokine secretion between control and asthma
patients. However, there is a need for further studies to gain a deeper
insight into the interactions between the various immune cell types
involved in the pathogenesis of asthma, especially regarding the
involvement of the RV. This greater understanding of the
underlying mechanisms would open up the avenue to new
therapeutic applications in the treatment of asthma and
asthma exacerbations.
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